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1.1	 Identification of the agent

Because of their acidic nature, perfluoro-
octanoic acid (PFOA) and perfluorooctanesul-
fonic acid (PFOS) exist in the environment, 
and in aqueous solutions, in equilibrium with 
their conjugated bases, perfluorooctanoate and 
perfluorooctane sulfonate. Salts of PFOA and 
PFOS will dissociate in solution and in the 
human body (except the stomach) to produce 
the respective anions perfluorooctanoate and 
perfluorooctane sulfonate.

The terms “PFOA” and “PFOS” are used for 
both the acid and the deprotonated form in envi-
ronmental or biological samples, if not otherwise 
specified.

All isomeric forms of PFOA and PFOS and 
their salts should be considered to be part of the 
definition of the agents considered in the present 
monograph.

1.1.1	 Nomenclature and molecular 
information

(a)	 PFOA and its salts

The agents considered in the present mono-
graph include PFOA and its salts (see Table 1.1 
for a non-exhaustive list). PFOA and its salts exist 
as linear and branched isomers (see Fig.  1.1). 
Depending on the production method used, 
PFOA is present primarily as the linear isomer 

or as a mixture of linear (n-isomer) and branched 
isomers (see Section 1.2).

(b)	 PFOS and its salts

The agents considered in this present mono-
graph include PFOS and its salts. Linear and 
branched isomers of PFOS and its salts exist (see 
Table 1.2). Depending on the production method, 
PFOS is present primarily as the linear isomer or 
as a mixture of linear and branched isomers (see 
Fig. 1.2).

1.1.2	 Chemical and physical properties of the 
pure substances

Selected chemical and physical properties 
of PFOA and PFOS are presented in Table  1.3. 
[The Working Group noted that there is some 
inconsistency in the data reported for these 
agents. This may be attributed to a combination 
of factors, including the purity of the acid form 
used to conduct the measurement; the low water 
solubility of the pure acid forms; and their strong 
surface active properties, resulting in sorption to 
interfaces such as the water surface or the walls 
of a glass vessel to an extent that is unknown for 
other substances (Goss, 2008).] The salts of PFOA 
and PFOS are more soluble in water than are their 
acid forms. For example, the water solubility of 
PFOA is 9.5  g/L, whereas the water solubility 
of ammonium perfluorooctanoate (APFO) is 

1. EXPOSURE CHARACTERIZATION
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> 500 g/L, at 20 °C (OECD, 2008). [The Working 
Group noted that other properties of the salts 
might be different from those of the acid form, 
but data are lacking.]

[The Working Group noted that even though 
the data on the pKa of PFOA and PFOS were 
inconsistent, the values were in the range of that 
for weak to strong acids. In aqueous samples  
of low concentrations (e.g. drinking-water, bio- 

specimen), it can be assumed that both agents are 
mainly present in the deprotonated form.]

Table 1.1 Nomenclature and molecular information for PFOA isomers and selected salts

Chemical name CAS No. IUPAC name and synonyms Molecular 
formula

Relative 
molecular mass

n-Perfluorooctanoic 
acid

335-67-1 
(NCBI, 2023a)

2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Pentadecafluoro- 
octanoic acid 
PFOA; n-Perfluorooctanoic acid; 
Pentadecafluoro-1-octanoic acid; 
Pentadecafluoro-n-octanoic acid; 
Pentadecafluorooctanoic acid; 
Perfluorocaprylic acid; Perfluoroctanoic acid; 
Perfluoroheptanecarboxylic acid (NCBI, 2023a)

C8HF15O2 
(NCBI, 2023a)

414.07 (NCBI, 
2023a)

branched-
Perfluorooctanoic 
acid

207678-51-1 
705240-04-6 
1144512-18-4 
909009-42-3 
15166-06-0 
1144512-35-5 
1192593-79-5 
1144512-36-6 
1144512-34-4 
35605-76-6 
(Nielsen, 2012)

sb-Perfluorooctanoic acid (CDC, 2022),  
br-Perfluorooctanoic acid (e.g. Jin et al., 2020) 
[The Working Group noted that different sums 
of isomers have been used. The exact definition 
varies between studies and might include all or 
just some of the isomers.] (See Fig. 1.1 for the 
names of some isomers)

C8HF15O2 
(NCBI, 2023a)

414.07 (NCBI, 
2023a)

Ammonium 
perfluorooctanoate

3825-26-1 
207678-62-4 
19742-57-5 
13058-65-5 
(Nielsen, 2012)

Ammonium perfluorocaprylate; 
Pentadecafluorooctanoic acid ammonium salt; 
Octanoic acid, pentadecafluoro-, ammonium salt, 
APFO (NCBI, 2023c)

C8H4F15NO2 
(NCBI, 2023c)

431.10 (NCBI, 
2023c)

Sodium 
perfluorooctanoate

335-95-5 
207678-72-6 
646-84-4 
18017-22-6 
1195164-59-0 
(Nielsen, 2012)

Sodium perfluorocaprylate; Octanoic acid, 
pentadecafluoro-, sodium salt; Perfluorooctanoic 
acid sodium salt (NCBI, 2023d)

C8F15NaO2 
(NCBI, 2023d)

436.05 (NCBI, 
2023d) 

Potassium 
perfluorooctanoate

2395-00-8 
207678-65-7 
29457-73-6 
(Nielsen, 2012)

Potassium, 
2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluoro-
octanoate; Octanoic acid, pentadecafluoro-, 
potassium salt (NCBI, 2023e)

C8F15KO2 
(NCBI, 2023e)

452.16 (NCBI, 
2023e)

br, branched; CAS, Chemical Abstracts Service Registry; IUPAC, International Union of Pure and Applied Chemistry; PFOA, perfluorooctanoic 
acid; sb, sum of branched isomers.
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Fig. 1.1 Main salts and isomers of PFOA

Structure of carbon chain Structure of carbon chain      CAS No. CAS No.

      335-67-1
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      909009-42-3
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      1192593-79-5
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      1144512-34-4

      35605-76-6

a. PFOA isomers b. Ammonium salts of PFOA isomers (APFO)

3825-26-1

207678-62-4

19742-57-5

13058-06-5

c. Sodium salts of PFOA isomers

Structure of carbon chain CAS No.

335-95-5

207678-72-6

646-84-4

18017-22-6

1195164-59-0

d. Potassium salts of PFOA isomers

Structure of carbon chain CAS No.

2395-00-8

207678-65-7

29457-73-6
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APFO, ammonium perfluorooctanoate; CAS, Chemical Abstracts Service; PFOA, perfluorooctanoic acid.
From Nielsen (2012), as cited in IARC (2016).
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Table 1.2 Nomenclature and molecular information for PFOS isomers and selected salts

Chemical name CAS No. IUPAC name and synonyms Molecular 
formula

Relative 
molecular 
mass

n-Perfluorooctane-
sulfonic acid

1763-23-1 
(NCBI, 2023b)

1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-Heptadecafluorooctane-
1-sulfonic acid 
PFOS, nPFOS; Heptadecafluorooctane-1-sulfonic acid; 
Perfluorooctane sulfonate; Perfluorooctane-1-sulfonic 
acid; Perfluorooctylsulfonic acid; Heptadecafluoro-1-
octanesulfonic acid; Heptadecafluorooctane sulfonic 
acid; 1-Perfluorooctanesulfonic acid (NCBI, 2023b; 
Royal Society of Chemistry, 2023)

C8HF17O3S 
(NCBI, 
2023b)

500.13 (NCBI, 
2023b)

Branched-
Perfluorooctane-
sulfonic acid

255831-20-0 
747385-21-3 
775554-63-7 
740777-79-1 
765246-09-1 
927670-12-0 
950669-24-6 
950669-23-5 
950669-22-4 
950669-21-3 
927670-09-5 
(CAS, 2023)

sm-Perfluorooctanesulfonic acid (CDC, 2022), 
br-Perfluorooctanesulfonic acid (EFSA Panel on 
Contaminants in the Food Chain, 2018) [The Working 
Group noted that different sums of isomers have been 
used. The exact definition varies between studies and 
might include all or just some of the isomers.] See 
Fig. 1.2 for the names of some isomers.

C8HF17O3S 
(NCBI, 
2023b)

500.13 g/mol 
(NCBI, 2023b)

Ammonium 
perfluorooctane-
sulfonate

29081-56-9 
(NCBI, 2023f)

Ammonium heptadecafluoro-1-octanesulfonate 
(NCBI, 2023f)

C8H4F17NO3S 
(NCBI, 
2023f)

517.16 g/mol 
(NCBI, 2023f) 

Potassium 
perfluorooctane-
sulfonate

2795-39-3 
(NCBI, 2023h)

Potassium heptadecafluoro-1-octanesulfonate 
1-Octanesulfonic acid, heptadecafluoro-, potassium 
salt (NCBI, 2023h)

C8F17KO3S 
(NCBI, 
2023h)

538.22 g/mol 
(NCBI, 2023h)

Lithium 
perfluorooctane-
sulfonate

29457-72-5 
(NCBI, 2023g)

Lithium heptadecafluorooctanesulfonate 
Heptadecafluoro-1-octanesulfonic acid lithium salt 
(NCBI, 2023g)

C8F17LiO3S 
(NCBI, 
2023g)

506.10 g/mol 
(NCBI, 2023g) 

br, branched; CAS, Chemical Abstracts Service Registry; IUPAC, International Union of Pure and Applied Chemistry;  
PFOS, perfluorooctanesulfonic acid; sm, sum of perfluoromethylheptane sulfonate isomers.
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Fig. 1.2 Main salts and isomers of PFOS

Structure of carbon chain Structure of carbon chain      CAS No. CAS No.
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a. PFOS isomers b. Ammonium salt of PFOS

29081-56-9

c. Potassium salt of PFOS

Structure of carbon chain CAS registry number

2795-39-3

d. Lithium salt of PFOS

Structure of carbon chain CAS No.

29457-72-5
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CAS, Chemical Abstracts Service; PFOS, perfluorooctanesulfonic acid.
From Langlois and Oehme (2006); Miralles-Marco and Harrad (2015).
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1.1.3	 Technical grade and impurities

(a)	 PFOA

Before 2002, PFOA, which was produced 
mainly by the electrochemical fluorination 
(ECF) method, was reported to have a consistent 
isomer composition of 78% ± 1.2% linear isomers 
and 22%  ±  1.2% branched-chain isomers in 18 
production lots tested over a 20-year period. 
PFOA produced by ECF was reported to contain 
the following impurities: perfluorohexanoate, 
0.73%; perfluoroheptanoate, 3.7%; perfluorono-
nanoate, 0.2%; perfluorodecanoate, 0.0005%; 
perfluoroundecanoate, 0.0008%; and perfluo-
rododecanoate, 0.0008%. From 2002 onwards, 
PFOA, which is produced mainly by the telomer-
ization method, is typically an isomerically pure, 
linear product (Benskin et al., 2010a; IARC, 
2016).

(b)	 PFOS

PFOS and its salts are mainly produced by 
ECF. This ECF-produced PFOS comprises 11 
different isomers, including the linear isomer 
(approximately 70%) and various branched 
isomers (approximately 30%) (Naile et al., 2010). 
Some of these isomers (specifically those with 
branched chains) are chiral, and the environ-
mental fate and behaviour of PFOS may vary 
according to its isomeric and enantiomeric 
composition (Miralles-Marco and Harrad, 
2015). The following impurities were reported 
in a commercial sample of potassium perfluo-
rooctanesulfonate (purity, 86.9%): homologues 
with fewer carbons (C2–C7, predominantly C6), 
9.38%; metals (calcium, magnesium, sodium, 
nickel, and iron), 1.45%; inorganic fluoride, 
0.59%; molecules containing perfluorinated 
sulfur(VI) (sulfur hexafluoride), 0.68%; PFOA, 

Table 1.3 Chemical and physical properties of pure PFOA and PFOS in acid form

Property PFOA PFOS

Boiling-point 192 °C (US EPA, 2017a; NCBI, 2023a) 258–260 °C (US EPA, 2017a) 
Melting-point 54.3 °C (IARC, 2016; ATSDR, 2021) 84 °C [The Working Group noted that these are 

predicted data (US EPA, 2023a)]
Vapour pressure [0.0421 hPa] at 25 °C (ATSDR, 2021; NCBI, 

2023a), [0.700 hPa] at 25 °C (US EPA, 2017a)
[0.003 hPa] at 25 °C (US EPA, 2017a; NCBI, 
2023b)

Water solubility 9.5 g/L at 25 °C (IARC, 2016; US EPA, 2017a; 
ATSDR, 2021)

680 mg/L at 25 °C (US EPA, 2017a; NCBI, 2023b)

Density 1.8 g/cm3 at 20 °C (IARC, 2016; ATSDR, 2021) 1.84 g/cm3 [The Working Group noted that these 
are predicted data (US EPA, 2023a)]

log Kow (octanol/water 
partition coefficient, P)

Not measurable, since PFOA forms multiple 
layers in an octanol/water mixture (ATSDR, 
2021)

Not measurable, since PFOS forms multiple 
layers in an octanol/water mixture (ATSDR, 
2021; NCBI, 2023b)

log Koc (organic 
carbon/water partition 
coefficient)

2.06 (US EPA, 2017a) 2.57–3.14 (US EPA, 2017a; ATSDR, 2021)

Conversion factor 1 ppm = 16.94 mg/m3, 1 mg/m3 = 0.059 ppm,  
at 25 °C and 101 kPa

1 ppm = 20.45 mg/m3; 1 mg/m3 = 0.049 ppm, at 
25 °C and 101 kPa

Physical description White to off-white powder (ATSDR, 2021) White powder (ACS, 2019); also reported as off-
white to grey liquid (NCBI, 2023b)

Stability When heated to decomposition, it emits toxic 
vapours of hydrogen fluoride. Perfluoroalkyl 
carboxylates are resistant to direct photolysis 
and reaction with acids, bases, oxidants, and 
reductants (IARC, 2016; ATSDR, 2021).

When heated to decomposition, it emits toxic 
vapours of sulfur oxides and fluorine (NCBI, 
2023b). Perfluoroalkyl sulfonates are resistant to 
direct photolysis and reaction with acids, bases, 
oxidants, and reductants (ATSDR, 2021).

PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; ppm, parts per million.
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0.33%; nonafluoropentanoic acid, 0.28%; hydro-
carbon sulfonate salts, 0.15%; terminal cyclo-
pentyl PFOS, 0.11%; heptafluorobutyric acid, 
0.1%; and trifluoroacetic acid, 0.015% (Seacat 
et al., 2003).

1.2	 Production and uses

1.2.1	 Production process

PFOA and PFOS have been manufactured 
by ECF and fluorotelomerization. During ECF, 
an organic acyl or sulfonyl fluoride backbone 
structure is dissolved in a solution of aqueous 
hydrogen fluoride (Buck et al., 2011; ATSDR, 
2021; ITRC, 2022c). All the hydrogens on the 
molecule are then replaced with fluorines when 
a direct electrical current is passed through the 
solution. Perfluoroacyl fluorides produced by 
ECF are hydrolysed to form the perfluorocarbox-
ylic acid, which is then separated via distillation. 
The ECF process results in a mixture of linear 
and branched isomers, with 78% and 70% linear 
forms of PFOA and PFOS, respectively (Buck 
et al., 2011; ATSDR, 2021; ITRC, 2022c).

Fluorotelomerization produces primarily 
linear perfluorocarboxylic acids with an even 
number of carbon atoms, which includes PFOA. 
The process begins with the preparation of 
pentafluoroiodoethane from tetrafluoroethene. 
Tetrafluoroethene is then added to the product 
at a molar ratio that gives a product of the desired 
chain length, before the product is oxidized to 
form the carboxylic acid (Buck et al., 2011; 
ATSDR, 2021; ITRC, 2022c).

1.2.2	 Production volume

Production of perfluoroalkyl carboxylates 
began in 1947, initially by ECF. By 2000, ECF 
was still the leading process, accounting for the 
majority (80–90%) of the production of APFO – 
a salt of PFOA – worldwide, which was approx-
imately 260 tonnes in 1999 (Prevedouros et al., 

2006). Global production of perfluorooctane 
sulfonyl fluoride (POSF) – a production precursor 
of PFOS – was estimated to be 96  000  tonnes 
(or 122  500  tonnes, including wastes, largely 
disposed of through land farming/landfilling or 
incineration) between 1970 and 2002. One major 
company based in the United States of America 
(USA) manufactured most of the POSF, using 
ECF, accounting for about 78% of global produc-
tion in 2000 (Paul et al., 2009). [The Working 
Group noted that data on production volumes 
were limited, particularly after 2002 (see below).]

In the USA, the manufacture and import of 
PFOA and PFOS has been phased out; however, 
some existing stocks may remain. PFOS was 
phased out of production by its primary manu-
facturer between 2000 and 2002 (US  EPA, 
2016) and was not reported in the 2006 or 
2012 Chemical Data Reporting effort (US EPA, 
2023e). Before 2006, production volume ranges 
in the USA were reported as follows: PFOA, 
[5–227] tonnes in 1986, 1994, 1998, and 2002; 
APFO, [5–227] tonnes in 1986, 1990, 1994, and 
1998, and [227–454] tonnes in 2002; and PFOS, 
[5–227] tonnes in 1994 and 2002 (ATSDR, 
2021). In 2006, the United States Environmental 
Protection Agency (US EPA) invited eight major 
leading companies manufacturing PFOA to 
join the 2010/2015 PFOA Stewardship Program. 
All participating companies reported meeting 
the goals of this programme, which included 
eliminating emissions by 2015 (US EPA, 2022). 
As of November 2016, PFOA and PFOS are no 
longer used in food contact applications sold in 
the USA (US FDA, 2023). For regulatory agency 
guidelines on the production and use of PFOA 
and PFOS that might explain changes over time, 
see Section 1.5.

Since 2002 there has been a geographical shift 
in industrial production (particularly fluoro-
polymer-production sites) from North America, 
Europe, and Japan to some countries in Asia, espe-
cially China (Wang et al., 2014). Zhang et al. (2012) 
report PFOS production in China of 247 tonnes 
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in 2006 and about 100 tonnes in 2008, with the 
majority used in metal plating (30–40  tonnes/
year) and aqueous film-forming foam (AFFF) 
(25–35  tonnes/year), as well as the production 
of sulfluramid insecticides (4–8  tonnes/year). 
During 2004–2012, 480  tonnes of PFOA and 
its salts were produced in China using the ECF 
process (Li et al., 2015). China has also imple-
mented a phase-out of PFOA and PFOS, with the 
Chinese Ministry of Environmental Protection 
restricting and banning different uses (OECD, 
2023a). Brazilian imports of N-ethyl perfluorooc-
tane sulfonamide (N-EtFOSA), a PFOS precursor, 
for the production of sulfluramid between 2005 
and 2015 were almost exclusively from China; 
imports of N-EtFOSA peaked at > 1.3 tonnes in 
2012, and exports increased to around 2 tonnes 
per year in 2012 (Löfstedt Gilljam et al., 2016). 
[The Working Group noted that these data were 
not for PFOS itself, but might give some indica-
tion of use or production in these geographical 
regions where data for PFOS itself are lacking.]

1.2.3	 Uses

The unique properties of per- and poly-
fluoroalkyl substances (PFAS), including PFOA 
and PFOS, have led to extensive uses in a wide 
variety of diverse applications. These properties, 
including the “ability to lower the aqueous surface 
tension, high hydrophobicity, high oleophobicity, 
non-flammability, high capacity to dissolve 
gases, high stability, extremely low reactivity, 
high dielectric breakdown strength, good heat 
conductivity, low refractive index, low dielectric 
constant, ability to generate strong acids, opera-
tion at a wide temperature range, low volatility 
in vacuum, and impenetrability to radiation” 
(Glüge et al., 2020) facilitate nearly 300 different 
uses and functions. For the more than 1400 PFAS 
evaluated by Glüge et al. (2020), uses fell within 
20 industry branches (e.g. chemical industry 
and electroplating) and 44 other use categories 
(e.g. cleaning compositions and personal care 

products). [However, the Working Group noted 
that the uses identified by Glüge et al. (2020) are 
summarized across all 1400 PFAS; some uses may 
not be applicable to PFOA and PFOS.] PFOA and 
PFOS may be present in industrial and consumer 
products as main ingredients, or as unreacted 
raw materials, undesired reaction by-prod-
ucts, or cross-contaminants along production 
and supply chains (OECD, 2015a; Glüge et al., 
2020). PFOA and APFO are used in chemical 
manufacturing processes, industrial products 
and processes, and consumer products. As a 
processing aid, APFO has been used extensively 
to manufacture fluoropolymers, such as poly-
tetrafluoroethylene (PTFE) (Buck et al., 2011). 
Applications for fluoropolymers containing 
PFOA, as well as direct uses for PFOA, include 
household products with non-stick coatings 
(e.g. cookware); textiles for outdoor or personal 
protection applications (e.g. firefighter turnout 
gear); personal care products (e.g. cosmetics, 
sunscreens, dental floss); seals and gaskets 
used in the aviation and aerospace industries; 
coatings for cables and wires; electronics, solar 
panels and electrolyte fuel cells; fluoropolymer 
fabrication materials used in food processing 
(e.g. liners for grills and ovens); carpets; cleaning 
and impregnating agents; construction materials 
(e.g. chipboard and oriented strand board); and 
surface coatings conferring stain-, oil- and water 
resistance on carpets, textiles, leather products, 
and paper or cardboard packaging used in food 
and feed contact paper and board (e.g. popcorn 
bags, pizza boxes, fast food containers) (Kotthoff 
et al., 2015; Bečanová et al., 2016; ATSDR, 2021; 
Ramírez Carnero et al., 2021; ITRC, 2022a). [The 
Working Group noted that the concentration of 
PFOA varied by application and product. For 
example, in fluoropolymer-based consumer 
products (e.g. non-stick cookware or textiles) 
PFOA may be present in a chemically bound 
form or at lower concentrations than in prod-
ucts in which PFOA is an intentionally added 
ingredient.]
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With some applications that overlap those of 
PFOA, such as waxes (e.g. car, shoe, floor, ski), 
carpets, and packaging used for food and feed 
(Kotthoff et al., 2015; Nordic Council of Ministers, 
2017), PFOS has additionally been used in the 
semiconductor industry; as a hydraulic fluid 
additive in the aviation and aerospace industries; 
as an etchant and antireflective coating in photo-
lithography processes; and in the fabrication of 
imaging devices (e.g. cameras, mobile phones, and 
printers) (ITRC, 2022a). During electroplating 
processes in metal finishing and plating opera-
tions, PFOS has been used as a mist-suppressing 
agent to prevent workers’ exposure to aerosols 
and mists; however, in the USA, the US  EPA 
National Emissions Standards for Hazardous 
Air Pollutants (NESHAP) mandated that use 
of PFOS-based mist-suppressants in chromium 
electroplating be discontinued by 2015 (Office of 
the Federal Register, 2012). Similar phase-outs 
of PFOS for this application have occurred in 
other countries (Ramírez Carnero et al., 2021; 
ITRC, 2022a); however, this application is still 
permitted in the European Union (EU) (Swedish 
Chemicals Agency, 2020). PFOS is also present 
in a variety of building and construction mate-
rials, including paints and varnishes; insulation 
(phenolic foam); dyes and ink; and in wetting, 
levelling, and dispersing agents (ITRC, 2022a).

PFOS together with other PFAS have been 
used extensively in class B firefighting foams 
known as AFFFs. [The Working Group noted 
that AFFFs were designed to meet firefighting 
performance criteria; formulations of PFAS have 
changed over time and by manufacturer (Leeson 
et al., 2021).] These foams were developed in the 
1960s to extinguish liquid fuel fires by efficiently 
suppressing flammable liquid vapour, suffo-
cating the fire hazard, and preventing re-ignition 
(Rosenfeld et al., 2023). AFFF containing PFOS 
was manufactured in the USA from the late 1960s 
until 2002; however, other fluorotelomer-based 
AFFF manufactured from the 1970s until 2016 
contained precursors of PFOA. Although newer 

formulations of class B foams exist, the legacy 
products have been used during fire response, 
training, and equipment maintenance activities 
by the military, airport and municipal fire depart-
ments, and oil and gas production and refining 
industries worldwide (Prevedouros et al., 2006; 
ITRC, 2022b).

PFAS that are known to convert into PFOA 
and PFOS, frequently referred to as “precursors”, 
are used in a variety of settings (see Section 1.4(d)). 
Although a detailed description of these uses 
and functions is beyond the scope of the present 
monograph, examples include the semicon-
ductor and electronics industry; personal care 
products, coatings for medical devices, apparel, 
pharmaceutical equipment; and the pesticide 
sulfluramid (Löfstedt Gilljam et al., 2016; Glüge 
et al., 2020; ITRC, 2022a).

1.3	 Detection and quantification

General considerations

(a)	 Analytical method terminology

Analytical methods used for PFAS consist 
of targeted, non-targeted, and total fluorine 
analysis approaches. Targeted analyses refer to 
methods for a pre-defined, known list of analytes 
for which authentic chemical standards exist. 
Non-targeted analyses are capable of identifying 
suspect and unknown analytes in a sample, often 
through mass spectrometry. Analyte identity 
can then be confirmed using authentic chemical 
standards, and unknown analytes can be tenta-
tively identified through matching to existing 
chemical libraries (US  EPA, 2023b). Total fluo-
rine methods quantify the fluorine (often organic 
fluorine) present in a sample, regardless of chem-
ical structure, and thus are unable to differen-
tiate between chemical structures of analytes 
(Schultes et al., 2019).

Some methods are able to differentiate 
between linear and branched isomers. [The 
Working Group noted that some recent studies 
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of PFOA and PFOS differentiate between linear 
and branched isomers. For example, linear, 
secondary-branched, and tertiary-branched iso- 
mers of PFOA and PFOS can be resolved by 
high-resolution differential ion mobility-mass 
spectrometry (DMS-MS) (Ahmed et al., 2019).] 
Isomer profiling can be used in the quantitative 
assessment of manufacturing source (Benskin 
et al., 2010b).

[The Working Group noted that, in the 
papers reviewed for PFOA and PFOS exposure, 
multiple approaches were used to report the 
lowest concentration of a chemical analyte. These 
commonly include the limit of detection (LOD), 
which describes the lowest concentration identi-
fiable by the analytical instrumentation, and the 
limit of quantification (LOQ), which describes 
the lowest concentration that can be determined 
by means of a given analytical procedure with 
the established accuracy, precision, and uncer-
tainty. The Working Group noted that some 
studies reported lowest measurable concentra-
tions as LODs, whereas others reported LOQs. 
This makes comparison between studies more 
challenging at the lower end of the concentration 
range studied.]

Liquid chromatography-mass spectrometry 
(LC-MS), commonly used for the analysis of 
PFOA and PFOS, is a sophisticated analytical 
technique that requires the purchase and mainte-
nance of an expensive instrument. [The Working 
Group noted that, consequently, access to PFOA 
and PFOS analyses can be challenging for regions 
or populations with limited resources, such as 
low- or middle-income countries (LMICs), and 
may explain the paucity of available data in some 
regions of the world.]

(b)	 Potential for cross-contamination

Consideration of numerous potential sources 
of cross-contamination (also referred to as 
“background interference”) of PFOA and PFOS 
have been documented in the context of sample 
collection and analysis (Method  533, US  EPA, 

2023b; MDEQ, 2018). Potential sources of PFAS 
cross-contamination in the typical sampling 
environment include water used for washing or 
decontamination and materials used within the 
sampling environment (MDEQ, 2018).

In a laboratory setting, analytical instrumen-
tation (e.g. mass spectrometry) and laboratory 
equipment or materials often have fluoropolymer 
(e.g. PTFE) components that may contain PFOA 
(Method 533, US EPA, 2023b; MDEQ, 2018). [The 
Working Group noted that cross-contamination 
issues may affect the concentrations of PFOA 
and PFOS in samples and blanks alike. This may 
contribute to the high LOQs reported in some 
studies.]

1.3.1	 Air

Several methods have been reported for the 
quantification of PFOA and PFOS in indoor 
and/or outdoor air using both active and passive 
air-sampling techniques, and some examples are 
presented in Table  1.4. These methods gener-
ally rely on a combination of sampling media 
to collect both gas and particle-bound PFOA 
and PFOS. Most reported active air sampling 
methods apply a filter (glass fibre or quartz) to 
capture the particle phase, followed by an adsor-
bent resin to bind the gaseous-phase PFAS. Few 
active air-sampling methods reported the use 
of filters only to capture particle-bound PFAS, 
or sorbent only to capture both gas- and parti-
cle-bound PFAS on the same sampling medium. 
The passive sampling methods use a compact-de-
sign sampler containing a sorbent-impregnated, 
polyurethane foam (PUF) disc to sample PFAS 
from both the gaseous and particle phases. 
Therefore, active sampling methods with two 
independent sampling media can differentiate 
between gas- and particle-bound PFAS concen-
trations, whereas passive sampling methods 
can only provide PFAS concentrations as the 
sum of concentrations in the two phases. In 
general, sampling media (filters and PUF discs) 
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Table 1.4 Selected analytical methods for the measurement of PFOA and PFOS in air

Sample matrix Sampler type Sample collection method Instrument  
(LOD)a

Reference

Air emissions 
from stationary 
sources

Active (flow rate not 
specified – minimum 
sample of 3 m3)

Gas- and particle-bound PFAS collected on a sampling train of 
GFF or QFF, a packed column of adsorbent material 

HPLC-MS/MS  
(PFOA, 0.35 ng/m3;  
PFOS, 0.43 ng/m3)

EPA-OTM-45 
US EPA (2021)

Indoor and 
outdoor air

Active (flow rate of 
6.4 m3/h)

Gas- and particle-bound analytes collected using GFFs 
(particle phase) and glass columns with a PUF–XAD-2–PUF 
sandwich (gaseous phase)

HPLC-TOF/MS  
(1 pg/m3)

Barber et al. 
(2007)

Outdoor air Active (flow rate of 
1.1 m3/h)

Particle-bound analytes collected using GFF HPLC-TOF/MS  
(PFOA, 0.2 pg/m3;  
PFOS, 0.4 pg/m3)

Jahnke et al. 
(2007)

Outdoor air, 
PM2.5

Active (flow rate of 
30 m3/h)

PM2.5-bound analytes collected on QFF HPLC-MS/MS  
(0.14 pg/m3)

Beser et al. 
(2011)

Indoor and 
outdoor air

Passive Gas- and particle-bound analytes collected on sorbent  
(XAD-4)-impregnated PUF disc samplers

HPLC-MS/MS  
(PFOA, 0.47 pg/m3;  
PFOS, 0.02 pg/m3)

Shoeib et al. 
(2010, 2011)

Indoor air 
and personal 
breathing zone 

Active (flow rate of 
0.12 m3/h)

ISOLUTE ENV+ sorbent (hydroxylated polystyrene–
divinylbenzene copolymer) cartridge

HPLC-MS/MS  
(PFOA, 73 pg/g extract;  
PFOS, 38 pg/g extract)

Nilsson et al. 
(2013b)

Outdoor air, 
PM2.5

Active (flow rate of 
30 m3/h)

PM2.5-bound analytes collected on QFF HPLC-HRMS  
(PFOA, 0.18 pg/mL extract; 
PFOS, 0.11 pg/mL extract)

Kourtchev et al. 
(2022)

GFF, glass-fibre filters; h, hour(s); HPLC, high-performance liquid chromatography; HRMS, high-resolution mass spectrometry; ISOLUTE ENV+, commercial solid-phase extraction 
column; LOD, limit of detection; MS, mass spectrometry; MS/MS, tandem mass spectrometry; NR. not reported; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; 
PM2.5, particulate matter with diameter < 2.5 μm; PUF, polyurethane foam; QFF, quartz fibre filters; SIP, sorbent-impregnated polyurethane; TOF, time-of-flight; XAD, commercial 
resin.
a Using electrospray ionization in negative ion mode.
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are extracted with an organic solvent (mostly 
methanol), followed by clean-up using filtration, 
centrifugation, or solid-phase extraction (SPE). 
Instrumental analysis is usually carried out 
using LC-MS with an electrospray ionization 
(ESI) source, operated in negative ion mode. [The 
Working Group noted that the LC-MS methods 
reported for the analysis of PFOA and PFOS in 
air had low instrumental LODs and were appro-
priate for trace level detection of these chemicals 
in air samples.]

EPA-OTM-45 is a standardized method that 
can be used to measure air emissions of PFOA 
and PFOS from stationary emission sources. 
In this method, a sampling train of glass fibre 
or quartz filter is applied, followed by a packed 
column of adsorbent material to collect both 
gaseous-phase and particulate-bound target 
analytes. The samples are then extracted with 
methanol/5% ammonium hydroxide, cleaned-up 
and concentrated using SPE and quantified 
using LC-MS/MS. The method detection limits 
(MDLs) for PFOA and PFOS were 0.43  ng/m3 
and 0.35 ng/m3, respectively (US EPA, 2021).

[The Working Group noted that most of these 
methods have been developed for environmental 
measurements, and there has been no validated 
method using personal samplers developed for 
occupational exposure measurements.]

1.3.2	 Water

Several methods have been developed to 
measure PFOA and PFOS concentrations in 
water. Some selected methods are summarized 
in Table 1.5.

The US  EPA Methods 537.1 (published in 
2009) and 533 (published in 2019) describe 
methods to analyse PFOA and PFOS in drink-
ing-water (US  EPA, 2019; Shoemaker and 
Tettenhorst, 2020). Water samples are fortified 
with surrogate standards and passed through a 
solid-phase sorbent cartridge to extract the PFAS 
and surrogates. The extract is concentrated, and 

isotopically labelled performance standards are 
added. Extracts are analysed by LC-MS/MS. 
LODs were reported as 0.53 and 1.1  ng/L for 
PFOA and PFOS, respectively. Interlaboratory 
comparisons have reported coefficients of varia-
tion (CVs) between laboratories of 23% for PFOA 
and 33–40% for PFOS isomers (van der Veen 
et al., 2023). An earlier interlaboratory compar-
ison reported substantially higher CVs: 118% for 
PFOA and 95% for PFOS in water samples (van 
Leeuwen et al., 2006).

The US  EPA has also validated SW-846 
Method 8327 using external standard calibration 
and LC-MS/MS for the analysis of PFOA and 
PFOS (and other PFAS) in surface water, ground-
water, and wastewater effluent (US EPA, 2023c).

In 2023, a draft version was published of 
US EPA Method 1633, which had already been 
finalized for the aqueous matrices wastewater, 
surface water, and groundwater (US EPA 2023d).

Some examples of low detection limits 
reported for PFOA and PFOS detected via various 
methods were: PFOA, 0.3  ng/L in demineral-
ized water and 0.5 ng/L in natural spring water 
(Janda et al., 2019); 0.10 ng/L (Song et al., 2023); 
PFOA, 0.1 ng/L, and PFOS, 0.5 ng/L (Chen et al., 
2016); and PFOA, 0.01 ng/L, and PFOS, 0.01 ng/L 
(Zheng et al., 2023). [The Working Group noted 
that detection limits have changed as the meth-
odology for sample processing and detection has 
improved over time. Differences in LODs might 
also be explained by the use of different methods 
to derive these LODs.]

1.3.3	 Soil, sediment, consumer products, and 
foods

Several analytical methods for the quantifi-
cation of PFOA and PFOS in soil, sediment, dust, 
and consumer products have been reported. 
Because of the large variability in sample 
matrices, the analytical methods involved 
various extraction techniques, including sol- 
vent extraction, ultrasonic extraction, ion-pair 
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Table 1.5 Selected analytical methods for the measurement of PFOA and PFOS in water

Sample matrix Sample preparation Instrument LOD Reference

Drinking-water Adsorb on polystyrene divinylbenzene; elute with methanol; 
reconstitute in water/methanol with 13C-PFOA internal standards

HPLC-MS/MS PFOA, 0.53 ng/L; 
PFOS, 1.1 ng/L

Shoemaker and 
Tettenhorst (2020)  
US EPA Method 537.1

Drinking-water Adsorb on polystyrene divinylbenzene; elute with methanol 
containing ammonium hydroxide; reconstitute in water/methanol 
with 13C-PFOA internal standards

HPLC-MS/MS PFOA, 3.4 ng/L; 
PFOS, 4.4 ng/L

US EPA (2019)  
US EPA Method 533

Reagent water, surfacewater, 
groundwater, and wastewater 
effluent

Uses US EPA Method 3512 – dilute and filter; does not use SPE or 
carbon clean-up steps, which is a significant difference from the 
other US EPA methods

LC-MS/MS PFOA, 10 ng/L; 
PFOS, 10 ng/L 
(LOQ)

US EPA (2023c)  
US EPA Method 8327

Drinking-water, groundwater 
and surface water (fresh water 
and sea water)

No pretreatment; adsorb on WAX SPE cartridges, elute with 
methanol, evaporate with nitrogen gas

HPLC-MS/MS PFOA, 10 ng/L; 
PFOS, 2.0 ng/L 
(LOQ)

ISO (2009)  
ISO Method 25101

Wastewater, surface water, 
groundwater, landfill leachate

Glass fibre filtration of total suspended solids; aqueous samples 
with ≤ 50 mg of suspended solids must not be filtered; aqueous 
sample: spiking with isotopically labelled standards, SPE, and 
carbon clean-up

HPLC-MS/MS PFOA, 0.54 ng/L; 
PFOS, 0.63 ng/L

US EPA (2023d)  
US EPA Method 
1633 (draft version 
as of November 
2023, finalized 
for the aqueous 
matrices: wastewater, 
surface water, and 
groundwater)a

Non-filtered waters, e.g. 
drinking-water, natural water 
(fresh water and sea water) and 
wastewater

Adsorb on high-purity mixed-mode WAX sorbent; elute with 
methanol

LC-MS/MS PFOA, 0.31 ng/L; 
PFOS, 0.29 ng/L

ISO (2019)  
ISO Method 21675; 
Jones and Harden 
(2022)

Drinking-water Adsorb on WAX SPE cartridges, elute with 1% ammonium 
hydroxide in methanol; concentrate to dryness; reconstitute in 
methanol

LC-MS/MS PFOA, 0.01 ng/L; 
PFOS, 0.01 ng/L

Zheng et al. (2023)

HPLC, high-performance liquid chromatography; ISO, International Organization for Standardization; LC, liquid chromatography; LOD, limit of detection; LOQ, limit of 
quantification; MS/MS, tandem mass spectrometry PFAS, per- and polyfluoroalkyl substances; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; SPE, solid-phase 
extraction; US EPA, United States Environmental Protection Agency; WAX, weak anion exchange.
a US EPA recommends the use of Method 1633, and it is currently the only PFAS method that has been validated in multiple laboratories for aqueous matrices that include wastewater, 
surface water, groundwater, and landfill leachate, as well as for soil, sediment, biosolids, and fish and shellfish tissue.
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extraction and dispersive SPE. Sample clean-up 
methods also varied, from filtration after pH 
control, to SPE and QuEChERS (“quick, easy, 
cheap, effective, rugged, safe”). LC-MS-ESI was 
the method of choice for the analysis of PFOA 
and PFOS. A summary of these methods is 
provided in Table 1.6.

The standard test method ASTM D7968 can 
be used for the determination of PFOA and PFOS 
in soil samples. The method uses solvent extrac-
tion with methanol:water (50:50) under basic 
conditions, followed by filtration, acidification, 
and then LC-MS/MS analysis. The MDLs were 
6.2 and 18.8 ng/kg for PFOA and PFOS, respec-
tively (ASTM International, 2017).

The United States Food and Drug 
Administration (US FDA) published a validated 
method C-010.02 for the analysis of 16 PFAS 
chemicals, including PFOA and PFOS, in various 
food items. Target PFAS are extracted from the 
food samples using acetonitrile and formic acid. 
After extraction, a modified QuEChERS tech-
nique is performed for clean-up, and further 
SPE is required for clean-up of complex samples. 
The cleaned extracts are then analysed using 
LC-MS/MS, with MDLs of 12–24  ng/kg for 
PFOA and 7–28 ng/kg for PFOS, in the different 
food items tested (US FDA, 2021b).

1.3.4	 Human biospecimens

In early studies on exposed workers, total 
serum fluorine was used as a surrogate variable 
for PFOA exposure (e.g. Gilliland and Mandel, 
1996). [The Working Group noted that using a 
total fluorine approach as a surrogate for PFOA 
is not an accurate quantification method for an 
individual analyte.] In 2001, LC-MS/MS was 
used for the first time for the analysis of PFOA 
and PFOS in biological samples (Hansen et al., 
2001). At present, mainly targeted methods are 
used for the analysis of PFOA and PFOS in whole 
blood, serum, and plasma. Non-targeted mass 
spectrometry-based methods, lacking the ability 

to quantify concentrations, are also used (e.g. 
Chang et al., 2023). [However, these methods 
provide semiquantitative intensity levels that 
allow ranking of participants within a study.] A 
selection of methods for the analysis of PFOA 
and PFOS in human biospecimens is shown 
in Table  1.7. The usual sample preparation 
step before extraction is protein precipitation 
(for example, with acetonitrile). An aliquot of 
the supernatant is analysed using LC-MS/MS. 
Isotopically labelled internal standards may be 
used. Typical instrumental LODs are < 0.1 ng/mL 
for PFOA and PFOS, although higher values were 
reported in earlier publications (e.g. 10  ng/mL 
for PFOA; Sottani and Minoia, 2002), and lower 
values in more recent ones (e.g. 0.023 ng/mL for 
PFOA and 0.033  ng/mL for PFOS; Gao et al., 
2018).

A method for determination of PFOA and 
PFOS (and other PFAS) in human serum, 
plasma, and whole blood described the use of 
methanol for protein precipitation and online 
SPE-LC-MS/MS. LODs for PFOA in serum, 
plasma, and whole blood were 0.018, 0.009, and 
0.045  ng/mL, respectively, whereas the corre-
sponding LODs for PFOS were 0.009 ng/mL for 
all three matrices (Poothong et al., 2017).

Earlier interlaboratory comparisons indi-
cated quite large CVs, for example, 51% and 20% 
for PFOA and 24% and 32% for PFOS, in plasma 
samples (van Leeuwen et al., 2006; Longnecker 
et al., 2008). More recently, one interlaboratory 
comparison reported CVs ranging from 9% for 
PFOA and from 9% to 38% for PFOS isomers 
(van der Veen et al., 2023). An interlaboratory 
comparison and training exercise carried out 
for four rounds, involving 21 laboratories across 
Europe, included several PFAS (Nübler et al., 
2022). For PFOA, the relative standard deviation 
improved from 12% to 6% from the second to the 
fourth round, and the relative standard deviation 
for PFOS was 11–12% in both rounds. [The study 
by van Leeuwen et al. (2006) was nearly 20 years 
old and involved the use of different extraction 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/acetonitrile
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Table 1.6 Selected analytical methods for the measurement of PFOA and PFOS in soil, sediment, 
dust, consumer products, and foods

Sample matrix Sample preparation Instrument (LOD)a Reference

Soil Solvent extraction with methanol:water 
(50:50) under basic conditions (pH ~9–10, 
adjusted with ~20 µL NH4OH), followed 
by filtration, and acidification (pH ~3–4, 
adjusted with ~50 µL acetic acid)

HPLC-MS/MS (PFOA, 
6.2 ng/g; PFOS, 18.8 ng/g)

ASTM International 
(2017)

Soil, sediment, and 
sludge (PFOA)

Solvent extraction with acetonitrile/0.2 M 
NaOH

HPLC-MS/MS (PFOA, 
1 ng/g)

Powley et al. (2005)

Soil (PFOA) Ultrasonic extraction with acetonitrile/water 
mixture

HPLC-MS/MS (PFOA, 180 fg 
on column)

Washington et al. 
(2008)

Soil and biosolids Ultrasonic extraction with methanol 
containing 1% NH4OH

HPLC-MS/MS 
(0.02−0.5 ng/g)

Sepulvado et al. 
(2011)

Soil and riverine 
sediment

Ion pair extraction with 0.5 M TBAS and 
0.25 M sodium carbonate buffer (pH 10)

HPLC-MS/MS (soil: PFOA, 
0.34 ng/g; PFOS, 0.32 ng/g; 
sediment: PFOA, 0.30 ng/g)

Lorenzo et al. (2015)

Sediment and sludge Ultrasonic extraction with methanol and  
1% acetic acid

HPLC-MS/MS  
(sediment: PFOA, 0.01 ng/g;  
PFOS, 0.1 ng/g;  
sludge: PFOA, 1.0 ng/g;  
PFOS, 0.9 ng/g)

Higgins et al. (2005)

Marine sediment Ultrasonic extraction with methanol HPLC-MS/MS (PFOA, 
0.01 ng/g; PFOS, 0.05 ng/g)

Wang et al. (2018b)

Lake sediment Solvent extraction with acetonitrile/0.2 M 
NaOH

HPLC-MS/MS (PFOA, 
0.02 ng/g; PFOS, 0.05 ng/g)

Guo et al. (2016)

Marine plastic litter Ultrasonic extraction with hexane HPLC-MS/MS 
(PFOA, 0.03 ng/g;  
PFOS, 0.01 ng/g)

Gómez et al. (2021)

Sewage sludge Ion pair extraction with 0.5 M TBAS and 
0.25 M sodium carbonate buffer (pH 10)

HPLC-MS/MS (PFOA, 
0.6 ng/g; PFOS, 5 ng/g)

Zhang et al. (2010)

Asphalt Ultrasonic extraction with methanol and  
1% NH4OH

HPLC-MS/MS 
(PFOA, 0.6 ng/g;  
PFOS, 0.7 ng/g)

Srivastava et al. 
(2022)

Indoor dust Ultrasonic extraction with acetonitrile HPLC-MS/MS 
(PFOA, 2.3 ng/g;  
PFOS, 4.6 ng/g)

Kubwabo et al. 
(2005)

Indoor dust Solvent extraction with methanol followed 
by filtration

Online SPE-HPLC-TOF/MS 
(PFOA, 0.03 ng/g;  
PFOS, 0.01 ng/g)

Padilla-Sánchez and 
Haug (2016)

Home garden produce 
(e.g. tomato, pepper, 
apples)

Dispersive SPE using magnesium sulfate and 
acetonitrile with 1% NH4OH

HPLC-MS/MS 
(PFOA, 0.03 ng/g; 
PFOS, 0.01 ng/g)

Scher et al. (2018)

Food (various items) Solvent extraction with acetonitrile plus 
formic acid, followed by QuEChERS clean-
up; further SPE clean-up on WAX sorbent 
cartridges is required for complex food 
matrices

HPLC-MS/MS  
(PFOA, 0.012–0.024 ng/g; 
PFOS, 0.007–0.028 ng/g)

US FDA (2021b) 
(Validated US FDA 
method number 
C-010.02)

Food (various items) Ultrasonic extraction with acetonitrile 
plus NaOH, followed by clean-up on WAX 
sorbent cartridges

NanoLC – Orbitrap MS 
(PFOA, 0.001–0.3 ng/g; 
PFOS, 0.001–0.3 ng/g)

Zacs et al. (2023)
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and instrumental techniques, which led to the 
large variation and high z-scores.]

Reported serum-to-plasma ratios for PFOA 
and PFOS were approximately 1:1, whereas 
serum- or plasma-to-whole blood ratios were 
approximately 2:1 (Ehresman et al., 2007; 
Poothong et al., 2017). In the past, total PFOS was 
normally presented, but in more recent publica-
tions PFOS isomers have been distinguished, 
separating linear and the sum of branched forms; 
LODs in serum have also improved (e.g. Li et al., 
2022c) (see Table 1.7). The method reported by 
Li et al. (2022c) can be applied for the analysis 
of PFOA and PFOS in urine; the resulting LODs 
were 0.01 ng/mL for PFOA and 0.01–0.02 ng/mL 
for PFOS isomers (Li et al., 2022c).

Similar methods are used for breast milk or 
colostrum. Existing methods for sample prepa-
ration and analysis of PFAS concentrations in 
human breast milk were reviewed by Macheka-
Tendenguwo et al. (2018). SPE is more popular, 
owing to higher recovery, shorter analysis times, 
simpler procedures, and less use of solvents (e.g. 
Kärrman et al., 2007; Abdallah et al., 2020) than 
in other techniques, such as liquid–liquid extrac-
tion (LLE). The LOQ for each PFAS in colostrum 
and breast milk has been reported as 0.01 ng/mL. 
In two replication sets with in-house controls 
(n  =  6 each), relative standard deviations were 
28% and 11.1% for PFOA, and 20.2% and 8.8% 
for PFOS, respectively (Blomberg et al., 2023).

Sample matrix Sample preparation Instrument (LOD)a Reference

Microwave paper 
packaging

FUSLE with ethanol HPLC-QTOF/MS 
(PFOA, 1.53 ng/g;  
PFOS, 0.63 ng/g)

Monge Brenes et al. 
(2019)

Consumer products 
(papers and textiles)

Solvent extraction with methanol HPLC-MS/MS  
(papers: PFOA, 0.040 µg/m2, 
PFOS, 0.038 µg/m2;  
textiles: PFOA, 0.12 µg/m2; 
PFOS, 0.15 µg/m2)

Robel et al. (2017)

Consumer products 
(e.g. waterproofing 
agents, textiles, paints, 
cookware, waterproofing 
agents, firefighting 
foams, electronics)

Ultrasonic extraction with methanol HPLC-QTOF/MS (NR) Herzke et al. (2012)

Consumer products 
(e.g. textiles (outdoor 
materials), carpets, 
cleaning and 
impregnating agents, 
leather samples, baking 
and sandwich papers, 
paper baking forms and 
ski waxes)

Depending on the matrix procedures 
using ion pair extraction, acidic–alkaline 
sequential extraction or SPE with WAX were 
applied

HPLC-MS/MS (0.1–0.5 ng/g) Kotthoff et al. (2015)

FUSLE, focused ultrasonic liquid extraction; HPLC, high-performance liquid chromatography; LOD, limit of detection; MS, mass 
spectrometry; MS/MS, tandem mass spectrometry; NaOH, sodium hydroxide; NH4OH, ammonium hydroxide; NR, not reported; PFOA, 
perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; QTOF, quadrupole time-of-flight; QuEChERS, Quick, Easy, Cheap, Effective, 
Rugged, and Safe; SPE, solid-phase extraction; TBAS, tetrabutylammonium hydrogen sulfate; TOF, time-of-flight; WAX, weak anion exchange.
a Using electrospray ionization (ESI) in negative ion mode.

Table 1.6   (continued)
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Table 1.7 Selected analytical methods for the measurement of PFOA and PFOS in human biospecimens

Sample matrix Sample preparation Instrument (LOD) Comments Reference

Whole blood Adding of labelled internal standards; solvent 
extraction with acetonitrile; carbon–acetic acid, 
filtration; addition of performance standards 13C8-
PFOA and 13C8-PFOS, with 2 mM ammonium acetate

HPLC-MS/MS 
(PFOA, 0.4–0.7 ng/mL; 
PFOS, 0.01–0.1 ng/mL)

Hardell et al. (2014)

Plasma and 
serum

Protein precipitation with acetonitrile; 13C-labelled 
PFOA internal standards

LC-MS/MS 
(PFOA LOQ, 0.5 ng/mL)

Validated to meet US FDA 
guidelines for bioanalytical 
methods

Flaherty et al. (2005)

Plasma Labelled internal standards; protein precipitation with 
acetonitrile; shaking, centrifugation

LC-MS/MS  
(PFOA, 0.4 ng/mL; PFOS, 
0.5 ng/mL)

Li et al. (2018)

Plasma Protein precipitation with acetonitrile; reconstitution in 
MeOH; filtration

HPLC-ESI-MS/MS  
(PFOA LOQ, 0.5 ng/mL; 
PFOS LOQ, 0.1 ng/mL)

Tsai et al. (2020)

Plasma Addition of 13C-labelled PFAS compounds; addition 
of acetonitrile to precipitate proteins; vortex mixing, 
centrifugation 

LC-HRMS  
(PFOA, 0.01 µg/L; PFOS, 
0.43 µg/L)

Goodrich et al. (2022)

Plasma, serum, 
and whole blood

Protein precipitation with MeOH, mixing, 
centrifugation 

HPLC-MS/MS  
(PFOS, 0.009 ng/mL;  
PFOA, 0.009 ng/mL plasma; 
0.018  ng/mL serum; 
0.045  ng/mL whole blood)

Validated for human 
plasma, serum, and whole 
blood

Poothong et al. (2017)

Serum Sample with internal standard and TBAS solution 
mixed; MTBE added and shaken; centrifugation; 
separation ×2; reconstitution in MeOH; vortex mixing; 
filtration

HPLC-MS/MS 
(PFOA, 1.0 ng/mL; PFOS, 
1.7 ng/mL)

Hansen et al. (2001)

Serum Ion-pair extraction HPLC-MS/MS (PFOA, 
10 ng/mL)

Sottani and Minoia 
(2002)

Serum Proteins precipitated with formic acid; SPE clean-up HPLC-MS/MS 
(PFOA, 0.2 ng/mL; PFOS, 
0.2 ng/mL)

Kuklenyik et al. (2005)

Serum Acidification with HCl, addition of hexanoic acid and 
THF; vortex-shaking, centrifugation

LC/QQQ MS/MS 
(2–20 pg/mL)

Luque et al. (2012)

Serum Dilution with ultrapure water and isotope internal 
standards in MeOH, centrifugation

HPLC-MS/MS 
(PFOA, 0.023 ng/mL; PFOS, 
0.033 ng/mL)

Gao et al. (2018)

Serum Alkaline digestion followed by two-stage SPE 
purification using polymeric HLB and graphitized non-
porous carbon cartridges

LC-MS/MS (NR) Fully validated  
(2002/657/CE decision)  
and accredited  
(ISO 17025 standard)

Mancini et al. (2020)
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Sample matrix Sample preparation Instrument (LOD) Comments Reference

Serum Precipitation using acetonitrile by vigorous shaking; 
all sample batches include chemical blanks and three 
quality control samples

LC-MS/MS 
(PFOA, 0.09 ng/mL; n-PFOS, 
0.2 ng/mL; 3/4/5m-PFOS, 
0.01 ng/mL)

Li et al. (2022c)

Breast milk, 
serum

Proteins precipitated with formic acid; SPE clean-up HPLC-MS/MS  
(PFOA, 0.2 ng/mL milk; 
0.1 ng/mL serum; 
PFOS, 0.3 ng/mL milk; 
0.4 ng/mL serum)

Kuklenyik et al. (2004)

Breast milk LLE; purification by two successive SPE; reconstitution 
in fluorometholone solution as external standard in 
MeOH/water

LC-HRMS  
(PFOA, 0.003 ng/mL; PFOS, 
0.002 ng/mL) 

Kadar et al. (2011)

Breast milk LLE with acetonitrile; purification by dispersive 
SPE using C18 sorbent; shaking and centrifugation; 
reconstitution in MeOH; filtration

HPLC-MS/MS  
(PFOA LOQ, 0.006 ng/mL;  
n-PFOS LOQ, 0.005 ng/mL; 
br-PFOS LOQ, 0.010 ng/mL)

Lankova et al. (2013)

Semen, serum Samples were spiked with mass-labelled extraction 
standard, TBAS solution, NaHCO3/Na2CO3 buffer 
solution and MTBE; shaking; extraction ×2 with 
MTBE; all three extracts combined, evaporated to 
dryness under nitrogen at 40 °C, and reconstituted with 
MeOH

HPLC-MS/MS 
(PFOA LOQ, 
0.004–0.010 ng/mL semen; 
0.020 ng/mL serum;  
PFOS LOQ, 
0.004–0.010 ng/mL semen; 
0.020 ng/mL serum)

Pan et al. (2019)

Urine and serum For urine, add isotope-labelled internal standard and 
ammonium acetate buffer including β-glucuronidase, 
and subsequently formic acid; for serum, isotope-
labelled internal standard was added, and formic acid; 
samples vortexed

SPE-HPLC-MS/MS 
(PFOA, 0.1 ng/mL; PFOS, 
0.1 ng/mL)

Kato et al. (2018)

Urine Precipitation using acetonitrile by vigorous shaking for 
30 min; all sample batches include chemical blanks and 
three quality control samples

LC-MS/MS 
(PFOA, 0.01 ng/mL; n-PFOS; 
0.01 mL; 3/4/5m-PFOS, 
0.02 ng/mL)

 Li et al. (2022c)

Hair, nail, urine, 
serum

For hair and nails: soaking in water, washing twice with 
acetone, air-drying, grinding to powder, extraction by 
various organic solvents, cleaning by WAX cartridge, 
elution with 9% NH4OH in MeOH, concentration to 
dryness under nitrogen gas and reconstitution in water/
MeOH (v/v; 1/1), filtration

HPLC-MS/MS 
(PFOA, 0.03 ng/g hair; 
0.04 ng/g nail; 0.02 ng/mL 
serum; 1.07 ng/L urine; 
PFOS, 0.03 ng/g hair; 
0.05 ng/g nail; 0.02 ng/mL 
serum; 2.09 ng/L urine)

Wang et al. (2018a)

Table 1.7   (continued)
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Sample matrix Sample preparation Instrument (LOD) Comments Reference

Dried blood 
spots

Punch samples desorbed in ultrapure water, sonicated, 
and extracted into MTBE with labelled internal 
standards; dried then reconstituted in MeOH

HPLC-ESI-MS/MS  
(PFOA, 0.4 ng/mL; PFOS, 
0.2 ng/mL)

LODs expressed in units of 
whole blood equivalents

Spliethoff et al. (2008)

Dried blood 
spots

Punch samples desorbed into MeOH with labelled 
internal standards; mixed, sonicated, centrifuged

SPE-HPLC-MS/MS 
(PFOA, 0.0075 ng/mL; 
PFOS, 0.03 ng/mL)

Poothong et al. (2019)

Placental tissue Shaking with MeOH and MPFOA for 5 min, freeze-
drying, homogenized with acetonitrile, centrifuged

HPLC-MS/MS  
(PFOA, 0.03 ng/g; PFOS, 
0.03 ng/g)

Linearity, selectivity, 
accuracy (trueness and 
precision) and sensitivity 
validated according to 
US FDA guidelines

Martín et al. (2016)

br-, branched chain; C18, octadecyl alkyl substituent; ESI, electrospray ionization; HCl, hydrochloric acid; HLB, hydrophilic–lipophilic-balanced; HPLC, high-performance liquid 
chromatography; ISO, International Organization for Standardization; LC-HRMS, liquid chromatography-high-resolution mass spectrometry; LC-MS/MS, liquid chromatography-
tandem mass spectrometry; LC/QQQ-MS/MS, liquid chromatography/triple quadrupole-tandem mass spectrometry; LOD, limit of detection; LOQ, limit of quantification; LLE, liquid–
liquid extraction; MeOH, methanol; min; minute(s); MPFOA, perfluoro-n-[1,2,3,4-13C4]octanoic acid; MS/MS, tandem mass spectrometry; MTBE, methyl tert-butyl ether; NaHCO3/
Na2CO3, sodium bicarbonate/sodium carbonate; NH4OH, ammonium hydroxide; NR, not reported; PFAS, per- and polyfluoroalkyl substances; PFOA, perfluorooctanoic acid; PFOS, 
perfluorooctanesulfonic acid; n-PFOS, linear perfluorooctanesulfonic acid; 3/4/5m-PFOS, corresponds to the sum of branched isomers 3m-PFOS, 4m-PFOS, and 5m-PFOS; SPE, solid-
phase extraction; TBAS, tetra-n-butylammonium hydrogen sulfate; THF, tetrahydrofuran; US FDA, United States Food and Drug Administration; v/v, volume per volume; WAX, weak 
anion exchange. 

Table 1.7   (continued)
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Thomsen et al. (2010) reported a different 
method, with internal standards and acetonitrile 
added, followed by mixing and centrifugation. 
After the addition of formic acid, the superna-
tant is analysed by online column-switching 
LC-MS/MS.

Dried blood spots have been used to assess 
PFOA and PFOS exposure (Spliethoff et al., 
2008). Detection limits as low as 0.0075 ng/mL 
for PFOA and 0.030 ng/mL for PFOS, estimated 
for the corresponding serum concentrations, 
have been reported.

PFOA and PFOS concentrations have also 
been measured in placental tissue (Martín et al., 
2016), hair, and nails (Wang et al., 2018a).

1.4	 Occurrence and exposure

Introduction to occurrence and exposure

(a)	 Life cycle and practices involved in end-of-
life and disposal

The occurrence of PFOA and PFOS in the 
environment is influenced by the chemical life 
cycle, including during fluorochemical produc-
tion; secondary manufacturing processes 
(e.g. products containing fluorochemicals or 
processes using fluorochemicals); product use; 
and management of waste (industrial waste, 
products containing PFOA and PFOS, and 
materials contaminated with PFOA or PFOS) 
(see Fig. 1.3). The presence of PFOA and PFOS 
in consumer and industrial products, as well as 
environmental media subject to remediation, 
creates avenues for inadvertent, repeated cycles 
of contamination (Stoiber et al., 2020).

The available approaches to managing 
large quantities of PFAS wastes include land-
filling, incineration, and wastewater treatment 
(US EPA, 2020). Landfills have been used histor-
ically for disposal at perfluorochemical facilities 
(ATSDR, 2021). The presence of PFAS in leachate 
from landfills has been documented in several 
countries, including Australia, China, Germany, 

and the USA (Stoiber et al., 2020). Incineration 
of products containing PFOA or PFOS gener-
ally requires temperatures of > 800 °C, using a 
scrubber to remove hydrogen fluoride. Although 
limited, experimental studies have indicated 
that incineration can break down PFOA and 
PFOS (Stoiber et al., 2020; ATSDR, 2021). Liquid 
wastes are treated with precipitation, decanting, 
or filtering to separate solids, followed by land-
fill or incineration of the solids and discharge 
of the liquids to a wastewater treatment facility 
(ATSDR, 2021). The US  EPA interim guidance 
also lists underground injection as a possible 
means of disposal (US EPA, 2020).

In some settings, PFOA- or PFOS-
contaminated waste products, including food 
wastes and sludge from municipal wastewater 
treatment, have been dispersed over land, for 
example, by land application of biosolids or 
composts (Kenny, 2021; ITRC, 2022a). Land 
application of these products may contribute to 
the contamination of crops and livestock and the 
continued cycle of contamination (Stoiber et al., 
2020; Kenny, 2021).

[The Working Group acknowledged that 
in geographical regions with restrictions and 
phase-out of PFOA and PFOS production and 
use (e.g. Europe and the USA), trends towards 
decreases in PFOA and PFOS concentrations in 
human biospecimens (mainly in serum) have 
been observed (see Section 1.4.3); however, no 
clear patterns of declining trends have been 
observed for abiotic and environmental samples 
from the same regions. Decreasing concen-
trations in humans may be influenced by the 
removal of certain PFAS from consumer prod-
ucts and associated reductions in direct expo-
sure (Land et al., 2018). Persistent levels in the 
environment may reflect the re-circulation of 
historically manufactured and released PFOA 
and PFOS and potentially the breakdown of their 
precursors.]
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Fig. 1.3 Life cycle of PFOA and PFOS

PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid.
Adapted from European Environment Agency (2021).
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(b)	 Persistence and mobility

The carbon–fluorine bond is one of the 
strongest bonds known in nature and makes  
PFAS extremely resistant to degradation in 
the natural environment. PFOA and PFOS are 
among the most environmentally persistent 
organic chemicals and are, therefore, under 
the Regulation on the Registration, Evaluation, 
Authorisation and Restriction of Chemicals 
(REACH) definition for persistence, classified as 
“very persistent (vP)” (Cousins et al., 2020).

Unlike other known persistent organic pollut-
ants, PFOA and PFOS are highly mobile in the 
environment. They are quite soluble in water, and 
thus can be carried to remote regions through 
oceanic currents and long-range atmospheric 
currents. They can also vertically infiltrate sedi-
ment layers and move across the water column 
(ECHA, 2023).

(c)	 Global and temporal trends

PFOA and PFOS have been detected in envi-
ronmental media worldwide, including in remote 
areas like the Arctic, Antarctic, and Mount 
Everest (Cai et al., 2012; ATSDR, 2021; Miner 
et al., 2021; Garnett et al., 2022). Estimations of 
total global annual emissions of PFOA-based 
products show that emissions steadily increased 
from 1960 to 2002 and quickly decreased from 
2002 to 2012, followed by an increase from 2012 
to 2015. The same trend was observed for PFOS-
based products (OECD, 2015a). The estimated 
oceanic transport of PFOA to the Arctic for the 
period 1951–2004 was greater than the estimated 
atmospheric transport (Prevedouros et al., 2006). 
The deposition into soil from the atmosphere and 
subsequent transport pathways, such as leaching, 
also contribute to the widespread distribution of 
these substances in the environment (ATSDR, 
2021). Retention by soil is expected to be low 
(Prevedouros et al., 2006). In the environment, 
most PFOA and PFOS are estimated to be in 
ocean water, and smaller amounts are present 

in freshwater and sediments. The presence of 
PFOA and PFOS in groundwater is widespread 
(Johnson et al., 2022).

The presence of PFOA and PFOS in snow 
and ice core samples indicates their atmos-
pheric deposition from production and/or use 
(see Section 1.4(c)(i) below). Likewise, sediment 
cores reflect time trends corresponding to initial 
production and subsequent changes in patterns 
of production and use (Section 1.4(c)(ii)).

(i)	 Snow and ice cores
In a snow core from the Mount Muztagata 

glacier (western Tibet, China) showed a steady 
increase in PFOA and PFOS from 1983 to 1999. 
A more recent (1996–2007) core from Mount 
Zuoqiupo glacier (south-eastern Tibet) contained 
lower concentrations of PFOA and PFOS, with no 
clear trend. Differences in concentrations were 
attributed to different upwind sources affecting 
the respective study sites (e.g. sources in Europe 
or central Asia for Mount Muztagata and sources 
in India for Mount Zuoqiupu) (Wang et al., 2014).

In glacial ice cores from Svalbard, Norway, 
representing deposition from 1990 to 2005, 
higher concentrations of PFOA and PFOS were 
detected in the layers representing 1997–2000, 
the period that coincides with the peak produc-
tion of these compounds (Kwok et al., 2013).

In the eastern Antarctic, a firn core repre-
senting the period from 1958 to 2017, showed 
PFOA levels peaking in 1997–2000. Subsequently 
there was a short decline, then an increase from 
2003 to 2013 with no sign of a decrease, despite 
recent global restrictions on PFOA production 
and use (Garnett et al., 2022). [The Working 
Group noted this may be attributed to increasing 
production of fluorochemicals in emerging 
Asian economies, which probably offsets emis-
sion reduction in North America and Europe, 
and may account for the higher concentrations 
observed in the later years represented in the firn 
core. PFOS was not detected in any of the studied 
samples.]
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(ii)	 Sediment cores
In a sediment core containing deposits from 

the 1950s to 2004, in Tokyo Bay, Japan, concen-
trations of PFOA increased consistently from 
1994 to 2004, which is generally consistent with 
the PFOA production and usage profile during 
this period in Japan (Zushi et al., 2010). PFOS 
concentrations decreased gradually after the 
early 1990s, whereas concentrations of some 
PFOS precursors decreased rapidly in the late 
1990s. This trend could reflect the shift in 
PFOS industrial production processes after 
the phase-out of POSF-based products in 2001 
(Zushi et al., 2010). Another study on three sedi-
ment cores from Lake Ontario, Canada, (1952–
2005) reported a marked increase in PFOA 
and PFOS concentrations from the mid-1970s 
to 2005, which is generally in line with PFOA 
and PFOS production and usage profiles (Yeung 
et al., 2013). In a sediment core from the Bering 
Sea, covering almost 70  years of deposition, 
PFOS concentrations generally showed an 
upward trend since 1952 and peaked in about 
2003, after which concentrations dropped to 
a lower level until 2015. This largely coincides 
with the production and usage history of PFOS. 
Conversely, PFOA concentrations showed a more 
fluctuating pattern among layers, which was 
explained by its vertical mobility in pore water 
(Lin et al., 2020a). [The Working Group noted that 
although the temporal trends in PFOS concen-
trations in dated sediment cores reflect PFOS 
production and usage history, temporal trends 
in PFOA concentrations can be influenced by its 
vertical mobility in pore water and thus may not 
adequately reflect changes in its production and 
use in certain geographical areas.]

(d)	 Precursor compounds

In the present monograph, “precursor 
compounds” refers to PFAS that are known to 
break down or transform into PFOA or PFOS 
in the environment or biota, including humans. 

Precursors include, but are not limited to, 
fluorotelomer alcohols (FTOH) and polyfluoro-
alkyl phosphate diesters (diPAP) for PFOA; and 
perfluorooctane sulfonamides (e.g. N-EtFOSA), 
perfluorooctane sulfonamidoacetic acids (e.g. 
N-EtFOSAA) and perfluorooctane sulfonami-
doethanols (e.g. N-EtFOSE) for PFOS (Gebbink 
et al., 2015). While estimates vary by exposure 
scenario, it has been estimated that a substan-
tial proportion of the body burden of PFOA and 
PFOS may originate from intake of precursors 
(Vestergren et al., 2008; Gebbink et al., 2015) (see 
also Section 4.1). While direct exposure to PFOA 
and PFOS may decline as a result of regulation or 
voluntary efforts, production and use of precur-
sors may contribute to ongoing exposure from 
the breakdown of precursors. Breakdown of 
precursors has also resulted in PFOA and PFOS 
contamination in remote areas with no direct 
sources of pollution (ATSDR, 2021).

1.4.1	 Environmental occurrence

(a)	 Air and dust

The atmospheric environment is not only 
an important compartment for the transport 
of PFOA and PFOS, but it is also an exposure 
pathway for PFOA and PFOS (Liu et al., 2018a). 
Air is a mixture of particles, gases, and dust. The 
sources and levels of PFOA and PFOS in outdoor 
and indoor air differ, and the characteristics of 
PFOA and PFOS are described here for outdoor 
air, indoor air, and settled dust separately.

(i)	 Outdoor air
The sources of PFOA and PFOS in outdoor air 

include direct emissions from the fluorochemical 
industry and products containing fluorochemi-
cals (Butt et al., 2010), long-range transport via 
the gas phase, and degradation of PFAS precur-
sors (McMurdo et al., 2008). Sampling time and 
location varied among multiple studies; represen-
tative concentrations are presented in Table 1.8.
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Table 1.8 Occurrence of PFOA and PFOS in outdoor air

Reference Location and 
collection 
date

Characteristics 
of sampling 
(number, 
sites, sampler, 
time, flow, and 
duration)

Analytical method 
(reporting limits)

PFOA PFOS Unit Comments 

Mean (range) Median 
(IQR)

Mean (range) Median 
(IQR)

Camoiras 
González 
et al. 
(2021)

15 countries 
in Africaa, 
2017–2019

118, 
meteorological 
station, PAS, 
3 mo/sample, 
2 yr

LC-MS/MS, 
(LOQ: PFOA, 
13 pg/PUF disc; 
PFOS, 12 pg/PUF 
disc)

207 (< 13–1190) 148 185 (< 12–2480) 97.7 pg/
PUF 
disc

Long sampling 
time. Good 
reflection of 
PFAS levels in 
Africa.

7 countries 
in Asiab, 
2017–2019

46, 
meteorological 
station, PAS, 
3 mo/sample, 
2 yr

271 (83.1–965) 183 139 (27.3–634) 101 Long sampling 
time. Good 
reflection of 
PFAS levels in 
Asia.

10 countries 
in Group 
of Latin 
America and 
Caribbeanc, 
2017–2019

101, 
meteorological 
station, PAS, 
3 mo/sample, 
2 yr

257 (58.9–655) 233 376 (< 12–2260) 192 Long sampling 
time. Good 
reflection of 
PFAS levels 
in Group of 
Latin America 
and Caribbean 
countries.

9 countries in 
Pacific Islands 
subregiond, 
2017– 2019

43, 
meteorological 
station, PAS, 
3 mo/sample, 
2 yr

181 (< 13–417) 165 297 (< 12–827) 266 Long sampling 
time. Good 
reflection of 
PFAS levels in 
Pacific Islands 
subregion.
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Reference Location and 
collection 
date

Characteristics 
of sampling 
(number, 
sites, sampler, 
time, flow, and 
duration)

Analytical method 
(reporting limits)

PFOA PFOS Unit Comments 

Mean (range) Median 
(IQR)

Mean (range) Median 
(IQR)

Chaemfa 
et al. 
(2010)

UK, July to 
October 2007 

15, background 
and city centre 
area, PAS, 
2–3 mo/sample

LC-TOF-MS  
(LOD: 
PFOA, 27 pg/sample; 
PFOS, 3.9 pg/sample)

[2657  
(< 27–27 000)]

[400] [53.5  
(< 3.9–720)]

[6.5] pg/
sample 
per 
day

Long sampling 
time. Good 
reflection of 
PFAS levels in 
north-western 
England.

UK–Norway, 
June to 
October 2006 

11, background 
and semi-rural/
rural area, PAS, 
2–3 mo/sample

[139 (< 27–1200)] [< 27] [3.0 (< 3.9–7.7)] [< 3.9] Long sampling 
time. Good 
reflection of 
PFAS levels in 
UK–Norway 
transect.

Europe, June 
to November 
2006 

23, ranged from 
background 
to city centre 
area, PAS, 
2–3 mo/sample

[117 (< 27–540.0)] [< 27] [10 (< 3.9–69.0)] [< 3.9]  Long sampling 
time. Good 
reflection of 
PFAS levels in 
Europe.

Dreyer 
et al. 
(2015)

Geesthacht, 
Germany, 
December 
2007 to May 
2008 

11, semirural, 
AAS, 14–
21 days/sample, 
2 sample/mo

HPLC-MS/
MS, (LOQ: 
PFOA, 10 pg/sample; 
PFOS, 10 pg/sample)

0.7 (0.1–4.8) NR 0.65 (0.2–3.5) NR pg/m3 Sampling time 
in each month 
was relatively 
limited. 
Partially reflects 
PFAS levels in 
semirural area.

Table 1.8   (continued)
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Reference Location and 
collection 
date

Characteristics 
of sampling 
(number, 
sites, sampler, 
time, flow, and 
duration)

Analytical method 
(reporting limits)

PFOA PFOS Unit Comments 

Mean (range) Median 
(IQR)

Mean (range) Median 
(IQR)

Guo et al. 
(2018)

Shanghai, 
China, 
December 
2013 to 
January 2015

18, urban 
area (reflects 
long-range 
transported 
PFAS from 
northern 
or eastern 
continental 
China and 
surrounding 
seas), AAS, 
24 h/sample, 
28.3 L/min

HPLC-MS/
MS, (LOD: 
PFOA, 0.35 pg/L; 
PFOS, 1.30 pg/L)

145.6 101.0 
(71.3–230.0)

24.2 24.1 
(14.2–29.0)

pg/m3 Sampling time 
collected in 
every month 
was limited. 
Partially reflects 
PFAS levels in 
urban area in 
winter.

Lin et al. 
(2020a)

Xiamen, 
China, 
December 
2016 to 
September 
2018 

13, eastern 
coastal 
China and 
commercial/
residential area, 
AAS,  
2–3 days/sample, 
0–1 sample/mo, 
20 L/min

LC-MS/MS 
(minimum 
MQL: PFOA, 
0.089 pg/m3 ; PFOS, 
0.174 pg/m3)

[3.21] (0.211–7.47) [0.72] [2.79] 
(< 0.315–15.7)

[1.50] pg/m3 Sampling time 
in each month 
was relatively 
limited. 
Partially reflects 
PFAS levels in 
commercial/
residential area 
in Xiamen.

Delhi, India, 
December 
2017 to May 
2018

2, commercial 
and residential 
area, AAS, 
2–3 days/sample, 
0–1 sample/mo, 
20 L/min

 [0.42] (< 0.367–1.07) [0.38] [0.63]  
(ND to 1.33)

[0.61]  Sampling time 
in each month 
was relatively 
limited. 
Partially reflects 
PFAS levels in 
commercial/ 
residential area 
in Delhi.

Table 1.8   (continued)
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Reference Location and 
collection 
date

Characteristics 
of sampling 
(number, 
sites, sampler, 
time, flow, and 
duration)

Analytical method 
(reporting limits)

PFOA PFOS Unit Comments 

Mean (range) Median 
(IQR)

Mean (range) Median 
(IQR)

Lin et al. 
(2020a)
(cont.)

Beijing, 
China, May 
2017 to 
January 2018

7, rural 
(surrounded 
by forest; near 
some residents), 
AAS, 2–3 day/
sample, 
0–1 sample/
month,  
20 L/min

 [0.68] (< 0.182–2.81) [0.41] [0.53] 
(< 0.350–1.16)

[0.41]  Sampling time 
in each month 
was relatively 
limited. 
Partially reflects 
PFAS levels in 
rural area in 
Beijing.

Yuxi, China, 
August 2016 
to April 2017

7, rural (fewer 
residents and 
low traffic 
density), AAS, 
5 days/sample, 
0–1 sample/mo, 
20 L/min

 [0.12] 
(< 0.091–0.393)

[0.07] [0.11]  
(ND to 0.209)

[0.09]  Sampling time 
in each month 
was relatively 
limited. 
Partially reflects 
PFAS levels in 
rural area in 
Yuxi.

Wenchuan, 
China, May 
2017 to 
October 2017

3, rural 
(mountain 
areas), AAS, 
2–3 days/sample, 
0–1 sample/mo, 
20 L/min

 [0.70] 
(0.365–1.22)

[0.66] [0.57]  
(ND to 1.37)

[0.47]  Sampling time 
in each month 
was relatively 
limited. 
Partially reflects 
PFAS levels in 
mountain area 
in Wenchuan.

Tsukuba, 
Japan, July 
to December 
2017

5, rural (fewer 
residents and 
low traffic 
density), AAS, 
4 days/sample, 
0–1 sample/mo, 
20 L/min

 [0.51] 
(< 0.124–3.01)

[0.28] [0.19] 
(< 0.24–0.709)

[0.14]  Sampling time 
in each month 
was relatively 
limited. 
Partially reflects 
PFAS levels in 
rural Japan.

Table 1.8   (continued)
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Reference Location and 
collection 
date

Characteristics 
of sampling 
(number, 
sites, sampler, 
time, flow, and 
duration)

Analytical method 
(reporting limits)

PFOA PFOS Unit Comments 

Mean (range) Median 
(IQR)

Mean (range) Median 
(IQR)

Lin et al. 
(2020a)
(cont.)

Jinju, 
Republic 
of Korea, 
April 2017 to 
January 2018 

6, rural (fewer 
residents and 
low traffic 
density), AAS, 
3–4 days/sample, 
0–1 sample/mo, 
20 L/min

 [1.47] 
(0.212–7.84)

[0.65] [0.39]  
(ND to 1.16)

[0.38]  Sampling time 
in each month 
was relatively 
limited. 
Partially reflects 
PFAS levels in 
rural Jinjiu.

Nanjing, 
China, 
September 
2017 to July 
2018 

7, urban 
(industrial 
area), AAS, 
3–5 day/sample, 
0–1 sample/mo, 
20 L/min

 [5.71] 
(0.695–26.8)

[2.73] [2.10]  
(ND to 17.1)

[0.76] Sampling time 
in each month 
was relatively 
limited. 
Partially reflects 
PFAS levels in 
industrial area 
in Nanjing.

Gujarat, 
India, 
December 
2016 to 
November 
2017

12, urban 
(western 
coastal India, 
residential 
area), AAS, 
2–5 days/sample, 
0–1 sample/mo, 
20 L/min

 [0.28]  
(ND to 2.06)

[0.17] [0.37]  
(ND to 1.81)

[0.35] Sampling time 
in each month 
was relatively 
limited. 
Partially reflects 
PFAS levels in 
residential area 
in Gujarat.

Lin et al. 
(2022)

Karachi, 
Pakistan, 
December 
2012 to 
January 2013

18, urban (near 
industrial area 
and garbage 
dumping sites), 
AAS,  
24 h/sample, 
16.7 L/min

LC-MS/MS, (MQL: 
PFOA, 1.0 pg/m3; 
PFOS, 0.2 pg/m3)

2.01 (0.85–8.70) 1.6 1.69 
(0.64–3.17)

1.55 pg/m3 Sampling time 
was relatively 
long. Reflects 
PFAS levels in 
urban areas.

Table 1.8   (continued)



77

PFO
A

 and PFO
S

Reference Location and 
collection 
date

Characteristics 
of sampling 
(number, 
sites, sampler, 
time, flow, and 
duration)

Analytical method 
(reporting limits)

PFOA PFOS Unit Comments 

Mean (range) Median 
(IQR)

Mean (range) Median 
(IQR)

Liu et al. 
(2023)

Pearl River 
Delta, China, 
May to July 
and October 
to December 
2018

186, urban, 
AAS,  
24 h/sample, 
100 /min in 
summer and 
1.05 m3/min in 
winter

HPLC-MS/MS 
(LOD: 
PFOA, 0.0025 ng/mL;  
PFOS, 
0.0003–0.0016 ng/mL)

10.80 
(1.02–56.53)

6.05 
(3.71–13.04)

45.19 
(3.90–378.06)

24.18 
(11.94–44.18)

pg/m3 Sampling time 
for each sample 
was limited, 
but sample 
sites were 
representative 
and sample 
size was large. 
Partially reflects 
PFAS levels in 
an urban area in 
the Pearl River 
Delta.

Seo et al. 
(2019)

Hyung-
san River, 
Gyeongju 
and Pohang, 
Republic 
of Korea, 
September 
2014 

8, urban (near 
wastewater 
treatment 
plants), AAS, 
18–24 h/sample, 
700 L/min

LC-MS/MS  
(MDL: 
PFOA, 0.13 pg/m3; 
PFOS, 0.13 pg/m3)

48.66 43.09 90.52 99.03 pg/m3 Total sampling 
time was long. 
Reflects PFAS 
levels near 
wastewater 
treatment plants 
in the Republic 
of Korea.

Wang 
et al. 
(2021)

Shandong, 
China, 
November 
2017 

12, urban 
(fluorochemical 
industry park), 
AAS,  
20 h/sample, 
800 L/min

LC-MS  
(LOD: 
PFOA, 0.06 pg/m3; 
PFOS, 0.13 pg/m3;  
LOQ: 
PFOA, 0.31 pg/m3; 
PFOS, 0.31 pg/m3

1610 (42.8–9730) 451 1.24 
(< 0.31–2.74)

1.01 pg/m3 Long total 
sampling time. 
Reflects PFAS 
levels at source.

Table 1.8   (continued)
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Reference Location and 
collection 
date

Characteristics 
of sampling 
(number, 
sites, sampler, 
time, flow, and 
duration)

Analytical method 
(reporting limits)

PFOA PFOS Unit Comments 

Mean (range) Median 
(IQR)

Mean (range) Median 
(IQR)

Yu et al. 
(2018)

Coastal areas 
of the Bohai 
Sea, China, 
May 2015 to 
April 2016 

48, urban (large 
emission of 
PFAS, economic 
zones), AAS, 
48 h/sample, 
2 sample/mo, 
300 L/min

HPLC-MS/MS 
(LOD: 
PFOA, 0.01 pg/m3; 
PFOS, 0.02 pg/m3;  
LOQ: 
PFOA, 0.05 pg/m3; 
PFOS, 0.05 pg/m3)

27.0 (0.1–362.9) [26.2] 
[(15.0–34.8)]

[1.8] 
(< 0.05–11.1)

[1.4] 
[(1.0–2.1)]

pg/m3 Sampling time 
in every month 
was relatively 
limited, but 
number of 
samples was 
large. Partially 
reflects PFAS 
levels in an 
urban area.

Coastal areas 
of the Yellow 
Sea, China, 
May 2015 to 
April 2016

35, urban (large 
emission of 
PFAS, economic 
zones), AAS, 
48 h/sample, 2 
sample/month, 
300 L/min

30.5 (0.6–524.8) [18.3] 
[(13.3–46.1)]

[0.6] 
(< 0.05–8.6)

[0.8] 
[(0.5–0.9)]

 Sampling time 
in each month 
was relatively 
limited, but 
number of 
samples was 
large. Partially 
reflects PFAS 
levels in an 
urban area.

Zhou 
et al. 
(2021)

North 
Carolina, 
USA, 
2018–2019

60, suburban 
residential areas 
and on or near 
university 
campuses, AAS, 
6 days/sample, 
3 mo, 10.0 L/min

HPLC-MS/MS  
(LOD: 
PFOA, 0.0067 pg/m3; 
PFOS, 0.0047 pg/m3; 
MDL:  
PFOA, 2.86 pg/m3; 
PFOS, 0.18 pg/m3)

(< 0.005–14.06) NR (< 0.004–4.75) NR pg/m3 Long sampling 
time. Good 
reflection of 
PFAS levels in 
North Carolina.

AAS, active air sampler; h, hour(s); HPLC, high-performance liquid chromatography; IQR, interquartile range; LC, liquid chromatography; LOD, limit of detection; LOQ, limit of 
quantification; MDL, method detection limit; min, minute(s); mo, month(s); MQL, method quantification limit; MS/MS, tandem mass spectrometry; ND, not detected; NR, not 
reported; PAS, passive air sampler; PFAS, per- and polyfluoroalkyl substances; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; PUF, polyurethane foam; TOF, time-
of-flight; UK, United Kingdom; USA, United States of America. 
a Including Democratic Republic of the Congo, Egypt, Ethiopia, Ghana, Kenya, Mali, Mauritius, Morocco, Nigeria, Senegal, Togo, Tunisia, Uganda, United Republic of Tanzania, 
Zambia.
b Including Cambodia, Indonesia, Lao People’s Democratic Republic, Mongolia, Philippines, Thailand, Viet Nam.
c Including Antigua and Barbuda, Argentina, Barbados, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Uruguay.
d Including Fiji, Kiribati, Marshall Islands, Niue, Palau, Samoa, Solomon Islands, Tuvalu, Vanuatu.

Table 1.8   (continued)
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In general, PFOA and PFOS levels differ 
according to the surroundings of the sampling 
sites. Air collected near fluorochemical industrial 
sites (Yu et al., 2018; Wang et al., 2021), waste-
water treatment plants (Seo et al., 2019), and in 
industrial areas (Lin et al., 2020a) was highly 
contaminated by PFOA and PFOS, whereas air 
collected from areas that were remote from expo-
sure sources and had fewer residents and less 
traffic had lower levels of PFOA and PFOS (Lin 
et al., 2020a). For example, the average concen-
tration of PFOA in air samples from the fluoro-
chemical industry park in Shangdong, China, 
was 1610 pg/m3 (Wang et al., 2021); however, in 
coastal areas of the Bohai Sea, China, which is 
more than 100 km from the industry park, the 
average PFOA concentration was 27.1 pg/m3 (Yu 
et al., 2018). This concentration is higher than 
that in the Pearl River Delta, China, (average 
10.8 pg/m3) (Liu et al., 2023), a coastal area that 
is farther from fluorochemical industries than is 
the Bohai Sea.

PFOA and PFOS levels in outdoor air 
vary widely worldwide, and it is also difficult 
to compare concentrations when the results 
are expressed in different units. One study 
conducted in 2017–2019 used the same method 
for four regions in LMICs (Camoiras González 
et al., 2021). The median concentration of PFOA 
in Africa (148 pg/PUF disc) was similar to that in 
the Pacific Islands (165 pg/PUF disc), but lower 
than that in Asia (183 pg/PUF disc) and the Group 
of Latin America and the Caribbean (GRULAC) 
(233  pg/PUF disc). The median concentrations 
of PFOS in Africa (97.7 pg/PUF disc) and Asia 
(101  pg/PUF disc) were similar, higher levels 
were observed in GRULAC (192  pg/PUF disc), 
and the highest levels were found in the Pacific 
Islands (266 pg/PUF disc) (Camoiras González 
et al., 2021).

In Asia, PFOA and PFOS levels were mainly 
reported for samples from China, and some 
information was available from Pakistan, Japan, 
India, and the Republic of Korea. Concentrations 

of PFOA and PFOS in areas remote from expo-
sure sources were similar in China, Japan, India, 
and the Republic of Korea, and most median 
concentrations were < 5 pg/m3 (Lin et al., 2020a, 
2022). However, mean PFOA concentrations in 
highly polluted zones such as industrial areas or 
areas near fluorochemical industry parks varied 
from 23.8 pg/m3 to 1610 pg/m3, with a maximum 
of 9730 pg/m3 (Guo et al., 2018; Seo et al., 2019; 
Lin et al., 2020a; Wang et al., 2021).

Across Europe and the United Kingdom 
(UK), PFOA concentrations in outdoor air 
have been relatively low. According to sampling 
campaigns conducted in the UK, Norway, and 
other countries in Europe, more than half of 
the samples did not contain PFOA and PFOS 
at concentrations above the detection limits 
(27 pg/sample per day for PFOA and 3.9 pg/sam- 
ple per day for PFOS), although in north-west 
England, the median values for PFOA and PFOS 
were 400 and 6.5 pg/sample per day, respectively 
(Chaemfa et al., 2010). Maximum concentra-
tions of PFOA and PFOS in the particle phase 
measured in Geesthacht, Germany, were both 
< 5 pg/m3 (Dreyer et al., 2015).

Available data on PFOA and PFOS levels 
in outdoor air in other countries or regions 
including the USA were limited. For example, the 
production of PFOA and PFOS was phased out in 
the USA nearly 20 years ago, and in one study in 
which particulate matter with diameter < 2.5 µm 
(PM2.5) samples were collected from five sites in 
North Carolina, USA, it was reported that most 
PFOA and PFOS concentrations were < 1 pg/m3 
(Zhou et al., 2021).

[The Working Group noted that these data 
suggest that, in the absence of an emission source, 
levels of PFOA and PFOS in outdoor air are low.]

(ii)	 Indoor air
The sources of PFOA and PFOS in indoor air 

include consumer products, building materials, 
and outdoor air (Winkens et al., 2017; Janousek 
et al., 2019). The results of previous studies have 
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suggested that PFOA and PFOS concentrations 
in indoor air exceed those in outdoor air (Goosey 
and Harrad, 2012). However, there were only a 
few studies in which PFOA and PFOS levels 
in indoor air were reported. The studies were 
conducted in Canada, the USA, Europe, and 
China, with samples collected from multiple 
sites, including bedrooms, homes, offices, cars, 
living rooms, and a laboratory and hallway (see 
Table 1.9). The median PFOA concentrations in 
indoor air collected from bedrooms in Canada 
(21 pg/m3) (Shoeib et al., 2011) and eastern Finland 
(15.2 pg/m3) (Winkens et al., 2017) were similar 
to those in living rooms (24 pg/m3) and offices 
(18 pg/m3) in the UK (Goosey and Harrad, 2012), 
but lower than median values in living rooms 
(56 pg/m3), cars (76 pg/m3), offices (96 pg/m3), and 
school classrooms (89 pg/m3) in Ireland (Harrad 
et al., 2019). The median PFOS concentrations 
in bedrooms in Canada (< 0.02 pg/m3) (Shoeib 
et al., 2011) and eastern Finland (1.24  pg/m3)
(Winkens et al., 2017), and in living rooms in 
Ireland (< 0.4 pg/m3) (Harrad et al., 2019) were 
similar, and lower than those in living rooms 
(11 pg/m3) in the UK (Goosey and Harrad, 2012), 
and in cars (13 pg/m3), offices (8.9 pg/m3), and 
school classrooms (9.3 pg/m3) in Ireland (Harrad 
et al., 2019), and much lower than those in offices 
in the UK (55 pg/m3) (Goosey and Harrad, 2012). 
[These findings suggest that the function of these 
spaces might influence the concentrations of 
PFOA and PFOS, but more data are needed to 
confirm these influences.] In addition, one study 
at the University of North Carolina, USA, found 
that the floor waxing process in a laboratory and 
hallway increased mean PFOS concentrations 
from < 0.22 pg/m3 before waxing to 8.88 pg/m3 
during waxing (Zhou et al., 2022).

[The Working Group noted that the available 
data on PFOA and PFOS levels in indoor air and 
their determinants were sparse.]

(iii)	 Settled dust
PFOA and PFOS are widely detected in 

dust samples because of continuous releases 
from consumer products (Jian et al., 2017; Zhu 
et al., 2023). de la Torre et al. (2019) evaluated 
65 samples of house dust from three European 
countries. The median concentrations of PFOA 
in these dust samples from Belgium, Italy, and 
Spain were similar (1.54  ng/g, 1.56  ng/g and 
1.00 ng/g, respectively), and median concentra-
tions of PFOS in dust samples from these three 
countries were also low (0.77 ng/g, 0.33 ng/g, and 
0.03 ng/g, respectively) (Table 1.10) (de la Torre 
et al., 2019). A study that collected dust samples 
from 184 homes in North Carolina, USA, and 
49 fire stations in the USA and Canada showed 
that the median concentration of PFOA in dust 
samples collected from fire stations (17.6  ng/g) 
was higher than that from homes (7.9  ng/g) 
(Table  1.10) (Hall et al., 2020). Likewise, the 
median concentration of PFOS in fire stations 
(64.5 ng/g) was much higher than from homes 
(4.4 ng/g). Another study measured levels in 81 
dust samples from homes in Indiana, USA, and 
found similar median concentrations of PFOA 
(5.9 ng/g) and PFOS (10 ng/g) (Zheng et al., 2023).

(b)	 Water

PFOA and PFOS are generally not removed 
from source water during standard water treat-
ment (Wee and Aris, 2023). They have been 
detected in surface water, groundwater, waste-
water, and in raw and finished drinking-water. 
Although the global extent of water contamina-
tion by PFOA and PFOS has not been completely 
characterized, PFOA and PFOS have been 
measured in water sources on all continents 
(Kurwadkar et al., 2022). Studies on highly 
contaminated water are discussed in subsection 
(iv).
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Table 1.9 Occurrence of PFOA and PFOS in indoor air

Reference Location and 
collection 
date

Characteristics 
of sampling 
(number, 
sites, sampler, 
time, flow and 
duration)

Analytical 
method (reporting 
limits) 

PFOA concentration  
(pg/m3)

PFOS concentration  
(pg/m3)

Comments 

Mean  
(range) 

Median 
(IQR) 

Mean  
(range) 

Median 
(IQR)

Goosey and 
Harrad. 
(2012)

Birmingham, 
UK, 
September 
2008 to March 
2009 

20, living room, 
PAS, 1.0 m3/day 
PFOA; 0.8 m3/day 
PFOS, 28–35 days/
sample

HPLC-MS/MS 
(NR)

52 (< 1.9–440) 24 38 (< 1.0–400) 11 Long sampling time. 
No. of samples was 
relatively large. Good 
reflection of PFAS 
levels in homes.

12, offices, PAS, 
1.0 m3/day PFOA; 
0.8 m3/day PFOS, 
28–35 days/sample

58 (< 1.9–200) 18 56 (12–89) 55 Long sampling time. 
No. of samples was 
relatively large. Good 
reflection of PFAS 
levels in homes.

Harrad et al. 
(2019)

Dublin, 
Galway, and 
Limerick, 
Ireland, 
August 2016 
to January 
2017 

34, living room, 
PAS, 60 days/
sample 1.0 m3/day 
PFOA; 0.8 m3/day 
PFOS

HPLC-MS/MS  
(LOD: 
PFOA,  0.3 pg/m3; 
PFOS, 0.4 pg/m3)

72 (< 0.3–386) 56 14 (< 0.4–208) < 0.4 Long sampling time. 
No. of samples was 
large. Good reflection 
of PFAS levels at 
selected sites.

31, cars, PAS, 
60 days/sample

162 (1.2–790) 76 22 (< 0.4–152) 13

34, offices, PAS, 
60 days/sample

153 (< 0.3–1210) 96 89 (< 0.4–1290) 8.9

28, school 
classrooms, PAS, 
60 days/sample

210 (< 0.3–728) 89 188 (< 0.4–1590) 9.3

Shoeib et al. 
(2011)

Vancouver, 
Canada, 
2007–2008

59, bedroom, PAS, 
4 wk/sample

LC-MS/MS, 
MDL, 0.47 pg/m3, 
0.02 pg/m3

113 (3.4–2570) 21 (< 0.02, < 0.02) < 0.02 Long sampling time. 
No. of samples was 
large. Good reflection 
of PFAS levels in 
bedrooms.

Winkens et al. 
(2017)

Kuopio, 
eastern 
Finland, 
2014–2015

57, bedroom, PAS, 
21 days/sample

LC-MS/MS 
(MDL: 
PFOA, 4.48 pg/m3; 
PFOS, 0.47 pg/m3)

21.2 (< 4.48–99.8) 15.2 1.33 (< 0.47–5.04) 1.24 Long sampling time. 
No. of samples was 
relatively large. Good 
reflection of PFAS 
levels in bedrooms.
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Reference Location and 
collection 
date

Characteristics 
of sampling 
(number, 
sites, sampler, 
time, flow and 
duration)

Analytical 
method (reporting 
limits) 

PFOA concentration  
(pg/m3)

PFOS concentration  
(pg/m3)

Comments 

Mean  
(range) 

Median 
(IQR) 

Mean  
(range) 

Median 
(IQR)

Zhou et al. 
(2022)

University 
of North 
Carolina, 
USA, August 
to September 
2019

3, laboratory and 
hallway, before 
floor waxing, AAS, 
16/min,  
24 h/sample 

HPLC-MS/MS 
(MDL: 
PFOA, 0.82 pg/m3; 
PFOS, 0.25 pg/m3)

[12.69] NR [< 0.22] NR Sampling time and size 
were limited.

3, laboratory and 
hallway, during 
floor waxing, AAS, 
16/min,  
18 h/sample

[8.83] NR [8.88] NR Sampling time and size 
were limited.

3, laboratory and 
hallway, after floor 
waxing, AAS,  
16/min,  
24 h/sample

[8.17] NR [< 0.22] NR Sampling time and size 
were limited.

AAS, active air sampler; h, hour(s); HPLC, high-performance liquid chromatography; IQR, interquartile range; LC, liquid chromatography; LOD, limit of detection; LOQ, limit 
of quantification; MDL, method detection limit; min, minute(s); MS/MS, tandem mass spectrometry; NR, not reported; PAS, passive air sampler; PFAS, per- and polyfluoroalkyl 
substances; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; UK, United Kingdom; USA, United States of America; wk, week(s).

Table 1.9   (continued)
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Table 1.10 Occurrence of PFOA and PFOS in dust

Reference Location and 
collection date

Characteristics 
of sampling 
(number, sites)

Analytical method 
(reporting limits) 

PFOA concentration  
(ng/g dust)

PFOS concentration  
(ng/g dust)

Comments 

Mean 
(range)

Median 
(IQR)

Mean 
(range)

Median  
(IQR)

de la Torre 
et al. (2019)

Belgium, 
September 
2016 to 
January 2017

Homes (n = 22) HPLC-MS/MS (LOQ: 
PFOA, 0.11 ng/g; 
PFOS, 0.04 ng/g)

NR 
(0.31–24.2)

1.54 NR 
(< 0.04–6.81)

0.77 Long sampling time. 
No. of samples was 
relatively large. Good 
reflection of PFAS 
levels in dust.

Italy, 
September 
2016 to 
January 2017

Homes (n = 22) NR 
(0.21–53.0)

1.56 NR 
(< 0.04–11.9)

0.33 Long sampling time. 
No. of samples was 
relatively large. Good 
reflection of PFAS 
levels in dust.

Spain, 
September 
2016 to 
January 2017

Homes (n = 21) NR 
(0.42–12.5)

1.00 NR 
(< 0.04–2.45)

0.03 Long sampling time. 
No. of samples was 
relatively large. Good 
reflection of PFAS 
levels in dust.

Hall et al. 
(2020)

Fire stations, 
USA and 
Canada, 2015 
and 2018

Fire stations 
(n = 49)

HPLC-MS/MS (MDL: 
PFOA, 1.60 ng/g dust; 
PFOS, 1.44 ng/g dust)

NR 17.6 NR 64.5 No. of samples was 
relatively large. Good 
reflection of PFAS 
levels in dust.

North 
Carolina, USA, 
2014–2016

Homes 
(n = 184)

HPLC-MS/MS 
(MDL: 
PFOA, 0.26 ng/g dust; 
PFOS, 0.20 ng/g dust)

NR 7.9 NR 4.4 Long sampling time. 
No. of samples was 
relatively large. Good 
reflection of PFAS 
levels in dust.

Zheng et al. 
(2023)

Indiana, USA, 
August to 
December 
2020

Homes (n = 81) HPLC-MS/MS 
(MDL: 
PFOA, 0.01 ng/g dust; 
PFOS, 0.02 ng/g dust)

(< 0.01−1900) 5.9 (< 0.02–1100) 10 Long sampling time. 
No. of samples was 
relatively large. Good 
reflection of PFAS 
levels in dust.

HPLC, high-performance liquid chromatography; IQR, interquartile range; LOQ, limit of quantification; MDL, method detection limit; MS/MS, tandem mass spectrometry; NR, not 
reported; PFAS, per- and polyfluoroalkyl substances; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; UK, United Kingdom; USA, United States of America. 
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(i)	 Surveys of surface water
Examples of PFOA and PFOS measurements 

in surface waters (lakes or rivers) are presented 
in Table S1.11 (Annex  1, Supplementary mate-
rial for Section  1, Exposure Characterization, 
online only, available from: https://publications.
iarc.who.int/636). Mean values of PFOA and 
PFOS were generally below or in the low nano-
grams-per-litre range in locations without any 
reported PFAS pollution source. One example of 
higher levels reported downstream of an indus-
trial source was in Alabama, USA, where values 
reported were 598 µg/L for PFOA and 144 µg/L 
for PFOS (ATSDR, 2021). Reported concentra-
tions in ocean water were generally well below 
the nanogram-per-litre range (see Table S1.11).

Kurwadkar and colleagues reviewed levels of 
PFAS substances in surface water, groundwater 
and wastewater (Kurwadkar et al., 2022). They 
included information on the Asia–Pacific region, 
collected under the Second Global Monitoring 
Report on Persistent Organic Pollutants, which 
showed that PFOS detection was becoming 
more frequent. Levels of PFOS ranged from 
not detected to 47 ng/L in China; from 0.02 to 
230 ng/L in Japan; from 0.12 to 33 ng/L in the 
Republic of Korea; from 0.39 to 42 ng/L in the 
Philippines; and from not detected to 54  ng/L 
in Thailand (United Nations Environment 
Programme, UNEP, as cited in Kurwadkar et al., 
2022). Limited data were available for most of 
South America and Africa.

Muir and Miaz (2021) assembled an exten-
sive summary of PFOA and PFOS measure-
ments and total emissions for rivers across the 
world. There was a high degree of variability 
but widespread detectable levels of PFOA, with 
the highest concentrations identified in Europe 
in the River Po, Italy (200 ng/L); in Asia, in the 
Hokkesantanigawa River, Japan (360 ng/L); and 
in China in numerous rivers (e.g. the Daling 
River, 233  ng/L). Estimated riverine emissions 
of PFOA to the sea exceeded 1000  kg/year for 

many rivers, with estimates for the Yangtze River 
reaching 10 000 to 40 000 kg/year.

For PFOS, high concentrations were reported 
for the Llobregat and Besos rivers in Spain 
(> 250 ng/L) and the Ganges in India (142 ng/L) 
(Muir and Miaz, 2021). Riverine emissions of 
PFOS to the sea were estimated to have exceeded 
2000 kg/year for the Pearl and Xi Rivers in China, 
and the Saint Lawrence River in North America. 
[The Working Group noted that several of these 
measurements were taken in the early 2000s 
and may not represent more recent riverine 
discharges.]

In a meta-analysis of publications on PFAS 
in wastewater treatment plant effluent streams, 
some indications of trends over time were pres- 
ented (Cookson and Detwiler, 2022). Multiple 
results in China indicated a clear upward trend 
during 2006–2019 for both PFOA and PFOS. In 
the data for the USA, a clear downward trend was 
evident for PFOA over the period 2004–2020, but 
there was no overall trend for PFOS.

In a systematic review, Land et al. (2018) 
observed declining trends in PFOA and PFOS 
levels in Tokyo Bay between 2004 and 2006; in 
marine and fresh waters on the west coast of the 
Republic of Korea between 2008 and 2012; and 
in Bohai Bay on the east coast of China between 
2011 and 2013.

Across the USA and across Europe there were 
many sources of data on PFAS surface-water 
contamination, from both local government 
monitoring and research projects, and many 
of these sources have been assembled into an 
online searchable resource (Dagorn et al., 2023; 
Environmental Working Group, 2023; PFAS 
Project Laboratory, 2023). These maps show the 
widespread locations where PFOA and PFOS are 
detectable in the USA and across Europe but do 
not provide summary exposure data for PFOA 
and PFOS.

PFOA and PFOS have been detected in 
many rainwater samples collected from urban 
and rural areas of Europe, Asia, and North 

https://publications.iarc.who.int/636
https://publications.iarc.who.int/636
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America. Levels near local emission sources can 
be very high, for example, PFOA concentrations 
measured in rainwater near to a fluoropolymer 
plant in China (median, [615 ng/L]; maximum, 
2752 ng/L) (Liu et al., 2017). Dispersion has been 
very widespread, with detectable concentrations 
of [0.22  ng/L] for PFOA and [0.006  ng/L] for 
PFOS reported in Antarctica (Casas et al., 2021). 
Reported urban rainfall levels tended to be up 
to about 10 ng/L, and rural levels were generally 
< 1 ng/L (see Table S1.11).

PFOA and PFOS have been detected in both 
coastal and sea and ocean waters, with lower 
concentrations in ocean waters (see Table S1.11). 
PFOA and PFOS have been found to be substan-
tially concentrated in sea foam and rising mist, 
which can be blown inland and contaminate 
surface water (Sha et al., 2022). Muir and Miaz 
conducted an extensive review of measurements 
from ocean and coastal waters, lakes, and rivers, 
and incorporated 29  500 measurements of 87 
individual PFAS analytes, including PFOA and 
PFOS (Muir and Miaz, 2021). During 2015–2019, 
concentrations in seas were highest for PFOA in 
the Bohai and Yellow seas (median, 9.0 ng/L) 
and for PFOS in the Indian Ocean (median, 
0.087 ng/L). The lowest concentrations were found 
in the Mediterranean Sea for PFOA (median, 
0.001  ng/L) and in the Arctic Sea for PFOS 
(0.02 ng/L). Comparison of surveys conducted in 
2000–2009, 2010–2014, and 2015–2019 revealed 
clear upward trends in concentrations of PFOA 
in the Bohai Sea, Yellow Sea, and East China 
Sea, and a steep decline in the Mediterranean. 
For PFOS, upward trends were evident in the 
Indian Ocean. [The Working Group noted, as 
did the authors, that deriving medians across 
studies with different sampling sites, design, and 
timing of sample collection, as well as different 
method  detection limits (MDLs), introduces 
considerable uncertainty for assessing contrasts 
across space and time.]

PFOA and PFOS have been detected in fresh 
snow at levels that were very low in remote areas 
such as Antarctica (Xie et al., 2020) and higher in 
China (Shan et al., 2015), see Table S1.11 (Annex 1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.who.int/636). For PFOA 
and PFOS concentrations measured in snow and 
ice core samples, see Section 1.4(c)(i).

(ii)	 Groundwater
Some examples of PFOA and PFOS concen-

trations measured in groundwater are presented 
in Table S1.11 (Annex  1, Supplementary mate-
rial for Section  1, Exposure Characterization, 
online only, available from: https://publications.
iarc.who.int/636). The occurrence of PFAS in 
groundwater from different areas in the world, 
including Australia, China, India, and islands of 
Malta has been described in a review (Xu et al., 
2021a). PFOA was the dominant PFAS detected 
in three of the eight locations studied. For 
instance, in rural areas of eastern China, PFOA 
concentrations ranged from 7 to 175.2  ng/L, 
with a mean value of 90.8  ng/L (Chen et al., 
2016). Also in China, but in the alluvial–pluvial 
plain of the Hutuo River, PFOA concentrations 
ranged from 0 to 1.76 ng/L (mean, 0.63 ng/L) in 
groundwater (Liu et al., 2019). PFOA was found 
at concentrations in the range of 0–8.03  ng/L 
(mean, 1.46 ng/L) in groundwater from valleys 
in Gozo on the Maltese Islands (Sammut et al., 
2019). In the case of PFOS, higher concentrations 
than those of other PFAS were found only in 13 
shallow monitoring bores surrounding legacy 
landfills in Melbourne, Australia, with a range 
of 1.3–4800 ng/L and mean value of 413.3 ng/L 
(Hepburn et al., 2019).

In 2019, 254 samples were collected from 
five aquifer systems in the eastern USA to eval-
uate PFAS occurrence in groundwater used as a 
source of drinking-water. In this study, PFOA 
and PFOS represent two of the three most 
frequently detected PFAS in public-supply wells, 

https://publications.iarc.who.int/636
https://publications.iarc.who.int/636
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with 2.4% (n = 6) of the samples containing PFOA 
plus PFOS at concentrations of >  70  ng/L, and 
median concentrations detected were 4.6  ng/L 
and 6.7 ng/L for PFOA and PFOS, respectively 
(McMahon et al., 2022).

In a study developed in Sweden, a national 
screening for perfluorinated pollutants in 
drinking-water was performed. The most abun-
dant individual PFAS in surface and ground-
water supplies was PFOS, followed by PFOA 
(Holmström et al., 2014).

[The Working Group noted that some studies 
did not report on PFOA and PFOS separately.]

(iii)	 Drinking-water and drinking-water 
supplies

PFOA and PFOS have been measured in 
drinking-water (e.g. tap water, bottled water) in 
various locations (Fig. 1.4; Table S1.11, Annex 1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from:  
https://publications.iarc.who.int/636). [The Work- 
ing Group noted that mean concentrations in 
drinking-water from sites without any known 
contamination were usually below 10  ng/L 
(Fig. 1.4; see also Section 1.4.1(b)(iv) for concen-
trations measured at sites with reported contam-
ination sources).]

Domingo and Nadal (2019) reviewed the 
scientific literature on PFAS exposure via drink-
ing-water and highlighted that most informa-
tion was coming from the EU, USA, and China. 
They reported on water sampling efforts in 
Europe (France, Italy, Sweden, Spain, Norway, 
Belgium, and the Faroe Islands), the Americas 
(USA, Canada, Brazil), and Asia (China, Japan, 
Afghanistan, India, and the Republic of Korea), 
Africa, and Australia. Levels of PFOA and PFOS 
in drinking-water and drinking-water sources 
ranged from non-detectable to > 500 ng/L.

There have been few formal efforts to charac-
terize PFOA and PFOS levels in drinking-water 
sources on a national or international level. 
Because communities draw drinking-water 

from both surface and groundwater sources, 
large-scale efforts focus on water used for drink-
ing-water supplies, regardless of whether this is 
surface or groundwater. In 2013–2015, the US EPA 
required 6000 public water systems (PWS) to 
test for PFOA and PFOS (and four other PFAS) 
in source water under the Third Unregulated 
Contaminant Monitoring Rule (UCMR 3) pro- 
gramme (US  EPA, 2017b). The prevalence of 
PFOA at levels above the minimum reporting 
levels (MRLs) was low (0.09% of samples from 
0.3% of PWS were above the MRL of 20 ng/L), 
as was that of PFOS (0.3% of samples from 0.9% 
of PWS exceeded the MRL of 40 ng/L) (US EPA, 
2017b). Levels of PFOA reported ranged from 20 
to 349 ng/L (median, [32 ng/L]); levels of PFOS 
ranged from 41 to 1800 ng/L (median, [66 ng/L]); 
the frequency of detection of these chemicals 
increased over the reporting period (Guelfo and 
Adamson, 2018). Detectable levels of PFOA and 
PFOS spanned three orders of magnitude, with 
PFOS levels being higher than those of PFOA 
(US EPA, 2017b). On the basis of these detections, 
it was estimated that more than 6 million people 
in the USA had drinking-water that exceeded 
70  ng/L for the sum of PFOA and PFOS (Hu 
et al., 2016). Detection of PFOA and PFOS was 
significantly associated with nearby military fire-
fighting training areas, AFFF-certified airports, 
and wastewater treatment plants. Detectable 
PFOA was also associated with major industrial 
sites that produced or used PFOA and/or PFOS 
(Hu et al., 2016).

More recently, UCMR  5, being conducted 
in 2023–2025, is measuring 29 PFAS with lower 
MRLs (4  ng/L for PFOA and PFOS) and in a 
larger number of PWS than UCMR 3 (US EPA, 
2024). In initial data available up to October 2023 
for 10 020 samples from 3072 PWS, PFOA was 
reported to be above the MRL in 6.1% of samples 
and 9.5% of PWS, and PFOS was detected at 
above the MRL in 6.4% of samples and 9.5% of 
PWS.

https://publications.iarc.who.int/636
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(iv)	 Local major contamination of drinking-
water sources

Fluorochemical manufacture and use of fire-
fighting foams are associated with PFOA and 
PFOS contamination of drinking-water around 
the world. Some examples are described below.

The first such contamination identified was 
from a facility manufacturing PTFE in Parkers- 
burg, West Virginia, USA, which contaminated 

surface water and drinking-water supplies in 
West Virginia and Ohio, with more than 80 000 
people supplied with water contaminated with 
PFOA to varying extents. Levels of PFOA in water 
supplies measured since the early 2000s ranged 
from 10 to 100  ng/L in the least-contaminated 
water district to up to 10 µg/L in the most-con-
taminated water district (Shin et al., 2011a). 
Modelling of the water contamination indicated 

Fig. 1.4 Examples of PFOA and PFOS concentrations in drinking-water from sites without known 
sources of contamination

LOD, limit of detection; LOQ, limit of quantification; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; USA, United States of 
America.
Selected publications, see Table S1.11 for detail and references (Annex 1, Supplementary material for Section 1, Exposure Characterization, 
online only, available from: https://publications.iarc.who.int/636). When available, the median was plotted. When values were below the LOQ or 
LOD, the LOQ or LOD was plotted instead. Note the logarithmic scale.

https://publications.iarc.who.int/636
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progressive increases in contamination from the 
1950s to 2000, when emissions were curtailed 
(Shin et al., 2011a). In a series of measurements 
from 62 private wells used for drinking-water in 
the same area, the median PFOA concentration 
was 200 ng/L (range, 6–13 300 ng/L) (Hoffman et 
al., 2011).

In Veneto, Italy, groundwater used for drink-
ing-water was contaminated by chemical produc-
tion; PFOA was the main contaminant, together 
with a mixture of mainly shorter-chain PFAS. In 
152 samples collected from the contaminated area 
in 2013, the PFOA concentration was above the 
LOQ in 90% of samples, with a median concen-
tration of 319.5 ng/L (maximum, 1475 ng/L), and 
the PFOS concentration was above the LOQ in 
78% of samples, with a median concentration of 
18 ng/L (maximum, 117 ng/L) (Pitter et al., 2020).

Firefighting foams and their use at airports 
and air force bases have resulted in PFAS 
contamination, particularly PFOS, in drink-
ing-water. In Ronneby, Sweden, about one third 
of a community of 28 000 people were supplied 
with contaminated drinking-water in which 
PFOS was measured at 8000 ng/L and PFOA at 
100 ng/L before the waterworks was closed (Xu 
et al., 2021b).

In Australia, PFOA and PFOS were 
detected in groundwater near a military base in 
Williamtown, New South Wales, at concentra-
tions of 1800  ng/L and 5560  ng/L, respectively 
(Kurwadkar et al., 2022).

(c)	 Soil

Soil has been highlighted as a global sink 
for and long-term source of PFOA and PFOS 
(Brusseau et al., 2020). The estimated half-
lives of PFOA and PFOS in soil are at least tens 
of years, although the true half-lives may be 
longer, because no significant degradation was 
noticeable during the experiments that have 
been conducted (UNEP, 2006, 2017). PFOA and 
PFOS can reach the soil directly, or via degra-
dation of their precursors, from various input 

sources including: application of biosolids as 
fertilizers; the use of PFAS-based firefighting 
foams; leaching from contaminated asphalt and 
concrete affected by the extensive use of AFFF in 
firefighting training centres and airfields; seepage 
of leachate from landfills; discharge of effluents 
from wastewater treatment plants; contaminated 
irrigation water; contaminated discharge from 
fluorochemical industries; and atmospheric 
deposition (Costello and Lee, 2020; Abou-Khalil 
et al., 2022; Panieri et al., 2022; Douglas et al., 
2023). Brusseau et al. (2020) comprehensively 
reviewed the literature on PFAS in soil. Both 
PFOA and PFOS were ubiquitously distributed 
globally in soil, with or without nearby point 
sources. The median for maximum concentra-
tions of PFOA and PFOS reported globally in 
soil near primary point sources was 8722 and 
83  ng/g, respectively, whereas the median for 
maximum background soil (i.e. no direct input 
sources) concentrations worldwide was 2.7 and 
2.7 ng/g, respectively (Brusseau et al., 2020). The 
highest reported concentration of PFOA in soil 
(50 000 ng/g) was measured in soil contaminated 
with AFFF from a US military site (Brusseau 
et al., 2020), and the highest PFOA concentra-
tion (460 000 ng/g) was measured at firefighting 
training grounds in Australia (CRCCARE, 2018). 
Regarding background soil levels, the highest 
PFOA concentration of 47.5 ng/g was measured 
in soil from Shanghai, China (Li et al., 2010), 
and the highest PFOS concentration of 162 ng/g 
was reported for Alnabru, Norway (NEA, 2017). 
Table 1.12 provides a summary of selected studies 
on the occurrence of PFOA and PFOS in soil 
and lists PFOA and PFOS concentrations from 
various sites with different sources of contam-
ination, as well as background concentrations 
from non-contaminated sites.

A systematic review of concentrations of 
12 PFAS (including PFOA and PFOS) in 1042 
soil samples from 15 countries on 6 continents 
reported significantly higher Σ12PFAS levels 
(dominated by PFOA and PFOS) in the northern 
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Table 1.12 Occurrence of PFOA and PFOS in soil

Location and collection 
date

No. of 
samples

PFOA concentrations 
(ng/g)

PFOS concentrations 
(ng/g)

Comments Reference

Antarctica, 2010 3 < MQL Range, 0.31–0.54 
Mean, [0.45]

Llorca et al. (2012a)

Australia, NR 6 Range, 13.6–58.1 
Mean, 34.5

Range, 2180–15 300 
Mean, 7800

AFFF use at airport sites Bräunig et al. 
(2019)

Australia, NR 3 Range, 0.33–0.39 
Mean, 0.36

Range, 6.4–7.2 
Mean, 6.8

No direct input sources Bräunig et al. 
(2019)

Africa
Uganda, 2015 18 Range, 0.25–0.91 Range, 0.6–3.0 No direct input sources Dalahmeh et al. 

(2018)
Asia
China, 2009 32 Range, < 0.05–34.2 

Mean, 2.5
Range, 0.68–189 
Mean, 22.6

Soil around a fluorochemical-
manufacturing plant

Wang et al. (2010)

China, NR 86 Range, < 0.1–0.9 
Mean, 0.2

Range, 0.02–2.4 
Mean, 0.3

No direct input sources Pan et al. (2011)

Nepal, 2010 14 Range, < 0.1–0.26 Range, < 0.09–0.13 No direct input sources Tan et al. (2014)
Republic of Korea, 2009 13 Range, < 0.2–3.4 

Mean, 2.2
Range, < 0.2–1.7 
Mean, 0.8

No direct input sources. Naile et al. (2013)

Europe
Germany, 2006 1 650 8600 Soil affected by contaminated industrial 

waste
Wilhelm et al. 
(2008)

Norway, 2008 39 Range, < 1.0–141.5 
Median, 12.8 
GM, 16.0

Range, 24.5–11 923 
Median, 641 
GM, 516.6

Fire training sites (n = 4) SFT (2008)

Norway, 2016 9 < 0.01 Range, < 0.02–7.06 
Median < 0.02

No direct input sources Skaar et al. (2019)

Sweden, 2011–2012 45 Range, < 0.1–219 
Median, 1.4 
GM, 2.6

Range, < 0.5–8520 
Median, 39 
GM, 42.5

AFFF-contaminated soil near a military 
airport

Filipovic et al. 
(2015a)

Sweden, NR 31 Range, < 0.02–0.57 
Median, < 0.02 
Mean, 0.04

Range, < 0.02–1.7 
Median, 0.3 
Mean, 0.43

No direct input sources Kikuchi et al. 
(2018)

North America
USA, 2010 6 Range, 0.29–0.54 

Median, 0.33
Range, 0.93–2.1 
Median, 1.4

No direct input sources Scher et al. (2018)

USA, 2019 2469 Range, 0.07–50 000 
Median, 1.4 
GM, 2

Range, 0.09–373 000 
Median, 18 
GM, 22

Sites affected by AFFF use Brusseau et al. 
(2020)
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Location and collection 
date

No. of 
samples

PFOA concentrations 
(ng/g)

PFOS concentrations 
(ng/g)

Comments Reference

South America
Tierra del Fuego, 
Argentina, 2010

30 Range, < MQL–1.5 
Mean, 0.3

Range, < MQL–5.4 
Mean, 1.4

No direct input sources Llorca et al. (2012a)

AFFF, aqueous film-forming foam; GM, geometric mean; MQL, method quantification limit; NR, not reported; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid;  
USA, United States of America. 

Table 1.12   (continued)
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hemisphere, which was attributed to greater 
PFAS emissions, compared with the southern 
hemisphere (Lv et al., 2023). On a continental 
scale (from highest to lowest), mean concen-
trations of PFOA were ranked, North America 
>  Asia >  Europe >  Africa >  Oceania >  South 
America, and mean PFOS concentrations were 
ranked, North America > Africa > Europe > Asia 
> Oceania > South America (Lv et al., 2023).

A meta-analysis of PFAS soil-to-groundwater 
concentration ratios for samples collected from 
324 sites where AFFF was used across 56 military 
installations throughout the USA demonstrated 
that soil is a significant reservoir for PFAS at 
these contaminated sites (Hunter Anderson 
et al., 2019). Moreover, analysis of PFAS depth 
profiles in the soil indicated significant reten-
tion of PFOA and PFOS in the vadose zone over 
decades, serving as a significant long-term source 
of PFAS in groundwater (Guo et al., 2020; Lv 
et al., 2023). In a recent study of temporal trends 
in PFAS concentrations in soil samples from 
eastern China, it was reported that PFOA concen-
trations increased by 86.4% between 2011 and 
2021, whereas PFOS concentrations decreased 
by 28.2% during the same period. The distinct 
difference between PFOA and PFOS in terms of 
temporal changes in soil concentrations during 
the studied decade was attributed to the fact that 
PFOS was added to the Stockholm Convention 
on Persistent Organic Pollutants (POPs) in 2009, 
while PFOA was added later in 2019 (Cheng et al., 
2023).

(d)	 Food

PFOA and PFOS are introduced into foods 
in various ways, mainly depending on the food 
origin, but also on packaging (Schaider et al., 
2017) and processing (Choi et al., 2018). Plant-
based foods may be contaminated via atmos-
pheric deposition or uptake from water and soil, 
including from use of sewage sludge as fertilizer 
(Ghisi et al., 2019). A study on crops grown in 
outdoor lysimeters demonstrated uptake of 

PFOA and PFOS, including in various edible 
parts of the crop (Felizeter et al., 2021). Uptakes 
vary both between and within species and may 
partly be explained by different plant proper-
ties (Costello and Lee, 2020). PFOA and PFOS 
become incorporated into animal-based foods 
because animals are exposed to these PFAS via 
water, feed, soil, and air (Death et al., 2021). [The 
Working Group noted that there was a lack of data 
on the contributions of different sources of PFOA 
and PFOS contamination in foods. This may be 
of more importance for source tracking and 
reduction than for exposure characterization.]

Concentrations of PFOA and PFOS have been 
determined in various food products, including 
food for infants such as formula and baby food, 
in a range of studies worldwide (Mikolajczyk 
et al., 2023). Some studies on processed food were 
available (e.g. Jogsten et al., 2009; Jeong et al., 
2019; Genualdi et al., 2022; Vendl et al., 2022), 
but most of the data were based on the analysis 
of raw food products. In general, most data were 
available for fish and seafood, but there have 
been an increasing number of studies on other 
food groups during recent years (Domingo and 
Nadal, 2017; Jian et al., 2017; Pasecnaja et al., 
2022). PFOA and PFOS concentrations detailed 
in selected studies and reports are presented 
in Table S1.13 and Table S1.14, respectively (see 
Annex 1, Supplementary material for Section 1, 
Exposure Characterization, online only, avail-
able from: https://publications.iarc.who.int/636).

Reporting limits varied to a large extent 
between studies (Pasecnaja et al., 2022). [The 
Working Group noted that high reporting limits, 
especially when considering data generated 
in the early 2000s, have resulted in low detec-
tion frequencies, resulting in challenges when 
comparing studies.] As a result of an increasing 
focus on the need for more sensitive methods, 
lower reporting limits have been observed in 
more recent studies (e.g. Lacina et al., 2011; 
Vestergren et al., 2012; Sadia et al., 2020). For 
example, in the study by Vestergren et al. (2012), 

https://publications.iarc.who.int/636
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in which a particular effort had been made to 
increase sensitivity, the method limit of quanti-
fication (MLQ) ranged between 1.8 and 9.6 pg/g 
for PFOA, depending on food type, and between 
1.5 and 8.0 pg/g for PFOS. In comparison, in the 
study by Clarke et al. (2010), for example, the 
LOQ for both PFOA and PFOS was 1000 pg/g. 
[The Working Group noted that because levels of 
PFOA and PFOS are low in many food products, 
improvements in MLQ have an impact on detec-
tion frequencies (EU, 2022).]

The studies presented in supplementary Table 
S1.13 and Table S1.14 were published recently, 
present data from different regions worldwide, 
and include information on several food cate-
gories. As an example, a study on 266 samples 
collected during 2018–2019 from 26 countries 
located in Africa, Asia (excluding China), and 
Latin America included data on several food 
groups and had high detection rates (Fiedler 
et al., 2022). The mean concentrations of PFOA in 
vegetables, fish and other seafood, beef, chicken, 
milk, and eggs were 7.58, 12.4, 6.44, 4.61, 0.99, and 
8.34 pg/g, respectively. The corresponding mean 
concentrations of PFOS in the same food groups 
were 2.45, 124, 37.6, 5.80, 22.1, and 45.6  pg/g, 
respectively. [The Working Group noted that 
with the low LOQ in this study, PFOA and PFOS 
contamination was detected more frequently.]

The mean concentrations in samples from 
Europe (EFSA Panel on Contaminants in the 
Food Chain, 2020) and China (Fan et al., 2021) 
were in general higher than those from Africa, 
Asia (excluding China), and Latin America 
(Fiedler et al., 2022), but detection frequencies 
in studies in the USA were too low to compare, 
except for fish and seafood (US FDA, 2022a; 
Young et al., 2022). For example, the mean 
concentrations of PFOA in eggs were 106 and 
150  pg/g in samples from Europe (EFSA Panel 
on Contaminants in the Food Chain, 2020) and 
China (Fan et al., 2021), respectively, while the 
mean concentration in the study on samples 

from Africa, Asia (excluding China), and Latin 
America was 8.34 pg/g (Fiedler et al., 2022).

For PFOS, the highest mean concentrations 
were generally seen in fish and seafood, when 
compared with other food groups (see Table S1.13 
and Table S1.14, Annex 1, Supplementary mate-
rial for Section  1, Exposure Characterization, 
online only, available from: https://publications.
iarc.who.int/636). For example, the mean concen-
tration of PFOS in fish and shrimp from China 
was 2760 pg/g, whereas the mean concentration 
in meat and meat products was 300  pg/g (Fan 
et al., 2021). This was in line with data reported 
in review papers (Domingo and Nadal, 2017; 
Jian et al., 2017; Pasecnaja et al., 2022). These 
observations were supported by the results of a 
study that found PFOS to be very bioaccumula-
tive (bioaccumulation factor, >  5000) and also 
biomagnifying (trophic magnification factor, > 1) 
in a freshwater food web in Canada (Munoz et 
al., 2022). For PFOA, among various countries, 
the mean concentrations were highest in China 
across all food groups, with the highest concen-
trations found in fish and meat (see Table S1.13 
and Table S1.14, Annex 1, Supplementary mate-
rial for Section  1, Exposure Characterization, 
online only, available from: https://publications.
iarc.who.int/636).

In a study on more than 500 composite sam- 
ples of locally caught freshwater fish collected 
across the USA in 2013–2015, the median concen-
tration of total PFAS (of which PFOS consti-
tuted 74%) was more than 200 times as high as 
the levels found in commercially relevant fish 
analysed by the US FDA in 2019–2022 (Barbo 
et al., 2023). The median and 90th percentile 
concentrations of PFOS in locally caught fresh-
water fish fillets across the USA were 8410 pg/g 
and 41 400 pg/g, respectively (Barbo et al., 2023), 
whereas the concentrations reported by the 
US FDA were generally in the low hundreds of 
picograms per gram, or less (Barbo et al., 2023).

https://publications.iarc.who.int/636
https://publications.iarc.who.int/636
https://publications.iarc.who.int/636
https://publications.iarc.who.int/636
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Elevated concentrations of PFOA and PFOS 
in food have been reported in areas with known 
PFAS contamination (e.g. Hölzer et al., 2011; 
Langberg et al., 2022; Lasters et al., 2022). For 
instance, elevated concentrations of PFOA and 
PFOS were measured in hen eggs from private 
gardens situated within a 10 km radius of a fluoro-
chemical-production plant in Antwerp, Belgium 
(Lasters et al., 2022). The highest concentrations 
were observed for PFOS (130–241 000 pg/g), and 
decreasing concentrations were observed with 
increasing distance from the plant (Lasters et al., 
2022). This was in line with the results of a study 
showing increasing PFOA and PFOS concen-
trations in eggs of hens exposed to increasing 
concentrations in drinking-water (Wilson et al., 
2021). In Lyon, France, PFOS concentrations in 
home-produced eggs near a fluorochemical-pro-
duction facility were higher than in commer-
cially produced eggs: home-produced, median, 
[965 pg/g] and range, 105–5240 pg/g; commer-
cially produced, median, [113  pg/g] and range, 
34–650 pg/g (Préfète du Rhône, 2023).

Environmental contamination may also 
result in elevated levels in dairy products. In a 
study on two dairy farms in the USA with known 
contamination of groundwater, samples were 
collected between 2018 and 2021. Milk samples 
from one of the two farms contained PFOS at 
elevated concentrations. PFOS concentrations of 
up to 4.22 ng/g were reported in the milk from 
this farm, while retail milk and control milk did 
not contain PFOS at detectable levels (US FDA, 
2021a)

Food from wild game species may also 
contain elevated levels of PFOA and PFOS 
(Death et al., 2021). The European Food Safety 
Authority (EFSA) Panel on Contaminants in 
the Food Chain (EFSA Panel on Contaminants 
in the Food Chain, 2020) reported that edible 
offal from game animals contained mean levels 
of PFOA and PFOS that were more than 10 and 
100 times, respectively, as high as in any other 
food group.

In a study from China that included food 
samples from two provinces, Hubei (n = 121) and 
Zhejiang (n = 106), geographical differences were 
observed between regions and sampling sites 
(Zhang et al., 2017a). PFOS levels were higher in 
Hubei than in Zhejiang, particularly for food of 
animal origin. This was expected because PFOS 
was produced in Hubei province. The concentra-
tions of PFOA were similar in the two regions.

Temporal trends for abiotic and biological 
environmental samples, including food items, 
were evaluated in a systematic review by Land 
et al. (2018). Both non-significant and decreasing 
trends were observed for PFOS, depending on 
region and study. Non-significant trends were 
predominant for PFOA. The authors concluded 
that, despite interventions to reduce exposure to 
PFOA and PFOS, no clear temporal trends have 
been observed globally, probably because of the 
high persistence of these compounds in the envi-
ronment. [There were no available data from the 
southern hemisphere and Asia.]

(e)	 Consumer products

PFOA and PFOS are present in numerous 
consumer products; for example, textiles, outdoor 
clothing, cleaning products, paints, coatings, 
carpets, floor coverings, floor polish, leather, 
cosmetics, printing inks, adhesives, ski wax, and 
lubricants (Glüge et al., 2020). However, it is often 
not clear if they were added intentionally, are 
impurities of other components, or are degra-
dation products (Glüge et al., 2020). Also, PFOA 
has been used as a processing aid when manu-
facturing fluoropolymers used, for example, in 
non-stick cookware. Residues of PFOA may thus 
be present in these products (Sinclair et al., 2007).

The amount of available data on PFOA and 
PFOS in consumer products is considerably 
smaller than that on these compounds in food 
and drinking-water, and almost all data have 
been published in the last decade. [The Working 
Group noted that results are reported in different 
metrics, e.g. ng/g or µg/m2, which makes com- 
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parison challenging.] Below, selected studies on 
consumer products available on the market in 
different regions worldwide are presented.

PFOA and PFOS were determined in 
115 randomly selected consumer products 
(textiles, carpets, cleaning and impregnating 
agents, leather, baking and sandwich papers, 
paper baking forms, and ski waxes) purchased 
in Germany in 2010 (Kotthoff et al., 2015). 
Detection frequencies varied between product 
categories. For PFOA and PFOS, respectively, the 
detection frequencies were 100% and 100% for 
outdoor textiles, 78% and 100% for nanosprays 
and impregnation sprays, 88% and 100% for ski 
wax, and 30% and 90% for carpets. PFOA was 
also found in 100% of the gloves, 100% of textiles 
for awnings, and 63% of leather products. PFOS 
was detected in 69% of paper-based food contact 
materials. PFOA and/or PFOS were detected in 
<  50% of the remaining products (wood glue 
and cleaners). For PFOA, the highest median 
(and maximum) concentrations were observed 
in ski wax and nano- and impregnation sprays, 
15.5 (maximum, 2033.1) and 15.9 (maximum, 
28.9) ng/g, respectively (Kotthoff et al., 2015). The 
highest median (and maximum) levels of PFOS 
were observed in outdoor textiles and leather 
with concentrations of 9.5 (maximum, 35.4) and 
5.6 (maximum, 5.6) µg/m2, respectively.

PFOA and PFOS were determined in 25 sam- 
ples of consumer products available to private 
consumers in Japan and purchased between 1981 
and 2009 (car wash/coating products, sprays for 
fabrics and textiles, insecticides, rust inhibitors, 
and paints) (Ye et al., 2015). PFOA was found 
in one sample of spray for fabrics and textiles 
(36  ng/g) and one rust inhibitor (11  ng/g), and 
PFOS was observed in one sample of spray for 
fabrics and textiles (59 ng/g) (Ye et al., 2015). In 
a study in Norway, PFOA and PFOS were deter-
mined in 45 samples of furniture textile, carpet, 
clothing, and food contact materials (Vestergren 
et al., 2015). All samples were imported from 
China and purchased in Norway in 2012–2013. 

PFOA was found in 26 samples, at concentrations 
between 0.005 (carpet) and 0.91 µg/m2 (curtain). 
PFOS was detected at 1.7  µg/m2 in one carpet 
sample (Vestergren et al., 2015).

Seventeen samples of paper and cardboard 
food packaging materials purchased from 
retailers and grocery stores in Egypt in 2013 were 
analysed for PFAS (Shoeib et al., 2016). PFOA 
and PFOS were detected in 79% and 58% of the 
samples, at median concentrations of 2.40 ng/g 
and 0.29 ng/g, respectively.

In a study in the USA, PFAS were deter-
mined in 61 samples of furnishings, apparel, 
and bedding purchased in 2020 (Rodgers et al., 
2022). PFOA and PFOS were detected in seven 
and one product, respectively. The maximum 
concentration of PFOA was 22.5  ng/g, and 
the concentration of PFOS was 2.1 ng/g in the 
one product in which it was detected (Rodgers 
et al., 2022). PFAS were determined in 160 
textile products purchased in Albany, New 
York, USA, between 2016 and 2019 (Zhu and 
Kannan, 2020). PFOA was detected in 20% of 
the products, at a maximum concentration of 
32.7  µg/m2, whereas PFOS was found in 3.8% 
of the products, at a maximum concentration 
of 0.167 µg/m2 (Zhu and Kannan, 2020). PFOA 
and PFOS were determined in 32 textile samples 
purchased in Thailand; mean concentrations 
were 2.74  µg/m2 (range, 0.31–14.14  µg/m2) and 
0.18 µg/m2 (range, 0.02–0.46 µg/m2), respectively 
(Supreeyasunthorn et al., 2016).

PFOA was determined in sunscreens and 
cosmetics, primarily from Japan, for which 
fluorinated compounds were listed as ingredients. 
Among these products, 8 of 9 sunscreens and 13 
of 15 cosmetics contained PFOA at concentra-
tions above the LOQ; concentrations ranged from 
3.7 to 5700 ng/g (Fujii et al., 2013). A wide range 
of PFAS were determined in 38 cosmetics and 
personal care products for which organofluorine 
compounds were listed as ingredients and that 
were available on the North American market in 
2020–22 (Harris et al., 2022). PFOA and PFOS 
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were found at levels above the LOQ in 65.8% and 
26.3% of the samples, respectively. The median 
(and maximum) concentrations of PFOA and 
PFOS were 13.6 ng/g (28 600 ng/g) and < LOQ 
(16.5 ng/g), respectively (Harris et al., 2022). In 
another study in which PFOA and PFOS concen-
trations were determined in cosmetics (n  =  29, 
12 from the USA and 17 from Canada) available 
on the North American market in 2020, PFOS 
was detected in only two Canadian samples, at 
concentrations of 15.5 and 6.6 ng/g (Whitehead 
et al., 2021). In a study on 43 different cosmetics 
for which PFAS were listed as ingredients and 
that were available on the European market in 
2020, PFOA was detected in only one founda-
tion/beauty balm cream, at a concentration of 
112 ng/g, and PFOS was not detected (Pütz et al., 
2022).

[The Working Group noted that there were few 
data available on the same products at different 
time points; it was thus not feasible to evaluate 
potential time trends and the effects of regula-
tions and voluntary phase-outs (see Section 1.5).]

The results of these studies demonstrated that 
PFOA and PFOS are commonly present in a wide 
range of consumer products. In several of the 
studies, PFOA and/or PFOS were most frequently 
detected in textiles and fabrics at concentrations 
between the LOD and 35 µg/m2. Also, in some of 
the studies on cosmetics, detection frequencies 
were high, and concentrations detected were up 
to micrograms per gram product.

1.4.2	 Occupational exposure

Populations with occupational exposure 
are generally recognized as having some of the 
highest levels of exposure to PFOA and PFOS 
(Christensen and Calkins, 2023). In occupational 
settings, the exposure route of greatest impor-
tance is typically assumed to be inhalation, but 
dermal uptake and ingestion of dust may also 
contribute, depending on the workplace condi-
tions (De Silva et al., 2021).

Occupational exposure to PFOA and PFOS 
may result from fluorochemical-production 
processes; use of PFAS as a processing aid in other 
manufacturing settings; use of PFOS as a mist 
suppressant to reduce exposure to other chemical 
hazards; contact with products containing PFOA 
or PFOS, as well as precursor compounds; and 
contact with contaminated environmental media 
or waste infrastructure (see Table S1.15, Annex 1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.who.int/636). The infor-
mation regarding determinants of exposure was 
limited, but indicated that processing conditions, 
such as high temperature, low pH, and use of 
PFAS in dry powder form, are linked to elevated 
PFAS exposure in fluorochemical-manufac-
turing settings (Freberg et al., 2010; Kaiser et al., 
2010; Christensen and Calkins, 2023). Limited 
data on bulk and dust monitoring suggested that 
dust present in speciality textile-manufacturing 
settings, such as those producing flame-retardant 
or water-repellent materials, increases the risk 
of PFAS exposure (Sha et al., 2018; Christensen 
and Calkins, 2023). For non-manufacturing 
industries, such as retail and office buildings, 
factors including the building’s age, the presence 
of carpeting, and the extent of ventilation are 
strongly linked to PFAS exposure (Langer et al., 
2010; Sha et al., 2018; Christensen and Calkins, 
2023).

In this section, occupational exposures 
are first described using biomonitoring data, 
followed by industrial hygiene samples, and work 
environment samples.

(a)	 Biomonitoring data

Biomonitoring has been used to assess expo-
sure to PFOA and PFOS in different settings. 
Fluorochemical-production workers have some 
of the highest serum PFOA and PFOS concentra-
tions reported in the literature (see Fig. 1.5 and 
Fig. 1.6; and Table S1.15, Annex 1, Supplementary 
material for Section 1, Exposure Characterization, 

https://publications.iarc.who.int/636
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Fig. 1.5 Examples of PFOA concentrations in serum, plasma, and whole blood in occupationally exposed populations
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Statistics include median, minimum, and maximum concentrations (ng/mL), the most recent year of sample collection is indicated. See Table S1.15 for detail and references (Annex 1, 
 Supplementary material for Section 1, Exposure Characterization, online only, available from: https://publications.iarc.who.int/636). [The Working Group noted that these values 
are thought to be representative of the literature on occupational exposure. For studies in which data were reported for multiple subgroups, only selected groups are included.] 
Concentrations from the adult general population study NHANES are given for the years 1999–2000 and 2019–2020 for comparison (see Section 1.4.3).
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Fig. 1.6 Examples of PFOS concentrations in serum, plasma, or whole blood in occupationally exposed populations
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online only, available from: https://publications.
iarc.who.int/636). In samples collected in the year 
2000 from 25 PFOA-production workers at a site 
in Italy, Costa et al. (2009) reported a geometric 
mean concentration of PFOA in serum of 
11 700 ng/mL (range, 1540–86 300 ng/mL) (Costa 
et al., 2009). However, the highest reported PFOA 
serum concentration (114  100  ng/mL) was in a 
sample collected in 1995 from a male worker at a 
US facility that produced APFO, the ammonium 
salt form of PFOA (Olsen et al., 2000). In a study 
by Fu et al. (2016) of fluorochemical-production 
workers from a chemical plant in Hubei province, 
China, serum samples collected from 101 workers 
in the sulfonation department contained some of 
the highest concentrations of PFOS, with a mean 
of 14  002  ng/mL (range, 416–118  000  ng/mL). 
PFOA was also reported in this study; however, 
concentrations were higher for workers in the 
electrolytic department than in the sulfonation 
department, peaking at 32 000 ng/mL (Fu et al., 
2016).

Using blood samples collected from workers 
at a fluoropolymer-manufacturing facility in 
West Virginia, USA, between 1972 and 2004, 
Woskie et al. (2012) constructed a job-exposure 
matrix (JEM) to retrospectively assess exposure 
spanning from 1950 to 2004. This facility used a 
process to manufacture certain fluoropolymers, 
such as PTFE, that involved the use of APFO as 
a surfactant in the polymerization of tetrafluo- 
roethylene (TFE). Serum PFOA concentrations 
were highest in workers with tasks involving fine 
powder and granular PTFE (mean, 5470 ng/mL; 
range, 90–59  400  ng/mL), whereas workers 
involved in non-PTFE production (no use of 
APFO or PFOA) had the lowest serum concentra-
tions (mean, 240 ng/mL; range, 7–4140 ng/mL). 
However even the latter experienced exposure 
that far exceeded that of the general popula-
tion. For example, for the period 2000–2004, 
the geometric mean serum concentration for 
non-PTFE (no use of APFO or PFOA) produc-
tion workers was 140 ng/mL, whereas the median 

serum concentration for the local community in 
2005–2006 was 40 ng/mL, and geometric mean 
concentrations in adults aged > 20 years in the 
National Health and Nutrition Examination 
Survey (NHANES) were about 4–5  ng/mL 
between 1999–2000 and 2003–2004 (Woskie 
et al., 2012). Trends over time also differed by job 
category in modelled output, with exposures in 
fine powder/granular PTFE chemical operators 
peaking in 1980 (median serum concentration, 
> 6000 ng/mL), just before the implementation 
of exposure control measures. However, workers 
with only intermittent or background exposure 
to PFOA experienced higher exposure in 2000 
(median serum concentration was estimated at 
nearly 1600  ng/mL), corresponding with peak 
production (Woskie et al., 2012).

Exposure in first responders (including fire-
fighters), the second most frequently character-
ized worker population, is typically described 
as resulting from interactions with products 
containing PFAS, most notably AFFF, but 
exposure from turnout gear or the built envi-
ronment has also been the subject of recent 
research (Peaslee et al., 2020; Young et al., 2021). 
Inhalation, dermal contact, and ingestion (e.g. 
via hand-to-mouth contact) are potential expo-
sure routes because of contact with the product 
as well as with dust or air at the fire station and 
response scene (Mazumder et al., 2023; Rosenfeld 
et al., 2023). The highest serum concentrations 
of PFOS were reported among 149 firefighters 
working at AFFF training facilities in Australia; 
the mean PFOS concentration was 74  ng/mL 
(range, 3.4–391 ng/mL), compared with a mean 
concentration of 12 ng/mL for the general popu-
lation in Australia. In this study, employment 
before the 2003 phase-out of PFOS-based AFFF at 
the facilities was positively associated with PFOS 
concentrations in serum samples collected in 
2013. PFOA was not elevated in this population, 
with mean serum concentrations of 4.6  ng/mL 
(range, 0.3–18 ng/mL) (Rotander et al., 2015).

https://publications.iarc.who.int/636
https://publications.iarc.who.int/636
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Results from other studies of firefighters 
suggest that there are differences by type of 
firefighter, firefighting activity, and geography. 
PFOS concentrations were higher in airport 
firefighters, (median, 10.69 ng/mL; range, 
4.28–30.42 ng/mL) than in suburban firefighters 
(median, 4.04  ng/mL; range, 1.57–9.34  ng/mL) 
from the same geographical region; however, no 
difference was observed for PFOA (Leary et al., 
2020). Burgess et al. (2023) compared serum 
concentrations collected from firefighters in 
municipal fire departments in three distinctly 
different regions of the USA and reported concen-
trations that were elevated above those reported 
in NHANES for branched PFOS (sm-PFOS, sum 
of perfluoromethylheptane sulfonate isomers) 
in all four departments, as well as linear PFOS 
(n-PFOS) and linear PFOA (n-PFOA) in two 
departments (Burgess et al., 2023). In contrast, 
PFOS levels were similar to those from NHANES 
for a sample of 101 male municipal firefighters 
in California, USA (Dobraca et al., 2015), and 
lower than those from NHANES in 138 volun-
teer municipal firefighters in New Jersey, USA 
(Graber et al., 2021).

In plasma from first responders from New 
York State and National Guard employees who 
responded to the collapse of the World Trade 
Center, New York City, USA, in the terrorist attack 
of 11  September  2001, PFOA concentrations 
were approximately twofold those of the general 
population. In this study, Tao et al. (2008a) used 
samples collected 6 months to 2 years after the 
collapse to assess exposure to PFAS categorically 
according to more and less exposure to smoke 
or dust. They observed higher PFOA concen-
trations in smoke-exposed individuals than in 
dust-exposed individuals, with the highest levels 
occurring in the group that was more highly 
exposed to smoke (mean, 10.21  ng/mL; range, 
0.67–61  ng/mL). Background PFOA concentra-
tions for 2001–2002 in the USA ranged from a 
median of 4.7 ng/mL for the full population to 
a mean of 6.98 ng/mL for non-Hispanic White 

men (see Section 1.4.3 for exposure in the general 
population). PFOS was detected in all samples, 
with mean concentrations ranging from 22.9 to 
33.9  ng/mL across the study groups; however, 
concentrations were not elevated above those in 
the general US population (median, 25.8 ng/mL) 
or in the general population in two US cities (in 
Portland, Oregon, the median was 26.0 ng/mL, 
and in Boston, Massachusetts, the median was 
29.5 ng/mL) (Tao et al., 2008a).

There were few available biomonitoring 
data for other worker populations. In the 
Human Biomonitoring for Europe (HBM4EU) 
project, samples collected in 2018–2019 
contained median PFOS concentrations of 
4.97 ng/mL (maximum, 1513 ng/mL) in welders 
and 4.83 ng/mL (maximum, 789 ng/mL) in metal 
plating workers – an exposure that is anticipated 
to have resulted from the use of PFOS as a mist 
suppressant in chrome plating baths (Göen et al., 
2024). Shi et al. (2016) reported a median serum 
PFOS concentration in metal plating workers in 
China of 40 ng/mL (range, 2.4–1323 ng/mL) (Shi 
et al., 2016). In a study of workers in shoe and 
leather-related industries (2011) from the same 
region of China, mean serum concentrations 
were 6.93 ng/mL (range, 0.17–117.77 ng/mL) and 
14.18 ng/mL (range, 0.05–31.66 ng/mL) for PFOA 
and PFOS, respectively (Zhang et al., 2011). 
In a separate study of textile factory workers 
(2009) in another region of China, the mean 
blood concentration of PFOA was 5.46  ng/mL 
(range, 2.35–10.93  ng/mL), and that of PFOS 
was 5.73  ng/mL (range, 1.34–14.75  ng/mL) (Lu 
et al., 2014). In the same study, mean concen-
trations measured in barbers, who may be 
exposed through the use of products containing 
PFOA and PFOS, were 3.18  ng/mL (range, 
0.78–12.18  ng/mL) and 2.56  ng/mL (range, 
0.44–7.72 ng/mL) for PFOA and PFOS, respec-
tively (Lu et al., 2014). PFOA concentrations 
measured in whole blood from ski-wax techni-
cians working with teams competing in World 
Cup events in Europe between 2007 and 2011 
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ranged from 1.9 to 630 ng/mL (mean, 130 ng/mL) 
(Nilsson et al., 2013a). In this population, for 
which samples were collected at multiple time 
points across multiple ski seasons, PFOA concen-
trations increased in technicians with “low” 
initial concentrations, but decreased or remained 
at steady-state in technicians with “high” initial 
concentrations (Nilsson et al., 2010, 2013a). The 
median PFOS concentration (12.2  ng/mL) was 
not elevated when compared with exposure in 
the general population (Nilsson et al., 2010).

In studies of agricultural workers in China 
and Sri Lanka, as well as retail and office workers 
in the USA, concentrations of PFOA and PFOS 
have been reported that are similar to those in 
the corresponding general population (see Table 
S1.15, Annex  1, Supplementary material for 
Section  1, Exposure Characterization, online 
only, available from: https://publications.iarc.
who.int/636) (Guruge et al., 2005; Fraser et al., 
2012; Zhou et al., 2014; Wu et al., 2019; Clarity 
et al., 2021), with the exception of commercial 
fishery workers in China, for whom the potential 
for a large dietary exposure through consump-
tion of employer-provided fish probably contrib-
uted to the mean serum PFOS concentration of 
11 400 ng/mL (range, 82.6–31 400 ng/mL) (Zhou 
et al., 2014).

Although biomonitoring data collected over 
time and by occupation or industry were rela-
tively limited, the available data indicated the 
potential for exposure to PFOA and PFOS in 
diverse occupational settings, including primary 
(e.g. fluorochemical production) and secondary 
(e.g. metal plating, textile mill) manufacturing, 
public safety (e.g. firefighters) and services (e.g. 
ski-wax technicians, barber). The exposure 
characterization was the most robust for fluoro-
chemical-production workers, followed by first 
responders. Although the magnitude of expo-
sure in these populations differed substantially, 
there was evidence for intrapopulation differ-
ences in exposure by task or activity, with higher 
concentrations being measured in workers with 

tasks or activities involving known contact with 
materials containing PFOA or PFOS.

[The Working Group noted that blood con- 
centrations across occupational populations dif- 
fer by orders of magnitude. For example, median 
concentrations of PFOA and PFOS reported for 
fluorochemical-production workers are often 100 
to 10 000 times as high as those of firefighters, 
depending on the study. The Working Group 
also noted that PFOA and PFOS have primarily 
been measured in worker populations with a 
known source of exposure (e.g. manufacturing 
of fluorochemicals, use of AFFF); the absence of 
data for the many occupations with the potential 
for PFOA and PFOS exposure is not evidence of 
the absence of exposure.]

(b)	 Industrial hygiene samples

Characterization of PFOA and PFOS in the 
work environment, for example through air 
samples, is limited by the availability and consis-
tency of methods (see Section 1.3) and compa-
rable data. Although large variability exists in the 
reported concentrations, measures of the work 
environment, including samples of workplace 
air, dust, surfaces, and other work-related mate-
rials, frequently contain higher concentrations of 
PFOA and PFOS in facilities engaged in manu-
facturing or use of PFAS-laden products (such 
as fluorochemical production, secondary manu-
facturing, firefighting, and ski-wax application) 
than in other occupational environments (such 
as offices, schools, retail stores, and hotels). In 
these studies, measurement of PFOA and PFOS 
is often accompanied by measurement of related 
or precursor compounds (see Section 1.4), such as 
fluorotelomer alcohols (e.g. 8:2 FTOH), fluorotel-
omer sulfonic acids (e.g. 8:2 FTS), sulfonamides 
(e.g. N-EtFOSA), and phosphoric acid diesters 
(e.g. 8:2 diPAP) (Christensen and Calkins, 2023). 
Precursor compounds such as these may trans-
form in the environment or the body to PFOA, 
PFOS, or other PFAS (Kolanczyk et al., 2023). For 

https://publications.iarc.who.int/636
https://publications.iarc.who.int/636
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additional information on the toxicokinetics of 
PFOA and PFOS, see Section 4.1.

Occupational exposure at a chemical plant 
in Hubei province, China, was described by 
Gao et al. (2015) as indicating higher concentra-
tions of PFOS than PFOA in indoor dust, with 
geometric mean concentrations of 830 ng/g dust 
(range, LOD to 658 343 ng/g dust) and 360 ng/g 
dust (range, 41.3–85 139 ng/g dust), respectively. 
However, the reverse was observed in total 
suspended particles, with geometric means of 
0.4 ng/m3 (range, 0.03–78 ng/m3) and 0.94 ng/m3 
(range, 0.04–1123  ng/m3) for PFOS and PFOA, 
respectively (Gao et al., 2015). At a facility 
producing APFO and PFOA in the USA, Kaiser 
et al. (2010) reported an 8-hour time-weighted 
average (TWA) median air concentration of 
34  µg/m3 (range, 4–65  µg/m3) measured near 
the process sumps. Concentrations were higher 
at lower pH and water levels. They also reported 
that the sublimation rate measured for PFOA 
(360  µg/hour) was higher than that for APFO 
(0.302 µg/hour) (Kaiser et al., 2010).

In the studies on ski-wax technicians, 
personal breathing zone samples collected 
over three ski seasons spanning 2007 to 2010 
contained higher concentrations of 8:2 FTOH 
(a precursor to PFOA) than PFOA, with concen-
trations ranging from 0.834 to 997  µg/m3 and 
from 0.027 to 14.9  µg/m3 for 8:2 FTOH and 
PFOA, respectively. Area aerosol samples did not 
contain FTOH; however, PFOA concentrations 
were higher in the inhalable fraction than the 
respirable fraction, with mean concentrations of 
16 µg/m3 (range, 2.11–52.8 µg/m3) and 9.91 µg/m3 
(range, 0.62–26.8  µg/m3), respectively (Nilsson 
et al., 2013b). The metabolism of FTOH to PFOA 
in workers’ blood was supported by the presence 
of FTOH degradation products, 5:3 FTCA and 
7:3 FTCA, in the blood of workers in this study 
(Nilsson et al., 2013a). Although concentrations 
were lower, Freberg et al. (2010) reported a similar 
relationship between inhalable and respirable 
fractions, with PFOA concentrations ranging 

from 5.1 to 35  ng/m3 and 5.6 to 38  ng/m3 in 
inhalable and respirable fractions, respectively. 
PFOA was detected at higher concentrations in 
powder wax (median, 2.7  µg/g product; range, 
0.29–12 µg/g) than in solid block wax (median, 
0.68  µg/g product; range, <  LOQ to 3.8  µg/g). 
PFOS was not detected in any dust samples and 
was only detected in a few of the powder ski-wax 
samples (maximum, 0.149 µg/g) (Freberg et al., 
2010).

Hall et al. (2020) reported higher concentra-
tions of PFOA and PFOS in dust samples collected 
from 49 fire stations across the USA and Canada 
than in samples from 184 homes in North 
Carolina, with median (and maximum) concen-
trations in fire stations and homes of 17.6 ng/g 
dust (maximum, 791  ng/g dust) and 7.9  ng/g 
dust (2350 ng/g dust) for PFOA, respectively and 
64.5  ng/g dust (74  370  ng/g dust) and 4.4  ng/g 
dust (2810 ng/g dust) for PFOS, respectively (Hall 
et al., 2020). Within fire stations, concentrations 
of the PFOS precursor, N-ethyl-perfluorooctane 
sulfonamido acetic acid (N-EtFOSAA), in dust 
were higher in living areas (median, 87.5  ng/g 
dust; range, 0.748–1800 ng/g dust) than in gear 
storage (median, 7.84 ng/g dust; range, < MDL 
to 299 ng/g dust) or the apparatus bay (median, 
3.51 ng/g dust; range, < MDL to 159 ng/g dust) 
(Young et al., 2021). Using silicone wristbands 
worn while on- or off-shift, Levasseur et al. (2022) 
reported that PFOS concentrations while on-duty 
and responding to fires were 2.5  times as high 
as off-duty exposures; however, PFOA concen-
trations while on-duty and responding to fires 
were lower than off-duty exposures (Levasseur 
et al., 2022). When analysing textiles used in 
new firefighter personal protective equipment 
(PPE), Maizel et al. (2023) detected PFOA and 
PFOS in 7 of 20 textiles tested, with concentra-
tions all < 2 ng/g. However, the highest concen-
trations were reported for precursor compounds, 
including 6:2 fluorotelomer methacrylate (mean, 
1570 ng/g), 6:2 FTOH (mean, 613 ng/g), and 6:2 
fluorotelomer sulfonic acid (mean, 393 ng/g). In 
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a separate study of PPE worn by firefighters, sets 
of used and unused turnout gear thermal liners, 
moisture barriers, and outer shells were analysed. 
PFOS levels were largely below the LOD, but 
PFOA was detected at higher concentrations 
than other PFAS, with the highest concentration 
measured in a used thermal liner from trousers 
worn in 2014 (850 ppb) (Peaslee et al., 2020).

Area air and dust collected over 17  days 
in 2014 from a speciality, water-repellent 
textile-manufacturing facility in China were 
analysed for PFOA, PFOS, and numerous 
precursor compounds. Heydebreck et al. (2016) 
reported higher concentrations in the gas phase 
than the particle phase in air samples, with 
generally lower concentrations in settled dust. 
Fluorotelomer alcohols (8:2 FTOH and 10:2 
FTOH) were the dominant analytes measured 
in workplace air, with the highest concentra-
tions reported for 8:2 FTOH from heat setting 
(91.3 µg/m3) and drying (87.7 µg/m3) operations 
in one of the workshops, two processes that occur 
after the durable water-repellent coating has been 
applied to the textile. PFOA was the ionic PFAS 
measured at the highest concentrations in work-
place air, with highest concentrations measured 
during the drying operation in the same work-
shop (8.48 ng/m3). PFOS was generally below the 
method detection limit (5.33 ng/g) (Heydebreck 
et al., 2016).

Some studies have described exposure in 
occupational environments where the exposure 
sources are similar to sources for the general 
public, such as through direct contact or contact 
with dust from consumer products (e.g. clothing) 
or the built environment (e.g. carpets). In these 
settings, exposures vary across studies of class-
rooms, offices, and retail stores. In the UK, Goosey 
and Harrad (2011) reported higher concentra-
tions of PFOS in dust collected from classrooms 
(mean, 980 ng/g dust; range, 22–3700 ng/g dust) 
than from offices (mean, 370  ng/g dust; range, 
20–1000  ng/g dust). Concentrations of PFOA 
were variable in classrooms, (mean, 310  ng/g 

dust; range, 18–1700  ng/g dust), and in offices 
(mean, 550 ng/g dust; range, < LOD to 6000 ng/g 
dust) (Goosey and Harrad, 2011). PFOA has been 
reported to be the predominant compound in 
samples analysed for perfluoroalkyl carboxylic 
and sulfonic acids from electronic shops, offices, 
libraries, and internet cafés (Besis et al., 2019), 
and to be present at higher concentrations in 
office than in residential settings. However, 
this is not the case for PFOS (D’Hollander 
et al., 2010; Goosey and Harrad, 2011; Fraser 
et al., 2012). In office settings, Fraser et al. (2012) 
reported a strong positive association between 
FTOHs measured in office air and serum PFOA 
concentrations measured in office workers, with 
geometric mean air concentration of 8:2 FTOH 
of 9.92 ng/m3 (range, 0.28–70.6 ng/m3).

In the only study of dermal exposure, 
skin exposure to the pesticide sulfluramid 
(N-EtFOSA), a precursor of PFOS, in pesticide 
manufacturing workers during an 8-hour shift 
was measured at six different locations across the 
body. Exposure was greatest on the hands, with 
a mean of 89.7  µg/day, followed by the left leg 
(73.0  µg/day) and arms (72.1  µg/day); however, 
there was substantial variability (Machado-Neto 
et al., 1999).

(c)	 Protection measures to limit exposure

Approaches to reducing occupational 
exposures are commonly categorized into the 
hierarchy of controls – an effectiveness-based 
hierarchy of actions. This framework categorizes 
elimination and substitution as the most effective 
risk management measures, with PPE consid-
ered the least effective because of reliance on 
correct and consistent use by individual workers 
(NIOSH, 2023). Effective control measures have 
been documented in research studies involving 
fluorochemical-production facilities and ski 
waxing. For both industries, the use of local 
exhaust ventilation near the exposure source 
was linked to reductions in PFAS exposure. 
Other measures that led to reductions included 
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maintaining pH levels above 7 to reduce volatil-
ization potential and wetting PFAS-containing 
dry powders at fluorochemical-production facili-
ties, and replacing powder wax with block wax at 
ski-waxing facilities (Christensen and Calkins, 
2023). The retrospective assessment by Woskie 
et al. (2012) demonstrated that, despite increases 
in production between 1980 and 2000, incorpo-
ration of exposure controls such as engineering 
and PPE resulted in decreasing serum concen-
trations in workers in the most highly exposed 
job category (Woskie et al., 2012). [The Working 
Group noted that the implementation of effective 
control measures may affect occupational expo-
sures, including those relevant to epidemiolog-
ical studies. In this case, samples collected after 
the implementation of effective controls may 
not be representative of exposures that occurred 
under prior conditions (and vice versa).]

1.4.3	 Exposure of the general population

The general population is exposed via multiple 
sources to PFOA and PFOS and, given their wide-
spread use, environmental contamination, and 
long persistence, both compounds are detectable 
in the blood of virtually all people tested (OECD, 
2015b). Serum or plasma are the most common 
biological matrices used in biomonitoring 
campaigns. Long-chain PFAS such as PFOA and 
PFOS are not commonly measured in urine or 
breast milk samples, because of the lack of sensi-
tivity of most available analytical tools (Worley 
et al., 2017) (see Section 1.3.4).

Measured levels in whole blood, serum or 
plasma are useful indicators of exposure since 
they reflect accumulated intake from all sources 
and, given the long half-lives of PFOA and 
PFOS, they are quite stable indicators of body 
burden (see also Section 4.1). Where people are 
exposed to a local substantial source of PFOA 
or PFOS, such as contaminated drinking-water, 
or occupational exposure, such exposure will 
be the main source (Pitter et al., 2020). For the 

general population not living close to a major 
point source, measured serum levels will reflect 
diverse exposure sources, including food, water, 
air, indoor dust, and consumer products. Also, 
individual serum levels will vary, reflecting not 
only degree of intake but individual variability in 
efficiency of uptake, distribution, and excretion 
(Section 4.1).

(a)	 Human exposure estimation

The general population is exposed via the 
diet, drinking-water, household dust, consumer 
products, and inhalation of contaminated air 
(Sunderland et al., 2019; De Silva et al., 2021). [The 
Working Group noted that the data presented in 
this section mainly draw from studies performed 
after 2000. Extrapolation to earlier points in time 
was difficult because of the sparse data available 
before 2000.] When drinking-water is contam-
inated by a specific pollution source with high 
emissions, drinking-water is the main exposure 
source. For example, in the Mid-Ohio Valley “C8” 
study population in the USA, the principal PFOA 
exposure source was drinking-water. In the most 
highly contaminated water district, the popula-
tion’s PFOA serum levels were 17-fold those in 
the water district with the lowest contamination, 
and drinking-water was the main contributor to 
the total body burden (Steenland et al., 2009).

For general populations without a recognized 
emission source or not living in a highly contam-
inated location, several studies have sought to 
estimate the relative importance of different 
exposure sources, and these are summarized 
in Table 1.16 and Table 1.17. Some of the studies 
have in addition estimated the possible pathways 
of exposure. There was some variability in the 
dietary contribution but, in all cases, diet has 
been estimated to be the most important expo-
sure source. Exposure can derive both from the 
food being contaminated from uptake during 
growing or grazing, and from migration from 
food packaging materials (see Section 1.4.1(d)).
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In 2020, the European Food Safety Authority 
made an assessment of exposure of the European 
population to several PFAS, including PFOA and 
PFOS, on the basis of data available concerning 
the presence of these PFAS in different food cate-
gories and on consumption data (EFSA Panel on 
Contaminants in the Food Chain, 2020). For the 
lower-bound scenario, which was considered the 
most realistic by the panel, median dietary expo-
sure to PFOA was estimated to range between 
0.17 and 0.41  ng/kg body weight (bw) per day 
for different age categories (Table 1.18). Median 
dietary exposure to PFOS for the same scenario 

was estimated to range between 0.36 and 
1.34  ng/kg bw per day. Similar average intakes 
were estimated in the Netherlands: 0.2 ng/kg bw 
per day for PFOA and 0.3 ng/kg bw per day for 
PFOS (Noorlander et al., 2011). In both studies 
and for both compounds, mean dietary exposure 
was highest for toddlers (defined as children aged 
1–3 years).

In a study conducted in the USA in 2020  
(Zheng et al., 2020), the occurrence and distri-
bution of PFAS, including PFOA and PFAS, 
was determined in the childcare environment 
(dust and nap mats), and children’s exposure 

Table 1.16 Estimated relative contribution (%) of various routes of exposure to total PFOA in the 
general population

Location, sampling 
time

Relative contribution of exposure route (%) Comments Reference

Oral Inhalation Dermal Via 
precursors

Diet Dust Water Food 
packaging

Germany, 2005; 
Japan, 2004

85 6 1 3   2–8 Vestergren 
et al. (2008); 
Vestergren 
and Cousins 
(2009)

Norway, 2008 84 5 11  0.13    Haug et al. 
(2011)

USA, 2003/2004 66 9 24  < 1 < 1   Lorber and 
Egeghy 
(2011)

North America, 
Europe, Republic 
of Korea, Japan 
2007/2008

47 8 12  6  27a  Gebbink 
et al. (2015)

Republic of Korea, 
2009

41  37  22  5  Tian et al. 
(2016)

China, 2013/2014 > 99  < 1      Shan et al. 
(2016)

Finland, 2005/2006, 
2010/2011, 2014/2015

95 < 2.5   < 2.5   Children 
aged 
10 years 

Balk et al. 
(2019)

Ireland, 
2016/2017/2018

NR 1 37  62   Adults Harrad et al. 
(2019)NR 3 74 23 Children

Norway, 2013/2014 92 4   3 < 1   Poothong 
et al. (2020)

NR, not reported; PFOA, perfluorooctanoic acid.; USA, United States of America.
a Value given for the intermediate exposure scenario; estimated contribution varied according to exposure scenario from 13% to 64%. 
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through dust ingestion and dermal absorption 
was estimated. The estimated daily intake of 
PFOA through dust ingestion for toddlers was 
0.03 ng/kg bw per day (median value). In the case 
of dermal absorption, the estimated daily intake 
was 0.002  ng/kg bw per day (median value). 
For PFOS, the equivalent values were 0.002 and 
0.001 ng/kg bw per day, respectively (Zheng et al., 
2020). A modelling exercise for US children and 
adults considered both direct exposure to PFOS 
and exposure to precursors. Median adult intake 
was 4.2  ng/kg bw per day, about half of which 
was from precursors. This estimate was validated 
by comparing with intake calculated from a 
one-compartment pharmacokinetic model with 
a range of values for the volume of distribution 

(Vd). With the more plausible Vd values (see 
Section 4.1), agreement was quite close (Egeghy 
and Lorber, 2011).

For some individuals, a considerable part of 
the intake could be from personal care products 
and cosmetics (Husøy et al., 2023). [The Working 
Group noted that recent data suggested that 
dermal uptake is likely to be higher than was 
previously assumed (see Abraham and Monien, 
2022, and Section 4.1).]

(b)	 Biomonitoring data for the general 
population (serum and plasma)

Repeated population surveys with the aim of 
measuring PFOA and PFOS concentrations in 
serum or plasma, or in archived blood samples, 

Table 1.17 Estimated relative contribution of various routes of exposure to total PFOS in the 
general population

Location Relative contribution of exposure route (%) Comments Reference

Oral Inhalation Dermal Via 
precursors

Diet Dust Water Food 
packaging

USA, 2003/2004 72 6 22   < 1 < 1   Egeghy 
and Lorber 
(2011)

Norway, 2008 96 1 1  2    Haug et al. 
(2011)

North America, 
Europe, Republic 
of Korea, Japan 
2007/2008

66 10 7  2  16a Gebbink 
et al. (2015)

Republic of Korea, 
2009

93  4  3   Tian et al. 
(2016)

China, 2013/2014 100  < 1      Shan et al. 
(2016)

Finland, 2005/2006, 
2010/2011, 2014/2015

95 < 2.5   < 2.5   Children 
aged 
10 years 

Balk et al. 
(2019)

Ireland, 
2016/2017/2018

NR 21 30  49   Adults Harrad 
et al. (2019)NR 55 35 10 Children

Norway, 2013/2014 75    3    Poothong 
et al. 
(2020)

PFOS, perfluorooctanesulfonic acid; USA, United States of America.
a Value given for the intermediate exposure scenario; estimated contribution varied with exposure scenario from 11% to 33%.
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have permitted exposure trends to be observed 
in several countries (Fig. 1.7). For most studies, 
estimated total PFOS or PFOA concentrations 
are presented, but more recent studies present 
concentrations of isomers, distinguishing linear 
and different branched isomers, more commonly 
for PFOS than PFOA (e.g. NHANES, 2023).

In Japan between 1983 and 1999, results for 
PFOA showed a clear trend, with geometric 
mean concentrations in men rising from [2.5 to 
11] ng/mL, and in women from [1.8 to 8.1] ng/
mL, corresponding to a mean annual increase 
of 0.49 and 0.42 ng/mL, respectively. For PFOS, 
there was no clear trend, with mean concentra-
tions in the range of approximately [15–23] ng/
mL for men and [13 to 19]  ng/mL for women 
(Harada et al., 2007).

In China, in the region of Shenyang, the results 
of a study from 2006 showed mean PFOS concen-
trations of 142 ng/mL (range, 31.7–225 ng/mL) 
for men and 170 ng/mL (range, 80.4–310 ng/mL) 
for women (Yeung et al., 2006). Concentrations 
of PFOS in a previous study (Jin et al., 2003) were 
40 ng/mL (range, 5.32–145 ng/mL) for men and 
45.5 ng/mL (range, 10.6–142 ng/mL) for women. 
On this basis, PFOS concentrations measured 
in the study conducted in 2006 were 3–4 times 

as high as those reported in the previous study 
(Yeung et al., 2006).

In the USA, analysis of archived blood 
samples collected in 1974 (serum) and 1989 
(plasma) from volunteer participants in a large 
community health study indicated an increase 
in PFOA concentrations from median values of 
2.3 μg/L in 1974 to 5.6 μg/L in 1989; for PFOS, 
the equivalent figures were 29.5 μg/L in 1974 and 
34.7 μg/L in 1989 (Olsen et al., 2005).

A unique study reporting PFOA and PFOS 
concentrations in the same 59 individuals over a 
long time period in Tromsø, Norway, showed clear 
trends (Nøst et al., 2014). Samples were collected 
in five rounds – in 1979, 1986, 1994, 2001, and 
2007 – and for both PFOA and PFOS, average 
concentrations peaked in 2001. Correlations were 
high between each pair of subsequent rounds for 
both PFOA and PFOS (Spearman correlation, 
ρ, in the range 0.6–0.8; all P < 0.05), indicating 
some stability in exposure as determined by 
single measurements (Nøst et al., 2014).

Trends towards falling concentrations in the 
last 20–30 years have been shown in several coun-
tries (Fig. 1.7). For example, data from the USA 
derived from NHANES, a large national biomoni-
toring programme with repeated sampling cycles 
that has included PFAS in monitoring campaigns 

Table 1.18 Median dietary exposure to PFOA and PFOS for different age groups in the population 
of Europe

Age groupa Dietary exposure (ng/kg bw per day)b

PFOA PFOS

Infants 0.19 0.36
Toddlers 0.41 1.34
Other children 0.30 1.02
Adolescents 0.17 0.53
Adults 0.18 0.58
Elderly adults 0.17 0.59
bw, body weight; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid.
a Age ranges: infants, < 12 months; toddlers, ≥ 12 to < 36 months; other children, ≥ 36 months to < 10 years; adolescents, ≥ 10 to < 18 years; 
adults: ≥ 18 to < 65 years; elderly, ≥ 65 to < 75 years; very elderly, ≥ 75 years.
b Only the lower-bound estimates are presented since these were considered to be more realistic by the European Food Safety Authority Panel.
From EFSA Panel on Contaminants in the Food Chain (2020).
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Fig. 1.7 Median PFOA and PFOS concentrations reported in blood samples from the adult general 
population in several countries
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Fig. 1.4.3.1 Median PFOA concentrations in serum or plasma measured in the general population. 
Data available to the working group on the adult general population was compiled using data
from NHANES, HBM4EU and Canadian Health Measures Survey
Results from individuals in contaminated hotspots or with occupational exposure were not included. Results were plotted for 
the average time point of each monitoring period. European countries for which less than 3 data points were available were 
combined as “other European”. 
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PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; USA, United States of America.
Data aggregated from HBM4EU (2023), CDC (2023), and Government of Canada (2023).
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since 1999, have shown this trend very clearly. 
For PFOA, geometric mean serum concentra-
tions were 5.2 μg/L in 1999–2000, close to 4 μg/L 
between 2003 and 2008, then declined steadily 
in subsequent rounds, falling to 1.42  μg/L in 
2017–2018. Equivalent trend data were observed 
for PFOS, with geometric mean serum concen-
trations of 30.4  μg/L in 1999, falling in each 
survey, down to 4.3  μg/L in 2017–2018 (Kato 
et al., 2011; NHANES, 2023). A similar pattern 
with downward trend was reported for PFOA 
and PFOS concentrations measured in archived 
blood spots collected in 1997–2007 from infants 
in New York, USA (Spliethoff et al., 2008).

A decreasing trend was also observed in 
Australia (Toms et al., 2014; Eriksson et al., 
2017), Japan (Okada et al., 2013), and in several 
countries in the EU (Fig. 1.7).

In Norway, a steady increasing trend for 
PFOA concentrations in serum was observed 
from 1977 (0.58 μg/L) up to the 1990s (5.2 μg/L 
in 1993), then a decline to 2.7 μg/L in 2006. For 
PFOS, serum concentrations rose from 3.8 μg/L 
in 1977 to 33 μg/L during the 1990s, falling to 
12 μg/L by 2006 (Haug et al., 2009).

In Germany, data from archived plasma 
samples from 20 participants (10 men and 10 
women) randomly chosen from the monitoring 
programmes in Münster between 1982 and 2010 
were analysed; PFOA concentrations were found 
to be highest in 1986 (7.4  μg/L) and decreased 
from 2007 (5.2  μg/L) to 2010 (3.1  μg/L), but in 
other years there were no clear trends. For PFOS, 
the pattern was clearer, rising from 15.4  μg/L 
in 1982 to 28.6 μg/L in 1989, and subsequently 
falling steadily to 12.7 μg/L in 2005 and 3.8 μg/L 
in 2010 (Schröter-Kermani et al., 2013).

A similar pattern of decline since 2000 is 
evident in data assembled from many recent 
smaller studies across Europe. In the HBM4EU 
project, data were assembled across 12 European 
countries, combining 32 different surveys. The 
surveys were not all directly comparable because 
of variation in the age and sex composition, but 

together they provided a picture of falling serum 
levels over time and exposure ranges between 
countries at the same points in time (HBM4EU, 
2023). In this European project, although 
early studies were sparse (with only one study 
including data from 2000), PFOA body burdens 
were comparable to US NHANES results, with 
PFOA concentrations in the range of 3 to 6 μg/L 
up to around 2010, falling to 1 to 2 μg/L in recent 
years. For PFOS, levels in the EU were somewhat 
lower than in the USA, being mainly between 6 
and 10 μg/L around 2010 for the European data, 
falling to between 1 and 3 μg/L in recent years 
(CDC, 2023; HBM4EU, 2023) (Fig. 1.7).

Exposure data for teenagers in this EU project 
suggested that exposure levels were significantly 
higher in north and west Europe than in the 
south and east. Concentrations of PFOA and 
PFOS were significantly higher in boys than in 
girls, and significantly higher concentrations 
were found in teenagers from households with 
a higher education level. In the same EU project, 
the consumption of seafood and fish at least twice 
per week was significantly associated with a 21% 
(95% CI, 12–31%) increase in PFOS concentra-
tions. The same trend was observed for PFOA but 
was not statistically significant (Richterová et al., 
2023).

PFOA and PFOS levels have been shown to 
vary by age and sex (Frisbee et al., 2009; Kato 
et al., 2011; Pitter et al., 2020; NHANES, 2023). 
Serum levels are consistently higher in males than 
females, reflecting differences in excretion (with 
women excreting additionally via menstruation, 
pregnancy and lactation), and possibly differ-
ences in intake and pharmacokinetics (see Li 
et al., 2022c, and Section 4.1). By age, serum levels 
measured in cross-sectional surveys showed 
some differences, with older people having 
higher serum levels. This may reflect variation 
in the routes of exposure according to age and 
biological changes, but the time trends of expo-
sure would also be important, given the long half-
lives in people. Infants can have high levels from 
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maternal and lactational transfer that fall in the 
post-lactation period (Fromme et al., 2010).With 
emissions and ambient levels falling, higher levels 
in older people will in part reflect the fact that 
they were exposed at earlier time periods when 
intake was likely to be higher (Nøst et al., 2014). 
In NHANES data for 1999–2000 and 2003–2004, 
a modest increasing slope was evident in PFOS 
levels from age 12 to ≥ 60 years, but no slope was 
evident for PFOA (Calafat et al., 2007). In the 
Mid-Ohio C8 population, which had a wider age 
range, there was a clear increasing trend from 
age < 10 to ≥ 80 years for PFOS levels in males, 
but for females the trend was decreasing until age 
30–39 years, then rising thereafter (Frisbee et al., 
2010). For PFOA, concentrations in females are 
lower than in males in most age groups, but both 
males and females show a similar pattern, with a 
minimum at around age 30 years.

NHANES also provided information on 
ethnicity: there were some small differences 
between White and Black people, but PFOS 
levels were markedly lower for Hispanic people, 
with smaller differences for PFOA (Calafat et al., 
2007).

[The Working Group noted that although 
there were differences between countries, the 
overall pattern in general population serum or 
plasma samples across the world has been a rise 
in concentrations since the earliest measure-
ments in the 1970s, reaching a peak in the 1990s 
or close to 2000. Subsequently, trends towards 
falling serum concentrations have been observed 
for both PFOA and PFOS. The most notable 
difference between countries was a higher level of 
PFOS in earlier samples from the USA compared 
with other countries.]

Multiple PFAS with long half-lives and slow 
rates of excretion, such as PFOA and PFOS, 
have been monitored in serum samples. Serum 
concentrations tend to be correlated with each 
other; for example, logarithmic concentrations 
showed a significant Pearson correlation coeffic-
ient of 0.66 between PFOA and PFOS in the 

NHANES data (Calafat et al., 2007). Correlation 
coefficients for circulating PFOA and PFOS 
levels were similar in several general popula-
tions in the cancer studies reviewed in Section 
1.6.1, but there was large variability, with values 
ranging from <  0.15 to >  0.7 (see Table  S1.22, 
Annex 1, Supplementary material for Section 1, 
Exposure Characterization, online only, avail-
able from: https://publications.iarc.who.int/636). 
There were also significant correlations with 
other widespread PFAS with long half-lives, 
notably perfluorononanoic acid (PFNA) and 
perfluorohexanesulfonic acid (PFHxS). [The 
Working Group noted that these correlations 
may reflect a correlation in exposure or a corre-
lation between different PFAS in individual rates 
of uptake and excretion.]

(c)	 Biomonitoring data for populations living 
at contaminated sites

Several large communities have experienced 
high exposure to PFAS because of environmental 
contamination, related mainly to the use fire-
fighting foams containing PFAS (e.g. airports, 
military facilities), certain industrial facilities 
where PFAS are produced or used and emitted 
to the environment, and sites related to PFAS-
containing waste (Salvatore et al., 2022). This has 
led to higher blood concentrations of PFOA and 
PFOS in some of these communities compared 
with the general population (see Fig. 1.8).

In the USA, high serum concentrations of 
PFOA were measured in samples collected in 
2005–2006 from 69  030 residents living near a 
PTFE-production facility in West Virginia, USA 
(the C8 Health Project); the overall geometric 
mean was 32.9  μg/L, and the arithmetic mean 
was 82.9  μg/L. Exposures in that community 
varied substantially across six water districts; the 
mean serum concentration of PFOA was 16 μg/L 
in the two water districts with the lowest concen-
trations of PFOA in water, and 228 μg/L in the 
water district with the highest concentrations 
(Frisbee et al., 2009).

https://publications.iarc.who.int/636
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Fig. 1.8 PFOA (A) and PFOS (B) concentrations reported in blood samples from the general population in areas reported to be 
polluted with PFAS
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(2020), Ingelido et al. (2010), Hölzer et al. (2008), Frisbee et al. (2009), Xu et al. (2021b), and Herrick et al. (2017).
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Also in the USA, as early as the 1970s, the 
Fairchild Air Force Base located in the City of 
Airway Heights in Spokane County, Washington, 
used AFFF containing PFAS during firefighter 
training. Over time, PFAS from the AFFF 
entered the ground, moved into the groundwater 
to off-site locations, and affected nearby munic-
ipal wells. In samples from 2019, geometric 
mean PFOA and PFOS serum concentrations 
of 9.72  μg/L and 42.4  μg/L, respectively, were 
reported for community residents (ATSDR, 
2023).

In China, a lake adjacent to a fluorochemi-
cal-production factory was contaminated with 
PFAS, and serum concentrations of several PFAS 
were assessed in fishermen and their families who 
were exposed primarily via eating locally caught 
fish (Zhou et al., 2014). Among family members 
of fishery employees, extremely high PFOS levels 
were found, with a median concentration of 
linear PFOS of 2720 ng/mL, branched PFOS of 
620  ng/mL, and sum of PFOS of 3540  ng/mL. 
PFOA concentrations were slightly elevated, with 
a median of 11.7 ng/mL.

At the end of 2013, drinking-water from one 
of the two municipal waterworks in Ronneby, 
Blekinge County, Sweden, was found to be con- 
taminated by firefighting foams used at a nearby 
military airfield. Drinking-water containing high 
levels of PFOS and PFHxS, and to a lesser extent 
PFOA, had been distributed to approximately one 
third of Ronneby households (total population, 
approximately 30 000) since the mid-1980s (Xu 
et al., 2021b). Blood samples and demographic 
data were collected from 3297 Ronneby residents 
and 226 individuals from a reference group. The 
population geometric means for serum PFOA 
and PFOS concentrations were 6.8 and 135 μg/L 
for all Ronneby residents, i.e. 35 and 4.5 times, 
respectively, as high as for the reference group 
(Xu et al., 2021b).

In spring 2013, groundwater of part of the 
Veneto region in north-eastern Italy was found 
to be contaminated with mostly PFOA and to a 

smaller degree with PFOS and other PFAS from 
a factory that had been manufacturing a variety 
of PFAS since the 1960s. A population of 140 000 
was potentially affected, and a population-based 
screening programme including measurement  
of serum PFAS was offered by the regional health 
service to residents who were exposed to PFAS 
via contaminated drinking-water (Ingelido et al., 
2018). Among 18 122 subjects aged 14–39 years 
living in the Veneto region, the median concen-
tration of PFOA was elevated, at 44 μg/L (Pitter 
et al., 2020), whereas the median concentration 
of PFOS, 3.9  μg/L, was close to levels reported 
for the Italian general population (Ingelido et al., 
2010).

A study of 641 residents of Arnsberg, Germa- 
ny, in 2006 reported geometric mean PFOA 
serum concentrations of 22.1, 23.4, and 25.3 μg/L 
in children, mothers, and men, respectively, 
because of surface water contamination from 
upstream agricultural use of soil conditioner 
mingled with industrial waste (Hölzer et al., 
2008). PFOA levels of children and adults living 
in Arnsberg were 4.5–8.3 times as high as those 
of the reference population used in the study and 
living in non-contaminated sites (Hölzer et al., 
2008).

(d)	 Other biological matrices used in 
biomonitoring

Although serum samples are most commonly 
used in biomonitoring campaigns, PFOA and 
PFOS have also been measured in other biolog-
ical matrices, such as breast milk and urine. 
[The Working Group noted that these biolog-
ical matrices could also be used in biomoni-
toring, particularly in biomonitoring campaigns 
performed in highly contaminated sites.]

PFOA and PFOS have been detected in breast 
milk, which is a significant route of exposure to 
infants through breastfeeding. [The Working 
Group noted that concentrations in breast milk 
are much lower than in serum; however, the large 
volume of breast milk ingested by infants on a 
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body-weight basis results in considerable expo-
sure.] In a study of 109 paired maternal serum 
and breast milk samples in a population with 
high PFAS exposure in Sweden, breast milk 
concentrations were 0.03  ng/mL for PFOA and 
0.130  ng/mL for PFOS (Blomberg et al., 2023). 
The transfer efficiency or ratio of breast milk 
to serum concentration was 2.16% for PFOA 
and 1.02% for PFOS (Blomberg et al., 2023). In 
a summary of 23 studies, all except 4 reported 
concentrations in breast milk that were above the 
LOQ in > 50% of samples; however, LOQs varied 
between studies (Fromme et al., 2022). Median 
values above the LOQ for PFOA were 7.2, 26, and 
138 ng/L for three studies in Spain (Serrano et al., 
2021; Motas Guzmàn et al., 2016; and Beser et al., 
2019, respectively), and median values were 139, 
121 and 35 ng/L in three studies in China (Awad 
et al., 2020; Liu et al., 2010, 2011). Median values 
for PFOA in two studies in the USA were 14 and 
36  ng/L (Tao et al., 2008b; Zheng et al., 2021). 
In a study of a contaminated site in Germany, 
PFOA could be quantified in all breast milk 
samples, with a mean value of 199 ng/L (range, 
33–854 ng/L) (Fromme et al., 2022). PFOS was 
observed in only 3 out of 13 samples, at levels of 
33 ng/L, 35 ng/L, and 61 ng/L.

PFOA and PFOS can be detected in urine, 
although concentrations in urine are much 
lower than in serum. In a study of 104 paired 
samples in a population with high PFAS expo-
sure in Sweden, the median ratio of urinary to 
serum level was 0.23% for PFOA and 0.07% for 
linear PFOS and ranged from 0.02% to 0.07% for 
branched PFOS. Median urinary concentrations 
for the three sampling rounds carried out were 
between 0.017 and 0.025  ng/mL for PFOA and 
between 0.050 and 0.075  ng/mL for PFOS (Li 
et al., 2022c). In general population campaigns, 
values in urine samples are mostly below the 
LOD. In the NHANES 2013–2014 round, urine 
levels were above the LOD (0.1 ng/mL) for < 0.1% 
of the population, even though serum levels were 

above the LOD for almost 100% of participants 
(Calafat et al., 2019).

[The Working Group noted that PFOA and 
PFOS have been measured in other biospeci-
mens, such as nails, hair, and semen, but these 
have rarely been used to assess exposure for 
epidemiological studies.]

1.5	 Regulations and guidelines

Regulations, guidelines, and guidance for 
PFOA and PFOS have been established by inter-
national, national, and local governing bodies, 
as well as nongovernmental organizations (e.g. 
standards, non-profit, and professional organiza-
tions). The aim is to reduce human exposure and 
environmental contamination via approaches 
covering production, use, and disposal; occu-
pational exposures; food and consumer prod-
ucts; environmental media; and biomonitoring. 
Unless otherwise stated, numerical standards 
and guidelines for PFOA and PFOS are generally 
based on non-cancer effects.

Internationally, PFOS and PFOA and their 
salts derivatives are recognized as persistent 
organic pollutants and were included in the 
Stockholm Convention on 2009 and 2019, respec-
tively. PFOS is listed under Annex B (Restriction) 
(measures must be taken to restrict production 
and use), whereas PFOA is listed under Annex A 
(Elimination) (measures must be taken to elimi-
nate production and use) (UNEP, 2023).

Various regions and countries have also 
specific regulations in place to prevent the use of 
PFAS such as PFOA and PFOS (OECD, 2023b). 
More detailed information on the actions being 
developed and on regulations in place in each 
country or region can be found in the supplemen-
tary material (Annex 2, Actions and regulations 
for the elimination of PFAS worldwide, available 
from: https://publications.iarc.who.int/636).

https://publications.iarc.who.int/636
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1.5.1	 Occupational limits

Occupational exposure limits for air concen-
trations are available for PFOA, APFO, and PFOS 
(Table  1.19). Germany and Switzerland have 
identical 8-hour TWAs and short-term expo-
sure limits (STELs): TWA for inhalable PFOA, 
0.005 mg/m3 (STEL, 0.04 mg/m3) and TWA for 
inhalable PFOS, 0.01 mg/m3 (STEL, 0.08 mg/m3). 
Japan also uses the value of 0.05  mg/m3 as the 
8-hour TWA for PFAS; however, Sweden’s 8-hour 
TWA for PFOS is 900 mg/m3 (and the STEL is 
1400 mg/m3). APFO is assigned an 8-hour TWA 
of 0.01  mg/m3 in Belgium, Canada (Ontario 
and Quebec), Denmark, Ireland, Singapore, and 
Spain, (IFA, 2022). The same value is adopted 
by the American Conference of Governmental 
Industrial Hygienists (ACGIH) (ACGIH, 2023). 

Australia and New Zealand set their 8-hour 
TWA at 0.1  mg/m3, and Denmark has a STEL 
of 0.02  mg/m3. Belgium, Denmark, Germany, 
Quebec, Spain, and the ACGIH all assign a skin 
notation to their guidance, indicating that dermal 
protection is needed to prevent skin absorption 
(IFA, 2022).

1.5.2	 Consumer products and food

See Table 1.20.
Numerous countries have set recommended 

limits for exposure to PFAS in consumer prod-
ucts and food. Food Standards Australia New 
Zealand (FSANZ) and the National Health 
and Medical Research Council (NHMRC) of 
Australia set a tolerable daily intake (TDI) for 
PFOA of 160 ng/kg bw and a combined intake 

Table 1.19 Occupational exposure thresholds for PFOA, APFO, and PFOS, by country

Country PFOA (mg/m3) APFO (mg/m3) PFOS and its salts (mg/m3)

8-hour Short-term 8-hour Short-term 8-hour Short-term

ACGIH   0.01b    
Australia   0.1  
Belgium   0.01f  
Canada – Ontario   0.01  
Canada – Quebec   0.01b  
Denmark   0.01b 0.02b,c  
Germany (AGS)   0.01a,b 0.08a,b,c

Germany (DFG) 0.005a,b 0.04a,b,c 0.01a,b 0.08a,b,c

Ireland   0.01  
Japan (JSOH) 0.005d   
New Zealand   0.1  
Singapore   0.01  
Spain   0.01b  
Sweden   900 1400c

Switzerland 0.005e 0.04e 0.01e 0.08e

ACGIH, American Conference of Governmental Industrial Hygienists; AGS, Ausschuss für Gefahrstoffe (Hazardous Substances Committee); 
APFO, ammonium perfluorooctanoate; DFG, Deutsche Forschungsgemeinschaft (German Research Foundation); JSOH, Japan Society for 
Occupational Health; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid.
a Inhalable fraction.
b Skin.
c 15-minute average.
d Not applicable to women of child-bearing potential.
e Inhalable aerosol.
f Skin, mucous membranes, and eyes.
From IFA (2022). 
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of PFOS and PFHxS of 20 ng/kg bw (Australian 
Government, 2017). In the USA, the Agency for 
Toxic Substances and Disease Registry (ATSDR) 
developed intermediate-duration oral minimal 
risk levels of 3  ng/kg per day for PFOA and 
2 ng/kg per day for PFOS. The ATSDR minimal 
risk levels are estimates of the daily intake below 
which harm to human health is not anticipated 
to occur and are often used as screening levels for 
environmental media (e.g. water) (ATSDR, 2021).

In 2008, the European Food Safety Authoritỳ s 
Panel on Contaminants in the Food Chain 
(CONTAM) established TDIs of 150  ng/kg bw 
per day for PFOS and 1500 ng/kg bw per day for 
PFOA. In 2020, the same agency established a 
new safety threshold for PFOA, PFOS, and two 
other PFAS (PFHxS and PFNA), a group tolerable 
weekly intake (TWI) of 4.4 ng/kg bw per week.

1.5.3	 Environmental guidelines

National and local jurisdictions have estab-
lished regulations and guidelines on acceptable 
concentrations of PFOA and PFOS in drink-
ing-water and other environmental compart-
ments. [The Working Group noted that these 
guidelines are evolving on the basis of current 
science and regulatory processes.] Many of 

these regulations, particularly those pertaining 
to drinking-water, have been updated in recent 
years and are closely tracked by organizations 
such as the Interstate Technology and Regulatory 
Council (ITRC). More information on water and 
soil regulations is available online in tables that 
are maintained by the ITRC (ITRC, 2023c).

Table  1.21 presents a non-exhaustive list of 
some regulations for different environmental 
compartments.

Canada additionally has guidelines for PFOS 
in surface water, aquatic life, fish tissue, and wild-
life diet, as part of the Federal Environmental 
Quality Guidelines (ECCC, 2023). In the USA, 
several states have implemented PFAS limits for a 
variety of environmental media. PFOA and PFOS 
in drinking-water, surface water, groundwater, 
and sediment or soil (residential, industrial or 
commercial, and construction site) are regulated 
in various combinations in up to 20 states. A few 
states additionally have testing requirements or 
allowable concentrations for PFOA and PFOS in 
biosolids and wastewater. Consumption adviso-
ries or limits on concentrations of PFOS and, to a 
lesser extent, PFOA in fish as well as in shellfish, 
deer, turkey, beef, and milk exist in numerous 
states for different consumption patterns and 

Table 1.20 Examples of consumer products in which the presence or use of PFOA and PFOS is 
restricted

Consumer product Country or region Reference

Food packaging USA, European Union, Japan US FDA (2022b) 
OECD (2023a)

Children’s products Some states in the USA ITRC (2023a) 
ITRC (2023b)

Carpets, textiles, rugs, and fabric 
treatments, furniture

European Union, some states in the USA ITRC (2023a) 
ITRC (2023b) 
MNPCA (2023); Maine DEP (2023)

Cookware Some states in the USA MNPCA (2023)
Cosmetics and other personal products Some states in the USA MNPCA (2023)
Firefighting foams Canada, European Union, Australia, some 

states in the USA 
ECHA (2023) 
ECCC (2017) 
ITRC (2023b) 

PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; USA, United States of America.
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populations (ECOS, 2023; ITRC, 2023a, b). [The 
Working Group noted that this is a dynamic area 
and new regulations with lower proposed regula-
tory thresholds are being established.]

1.5.4	 Guidance and biomonitoring reference 
values

Health-based threshold guidance values for 
biomonitoring are available in Germany and 
the USA. In 2016, the Human Biomonitoring 
Commission (HBM Commission) of the 
German Environment Agency (UBA) estab-
lished concentrations below which no adverse 
health effects are expected to occur (HBM-I 
values), according to current knowledge and 
assessment, of 2 ng/mL for PFOA and 5 ng/mL 
for PFOS in blood serum or plasma (Hölzer 

et al., 2021). In 2019, concentrations above which 
there is an increased risk of adverse health effects 
(HBM-II values) were established of 5 ng/mL and 
10 ng/mL for PFOA and PFOS, respectively, in 
blood plasma in women of childbearing age, and 
of 10 ng/mL and 20 ng/mL for PFOA and PFOS, 
respectively, in blood plasma of all other popu-
lations (Schümann et al., 2021). In its report of 
2022, the US National Academies of Sciences, 
Engineering, and Medicine (NASEM) identi-
fied two threshold values for the sum of seven 
PFAS in serum or plasma, including PFOA and 
PFOS, to guide clinical care and exposure reduc-
tion efforts: 2  ng/mL and 20  ng/mL. NASEM 
recommended that clinicians provide the usual 
standard of care at concentrations of < 2 ng/mL; 
encourage exposure reduction and screen for 
certain medical conditions at concentrations of 

Table 1.21 Examples of guidelines in place for environmental compartments

Environmental 
compartment

Country or 
region

Limit established; year Reference 

Drinking-water New Zealand PFOA, 560 ng/L; PFOS, 70 ng/L; 2017 Australian Government 
(2017)

Drinking-water Canada PFOA, 200 ng/L; PFOS, 600 ng/L; 2018 Health Canada (2018a, b)
Drinking-water European Union 500 ng/L for total PFAS; 100 ng/L for the sum of 20 PFAS, 

including PFOA and PFOS; 2020
EU (2020)

Drinking-water Denmark 2 ng/L for the total of PFOA, PFOS, PFNA, and PFHxS; 
2021

Danish Environmental 
Protection Agency (2023)

Drinking-water UK 10–100 ng/L for PFOS or PFOA; 2021 DWI (2021)
Drinking-water USA PFOA, 0.004 ng/L; PFOS, 0.02 ng/L; 2022 (Interim 

Health Advisory)
Office of the Federal 
Register (2022)

Recreational 
water

New Zealand PFOA, 10 000 ng/L; PFOS, 2000 ng/L; 2017 Australian Government 
(2017)

Ambient water Canada (British 
Columbia)

PFOA, 200 ng/L; PFOS, 600 ng/L; 2020 BC MECCS (2020)

Groundwater European Union 4.4 ng/L (sum of 24 PFAS, including PFOA and PFOS); 
2022

European Commission 
(2022)

Soil Canada PFOS, 0.01 mg/kg dry weight; 2021  
PFOA soil screening values are 0.70, 1.05, and 9.94 mg/kg 
soil, for agricultural/residential, commercial, and 
industrial land use; 2019

CCME (2021) 
Health Canada (2019)

Ambient air USA PFOS, PFOA, and APFO concentrations ranging from 
0.006 to 0.082 µg/m3, 0.007 to 0.07 µg/m3, and 0.024 to 
0.05 µg/m3, respectively; varies by regulation

ITRC (2023a, b)

APFO, ammonium perfluorooctanoate; PFAS, per- and polyfluoroalkyl substances; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic 
acid; PFHxS, perfluorohexanesulfonic acid; PFOS, perfluorooctanesulfonic acid; UK, United Kingdom; USA, United States of America. 
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2 to < 20 ng/mL; and encourage exposure reduc-
tion and screen for additional medical conditions 
at concentrations of ≥ 20 ng/mL (NASEM, 2022).

1.6	 Quality of exposure assessment 
in key epidemiological studies of 
cancer and mechanistic studies 
in humans

1.6.1	 Quality of exposure assessment in key 
cancer epidemiology studies

(a)	 Exposure assessment methods

The exposure assessment methods employed 
in 12 case–control studies and 30 cohort studies, 
including 18 nested case–control studies, were re- 
viewed and are described below by study design. 
Details on each of the studies are summarized 
in Table S1.22 (Annex 1, Supplementary material 
for Section 1, Exposure Characterization, online 
only, available from: https://publications.iarc.
who.int/636).

These studies employed primarily one of 
two methods of exposure assessment for PFOA 
and PFOS: biological measurement of PFOA 
and PFOS in the blood (whole blood, serum, 
or plasma) or job (residential history) exposure 
matrices to estimate historical exposures. The 
biological matrix for the analysis of PFOA and 
PFOS was blood in two studies, plasma in five 
studies, and serum in the other studies.

An overview of chemical analysis methods 
used for detection and quantification of PFOA 
and PFOS in human biological samples is 
presented in Section 1.3.4. In the epidemiological 
cancer studies in which the exposure assessment 
was based on biomonitoring, targeted analytical 
methods were applied in all except four studies 
that used non-targeted methods, which do not 
permit quantification of concentrations but rely 
on semiquantitative determination of intensity 
level for identified PFAS (Chang et al., 2023; 

Chen et al., 2023; van Gerwen et al., 2023; Zhang 
et al., 2023).

As described in Section 1.1, several isomers 
exist for both PFOA and PFOS. In a few epide-
miological cancer studies, isomer-specific deter-
minations were performed that were summed for 
analysis (Itoh et al., 2021; Li et al., 2022a; Purdue 
et al., 2023; Rhee et al., 2023b; Winquist et al., 
2023), but in most studies only one concentra-
tion was reported for PFOA and one for PFOS. 
The exception was the study by van Gerwen et al. 
(2023) who considered linear and branched-
chain PFOS separately in their non-targeted 
analysis. [The Working Group noted that when 
one concentration value was reported for PFOA 
or PFOS, it was assumed that this represented the 
sum of branched and linear isomers, even though 
this was not always specified in the study.] In the 
studies in which non-targeted methods were used 
(see Section  1.3.4), compound-specific intensi-
ties, not concentrations, were reported (Chang 
et al., 2023; Chen et al., 2023; van Gerwen et al., 
2023; Zhang et al., 2023).

(i)	 Case–control studies
In total, 12 relevant case–control studies were 

reviewed for the present monograph (Bonefeld-
Jørgensen et al., 2011; Vieira et al., 2013; Hardell 
et al., 2014; Wielsøe et al., 2017; Lin et al., 2020b; 
Tsai et al., 2020; Itoh et al., 2021; Cao et al., 2022; 
Li et al., 2022a; Liu et al., 2022a; Velarde et al., 
2022; Chen et al., 2023). In all studies except 
that by Vieira et al. (2013), both PFOA and PFOS 
were evaluated, and the exposure assessment was 
based on biomonitoring in the blood (serum, 
plasma, or whole blood).

Vieira et al. (2013) evaluated incident cancers 
in residents (according to address at time of 
cancer diagnosis) in six PFOA-contaminated 
water districts and 13 counties in Ohio and West 
Virginia, USA. PFOA concentrations in water, 
available for each of the six districts, varied by 
community. Water district information was avail-
able for all individuals, and logistic regression 

https://publications.iarc.who.int/636
https://publications.iarc.who.int/636
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analyses compared individuals in contaminated 
water districts with those in neighbouring water 
districts. For residents of Ohio, where approxi-
mately one third of the sample population lived, 
residential addresses were geocoded and then 
PFOA serum concentrations were assigned on 
the basis of modelled estimates (Shin et al., 2011a, 
b), assuming 10 years residence at that address. 
Exposure was then divided into four categories. 
However, analysis for residents of West Virginia 
was limited to residence by water district.

For all other studies based on general popu-
lations, blood samples were collected from 
participants during the same time periods for 
the cases and controls. For the cases in studies 
by Bonefeld-Jørgensen et al. (2011) and Cao et al. 
(2022), the timing of the blood draw relative to 
when treatment started was not reported, and 
in the study by Lin et al. (2020b), blood samples 
were collected 1 week after the identification of 
the case by pathology. In the study by Chen et al. 
(2023), blood spot samples were collected at birth, 
and diagnosis occurred on average 9.3  months 
after birth for unilateral retinoblastoma and 
22  months after birth for bilateral retino-
blastoma. For the remaining studies (Hardell 
et al., 2014; Wielsøe et al., 2017; Tsai et al., 2020; 
Itoh et al., 2021; Li et al., 2022a; Velarde et al., 
2022), blood samples were collected between 
the time of diagnosis and the start of treat-
ment. Controls were selected from participants 
in ongoing cross-sectional studies (Bonefeld-
Jørgensen et al., 2011; Wielsøe et al., 2017); 
invited on the basis of selection from population 
registries (Hardell et al., 2014) or breast cancer 
screening programmes (Cao et al., 2022; Li et al., 
2022a); in connection with medical check-ups 
(Itoh et al., 2021); through advertisements at the 
hospital and in the community (Tsai et al., 2020; 
Liu et al., 2022a); or invited after hospitalization 
due to other diagnoses or illnesses (Lin et al., 
2020b). In studies by Bonefeld-Jørgensen et al. 
(2011), Hardell et al. (2014), Wielsøe et al. (2017), 
Itoh et al. (2021) and Chen et al. (2023), cases 

and controls were matched on age and region 
of residence, whereas Lin et al. (2020b) matched 
cases and controls on age and sex. [The Working 
Group noted that, given the temporal trends in 
PFOA and PFOS blood levels, it is important that 
time of blood sample collection is matched or 
adjusted for.]

In all studies, targeted chemical analyses 
were performed using LC-MS/MS, except in the 
study by Chen et al. (2023), in which non-tar-
geted methods were used. Because PFOA and 
PFOS levels were not quantified using standard 
targeted methods by Chen et al. (2023), direct 
comparisons with the levels from other studies 
were not possible. Li et al. (2022a) performed 
separate determinations for eight PFOA isomers 
and nine PFOS isomers, and internal standards of 
linear PFOA and PFOS isomers were used. In the 
study by Hardell et al. (2014), only linear isomers 
of PFOA and PFOS were determined. In the 
remaining studies, one concentration for PFOA 
and one for PFOS were reported. In these studies, 
it was not stated whether only linear isomers 
were considered or whether other isomers were 
also included in the reported concentrations.

In addition to PFOA and PFOS, all studies 
except that by Chen et al. (2023) included at least 
four of the other most prominent PFAS in human 
blood (EFSA Panel on Contaminants in the Food 
Chain, 2020). Bonefeld-Jørgensen et al. (2011), Li 
et al. (2022a), and Wielsøe et al. (2017) assessed 
exposure both for single PFAS and for the sum 
of several PFAS. In the studies by Hardell et al. 
(2014), Tsai et al. (2020), Lin et al. (2020b), Liu 
et al. (2022a), Cao et al. (2022), and Chen et al. 
(2023), only single PFAS were assessed.

Bonefeld-Jørgensen et al. (2011) and Wielsøe 
et al. (2017) measured other carcinogens, i.e. 
polychlorinated biphenyls (PCBs), β-hexa-
chlorocyclohexane, cadmium and cotinine (as 
a biomarker for tobacco smoke), via biomoni-
toring. Some studies collected information on 
exposure to other carcinogens, i.e. barbecuing, 
hair dyeing, smoking, alcohol consumption, use 
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of estrogen or estrogen-replacement therapy, 
meat consumption, via questionnaires (see 
Table  S1.22, Annex  1, Supplementary material 
for Section 1, Exposure Characterization, online 
only, available from: https://publications.iarc.
who.int/636).

(ii)	 Cohort studies
This section includes cohort studies designed 

to study PFOA and PFOS exposure in occupa-
tional settings and contaminated communities 
and case–control studies nested in other general 
population cohort studies. Eleven cohort studies 
focusing on cancer incidence or mortality 
were reviewed by the Working Group. These 
included eight occupational cohort analyses 
(Alexander et al., 2003; Alexander and Olsen, 
2007; Lundin et al., 2009; Steenland and Woskie, 
2012; Consonni et al., 2013; Raleigh et al., 2014; 
Steenland et al., 2015; Girardi and Merler, 2019), 
two cohort studies in highly exposed commu-
nities (Barry et al., 2013; Li et al., 2022b), and 
one in the general population in the USA (Wen 
et al., 2022). Three of the cohort analyses were 
conducted in the C8 study area (a fluorochem-
ical-production plant in Parkersburg, West 
Virginia, USA, and the six water districts in Ohio 
and West Virginia in which water was contam-
inated by a chemical plant that used APFO in 
the production of PTFE) and focused on either  
occupational exposure to PFOA or exposure 
through residential consumption of drinking- 
water (Steenland and Woskie, 2012; Barry et al., 
2013; Steenland et al., 2015). Additionally, four 
studies were conducted among fluorochemical- 
manufacturing workers at a PFOS-production 
site in Alabama, USA (Alexander and Olsen, 
2007) and at an APFO-manufacturing site in 
Minnesota, USA (Alexander et al., 2003; Lundin 
et al., 2009; Raleigh et al., 2014). The study by Li 
et al. (2022b) was based in a general population 
that was highly exposed to PFAS, but an ecolog-
ical approach using water districts was followed, 
rather than measurement of subject-specific 

PFAS exposure. The majority of these studies that 
evaluated specific PFAS focused on PFOA. In the 
general population study (Wen et al., 2022) and 
the community exposure study (Li et al., 2022b), 
exposure to both PFOA and PFOS was evaluated.

Occupational cohort studies
Six of the occupational cohort analyses 

focused on PFOA (Lundin et al., 2009; Steenland 
and Woskie, 2012; Consonni et al., 2013; Raleigh 
et al., 2014; Steenland et al., 2015; Girardi and 
Merler, 2019) and two on PFOS (Alexander et al., 
2003; Alexander and Olsen, 2007).

Another cohort analysis on fluoropolymer 
production was a mortality analysis that did 
not include estimates for PFOA exposure and is 
not discussed further in the present monograph 
(Leonard et al., 2008).

All of these occupational cohort analyses 
relied on job history to classify potential expo-
sure to PFOA or PFOS. Occupational exposure 
to PFOS was evaluated in workers in a film and 
chemical plant in Alabama, USA, (Alexander 
et al., 2003; Alexander and Olsen, 2007) using an 
exposure matrix developed by Olsen et al. (2003) 
that classified workers into three categories on the 
basis of potential exposure to POSF (a precursor 
of PFOS): ever high; ever low/never high; or no 
exposure. No measure of cumulative exposure 
was included. Serum samples were analysed but 
were not used to develop an exposure matrix. 
A variety of perfluorinated amides, alcohols, 
acrylates, and other fluorochemical polymers 
were produced at the plant (e.g. PFOA was used 
as a by-product or emulsifier until 1988) but were 
not included in the exposure assessment (Olsen 
et al., 2003).

For PFOA, several different approaches were 
used in the occupational cohort studies. Two 
studies used a JEM created using expert opinion 
(Lundin et al., 2009; Consonni et al., 2013); one 
used air sampling measurements together with 
a JEM (Raleigh et al., 2014); and others used 
biomarkers to enhance JEMs (Steenland and 

https://publications.iarc.who.int/636
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Woskie, 2012; Steenland et al., 2015; Girardi 
and Merler, 2019). In the study on workers at the 
fluorochemical-production plant in Parkersburg, 
West Virginia (Steenland and Woskie, 2012; 
Steenland et al., 2015), exposure to PFOA was 
assessed using a JEM and then linked to serum 
exposure levels in samples collected between 
1979 and 2004 from workers in eight work cate-
gories (Woskie et al., 2012). Cumulative exposure 
was estimated in ppm-years (μg/mL serum-
years). Girardi and Merler (2019) used a similar 
approach to estimate cumulative serum PFOA 
exposure among workers at a factory in Veneto, 
Italy. Although PFOS was also produced, at lower 
volumes, in this factory (an average of [33 tonnes/
year] compared with [227 tonnes/year] of PFOA), 
exposure to PFOS was not estimated. For APFO-
manufacturing workers at the Minnesota factory 
(Lundin et al., 2009), exposure to PFOA was 
estimated according to three categories: definite; 
probable; and no occupational exposure, based 
on job history. Cumulative PFOA exposure was 
then estimated using weights based on serum 
levels of workers in different areas of the manu-
facturing facility; lifetime exposure was esti-
mated based on the product of the weight and the 
exposure days. For manufacturing workers using 
APFO (the ammonium salt of PFOA), air samples 
were collected for combinations of department/
job title/work area/equipment/task (Raleigh 
et al., 2014). Job histories were then linked to the 
air samples to create a TWA of APFO exposure 
(μg/m3-years), and then all jobs were summed to 
create an overall summary APFO air-exposure 
variable.

Consonni et al. (2013) evaluated mortality 
among workers at a plant involved in TFE 
synthesis and polymerization. The TFE synthesis 
and polymerization process uses APFO (the 
ammonium salt of PFOA) and, as a result, 
workers were commonly co-exposed to both TFE 
and APFO (88%, in the study by Consonni et al., 
2013). A semiquantitative JEM using arbitrary 

units was created, and cumulative exposure was 
estimated.

Studies of communities with contaminated 
drinking-water

Cancer risk associated with the consump-
tion of PFAS-contaminated drinking-water was 
evaluated in three communities: the C8 Study in 
Ohio and West Virginia, in the USA; Ronneby, 
Sweden; and the Veneto region, in Italy.

The C8 study focused on water districts where 
drinking-water was contaminated by PFOA, also 
known as “C8”, from a fluorochemical-produc-
tion plant (Barry et al., 2013). One cohort study 
of cancer incidence was conducted in this region. 
This study, which included both residents and 
workers, used the exposure assessment metric 
from the study by Shin et al. (2011a, b) to assign 
cumulative PFOA exposure to individuals on 
the basis of residential history, and the exposure 
metric from Woskie et al. (2012) to assign PFOA 
exposure related to occupational exposure. 
Exposure was modelled based on a continuous 
measure of cumulative PFOA exposure as well as 
categories of exposure.

The study in Ronneby, Sweden, by Li et al. 
(2022b) relied on residential history to assign 
water source into categories: ever high, never 
high, early high, late high, short high or long 
high PFAS exposure. Differences in exposure 
between these categories were supported by 
measurement of PFAS blood levels in the popu-
lation, with the highest levels found in the late 
high group (Li et al., 2022b). Water from this 
region was contaminated with multiple PFAS, 
and exposures were particularly high for PFAS 
related to firefighting foam (PFOS and PFHxS). 
Exposure assessment in this analysis was not 
chemical-specific and used residence as a surro-
gate for exposure. [The Working Group recog-
nized that it was not possible to distinguish 
PFOS from PFHxS because of the elevated levels 
of both compounds and the presence of some-
what elevated PFOA levels that correlated with 
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levels of PFOS and PFHxS, even though PFOA 
levels were much lower than those of PFOS and 
PFHxS.]

Another location in the world where there 
is extensive contamination of water with PFAS 
is the region of Veneto, Italy, where a factory 
produced PFOA between 1968 and 2014 (Girardi 
and Merler, 2019). [No publication has compre-
hensively described the exposure experience in 
this community. The Working Group reviewed 
several papers and reports to characterize PFOA 
and PFOS exposure in this community and 
included details in Annex 2, Actions and regu-
lations for the elimination of PFAS worldwide, 
available from: https://publications.iarc.who.
int/636.] Drinking-water contamination was 
discovered in 2013, and since that time extensive 
environmental and human biological sampling 
has been conducted (Ingelido et al., 2018; Pitter 
et al., 2020; Giglioli et al., 2023). Initially, the 
highly contaminated area, also known as the 
“red area”, was composed of 21 municipalities, 
with 126  000 inhabitants. In 2018, nine addi-
tional municipalities were added, some of which 
were only partially supplied by the contaminated 
waterworks; the updated red area has a size 
of  595  km2 and a total population of approxi-
mately 140 000.

General population cohorts including nested 
case–control studies

Wen et al. (2022) used NHANES exposure 
data from 1999 to 2014 to evaluate cancer mor- 
tality in adults in a general population sample 
in the USA. The NHANES is a nationally repre-
sentative sampling of the population, designed to 
assess the health and nutritional status of adults 
and children in the USA. This evaluation used 
serum measurements of PFOA and PFOS, and 
other PFAS; only one serum measurement was 
available for each individual. Deaths were iden-
tified through linkage to the National Death 
Index, with a median follow-up of 81  months 
(range, 46–112  months). Cancer mortality risk 

was estimated using tertiles of exposure for 
PFOA and PFOS, but the majority of the analysis 
focused on the PFAS mixture.

In total there were 18 case–control studies 
nested within cohorts that used biomonitoring 
of PFAS in their analyses (Eriksen et al., 2009; 
Bonefeld-Jørgensen et al., 2014; Ghisari et al., 2017; 
Hurley et al., 2018; Cohn et al., 2020; Mancini 
et al., 2020; Shearer et al., 2021; Feng et al., 2022; 
Frenoy et al., 2022; Goodrich et al., 2022; Chang 
et al., 2023; Purdue et al., 2023; Rhee et al., 2023a, 
b; van Gerwen et al., 2023; Winquist et al., 2023; 
Zhang et al., 2023; Madrigal et al., 2024). Two 
studies used the E3N (Etude épidémiologique 
auprès de femmes de la Mutuelle générale de l'Ed-
ucation nationale) prospective cohort of women 
in the national education system in France 
(Mancini et al., 2020; Frenoy et al., 2022). Two 
studies used the Danish National Birth Cohort 
(Bonefeld-Jørgensen et al., 2014; Ghisari et al., 
2017). One study used a cohort of retired Chinese 
motor-company employees (Feng et al., 2022); 
another was nested in a cohort of US Air Force 
Servicemen (Purdue et al., 2023). The others 
included a cohort of California teachers (Hurley 
et al., 2018), a Child Health and Development 
Studies pregnancy cohort in California (Cohn 
et al., 2020), a population-based national mater-
nity cohort in Finland (Madrigal et al., 2024), and 
the Alpha-Tocopherol, Beta-Carotene Cancer 
Prevention (ATBC) Study in Finland (Zhang 
et al., 2023), and the Mount Sinai BioMe medical 
record-linked biobank in the USA (van Gerwen 
et al., 2023). Four studies used the US-based 
Prostate, Lung, Colorectal, and Ovarian Cancer 
(PLCO) Cancer Screening Trial cohort (Shearer 
et al., 2021; Chang et al., 2023; Rhee et al., 2023a; 
Zhang et al., 2023), and two used the California- 
and Hawaii-based Multiethnic Cohort in the 
USA (Goodrich et al., 2022; Rhee et al., 2023b).

Chang et al. (2023), van Gerwen et al. 
(2023) and Zhang et al. (2023) used non-tar-
geted analysis. In these studies, the analysis was 
conducted on quantiles of intensity measures of 
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the relative levels of PFOA and PFOS found in 
pre-diagnosis serum samples. Because PFOA and 
PFOS levels were not quantified using standard 
targeted methods, direct comparisons with the 
PFAS levels reported in other studies were not 
possible. However, the authors (Chang et al., 2023; 
Zhang et al., 2023) reported strong correlations 
of between 0.76 and 0.77 between the untargeted 
analysis and the standard targeted analysis.

In all studies except that by Hurley et al. 
(2018), blood samples were collected before case 
ascertainment. Hurley et al. collected samples 
between 9  months and 8.5  years (average, 
35  months) after case diagnosis. In the other 
studies, the time between sample collection 
and case ascertainment varied (where this was 
reported). Zhang et al. (2023) reported that the 
time between sample collection and cancer diag-
nosis was 0–18  years (median, 9  years) for the 
PLCO subcohort analysed. For the study by van 
Gerwen et al. (2023), sample collection took place 
0–1  year before diagnosis (average, 0.08  years) 
for 65% of cases and an average of 4 years before 
diagnosis for the remaining 35% of cases. For the 
study by Goodrich et al. (2022), the median time 
span between collection of blood sample and 
diagnosis was 7.2 years (range, 0.9–16.4 years). In 
the study by Ghisari et al. (2017), cases were diag-
nosed 11–12 years after initial blood draw, while 
for Eriksen et al. (2009) cases were diagnosed a 
median of 7  years after enrolment (and blood 
draw) (range, 0–12  years). Shearer et al. (2021) 
reported a mean of 8.8 years (range, 2–18 years) 
between blood draw and diagnosis, and Chang 
et al. (2023) reported a median of 5.6 years (range, 
2–18 years) between diagnosis and blood draw. 
In the study by Purdue et al. (2023), the median 
time between blood collection and diagnosis was 
5 years (range, 0–19.8 years). Rhee et al. (2023a) 
reported a median time between blood collection 
and diagnosis of 9  years (interquartile range, 
5–13 years). Madrigal et al. (2024) reported that 
cases were diagnosed at least 3 years after delivery 

(samples were collected during the first trimester 
of pregnancy).

Both Purdue et al. (2023) and Rhee et al. 
(2023a) had access to multiple blood samples, 
which allowed them to evaluate how the rank 
ordering of exposure might change over time. For 
a subset of participants in the study by Purdue 
et al. (2023), a second blood sample was collected. 
To explore differences related to the time of 
collection, Purdue et al. (2023) analysed the data 
separately for participants with two samples 
and also created a combined variable based on 
the classification of the median level at each 
time point. They reported an overall Spearman 
coefficient of 0.6 for both PFOA and PFOS in 
repeat samples and an intraclass correlation 
coefficient (ICC) of 0.5–0.6, with stronger corre-
lation for repeat samples taken after < 4.7 years 
and weaker correlation for repeat samples taken 
after >  4.7  years. Rhee et al. (2023a) analysed 
blood from 60 controls at enrolment, 1 year after 
enrolment, and 5 years after enrolment to assess 
long-term intra-individual variability in PFAS 
concentration. The ICC for three measures was 
0.73 for of PFOA and 0.85 for PFOS; these values 
suggest that measurements of PFOA and PFOS 
were reliable over time in this study.

Eight of the studies focused on breast 
cancer (Bonefeld-Jørgensen et al., 2014; Ghisari 
et al., 2017; Hurley et al., 2018; Cohn et al., 2020; 
Mancini et al., 2020; Feng et al., 2022; Frenoy 
et al., 2022; Chang et al., 2023). Some of the 
studies were in birth cohorts for which blood 
samples were collected during pregnancy and 
maternal breast cancers identified subsequently 
(Bonefeld-Jørgensen et al., 2014; Ghisari et al., 
2017). Alternatively, Cohn et al. (2020) used 
maternal blood collected 1–3  days postpartum 
to investigate breast cancer in the daughters. 
Chang et al. (2023), Feng et al. (2022), Frenoy 
et al. (2022), Mancini et al. (2020), and Hurley 
et al. (2018) reported on prospective studies of 
adult general populations. Three studies focused 
on people in professions related to education 
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(Hurley et al., 2018; Mancini et al., 2020; Frenoy 
et al., 2022), and one study was in a cohort in 
an industrial motor company (Feng et al., 2022), 
although occupational exposures were not its 
focus.

Several nested case–control studies were part 
of general cancer screening or prevention trials, 
such as the PLCO cohort (Chang et al., 2023; 
Rhee et al., 2023a; Zhang et al., 2023), the Cancer 
Prevention Study  II Lifelink Cohort (Winquist 
et al., 2023), or the ATBC Study (Zhang et al., 
2023). One study used a hospital-based biobank 
in the USA (van Gerwen et al., 2023), and another 
was a population-based national maternity 
cohort in Finland (Madrigal et al., 2024).

Many studies measured multiple PFAS in 
their samples; however, much of the outcome 
analysis focused on potential associations with 
a limited number of individual PFAS (Eriksen 
et al., 2009; Ghisari et al., 2017; Hurley et al., 2018; 
Cohn et al., 2020; Mancini et al., 2020; Shearer 
et al., 2021; Goodrich et al., 2022). Some authors 
attempted to sum a variable number of the 
measured PFOA or PFOS isomers, and use these 
summed metrics in their analysis (Bonefeld-
Jørgensen et al., 2014; Feng et al., 2022), and 
Frenoy et al. (2022) used principal components 
analysis and Bayesian kernel machine regression 
on all the PFAS measurements. van Gerwen et al. 
(2023) used untargeted analysis to examine inten-
sities of eight detectable PFAS, including linear 
PFOA and branched and linear PFOS, which 
were examined individually in their analysis.

(b)	 Critical review of exposure assessment in 
key epidemiological studies

Blood is considered a suitable matrix for 
exposure assessment (Vorkamp et al., 2021), and 
measured blood concentrations are an objective 
measure of exposure. In most studies in which 
blood measurements were used, the analytical 
methods used were state-of-the-art in 2023, the 
LOQs for PFOA and PFOS were sufficiently low 
to ensure high quantification frequencies, and 

the measurement error in the targeted chemical 
analyses was low (see Section  1.3.4). In some 
studies, the quantification method used was 
non-targeted and thus semiquantitative; there-
fore, exact concentrations were not available. 
However, ranking of levels is possible. Several 
occupational cohort studies that estimated 
cumulative exposures used older, less specific or 
precise methods, with higher LODs (Alexander 
et al., 2003; Steenland and Woskie, 2012). In some 
studies, estimation of serum levels combined 
state-of-the-art measurements of community 
exposures with older data from occupational 
cohort studies (Barry et al., 2013; Steenland et al., 
2015).

The measured concentrations in blood repre-
sent combined exposure through all exposure 
pathways (see Section  1.4.3 on biomonitoring). 
Since PFOA and PFOS have long elimination 
half-lives (see Section 4.1), and repeated measures 
in humans show strong ICCs (Blake et al., 2018; 
Rhee et al., 2023a), the measured concentra-
tions represent exposure over a relatively long 
period of time. These factors limit the potential 
for non-differential exposure misclassification, 
in general. Using repeated measures data from 
Rhee et al. (2023a) and Purdue et al. (2023), 
the Working Group evaluated the potential for 
exposure misclassification and resulting bias if 
just one biological sample is used; the results of 
this analysis demonstrated that using a single 
sample represented rather well the mean of 
repeated samples collected a median of 4–5 years 
apart in two cohort studies of populations with 
background levels (Spearman correlations of 
0.87 and 0.83 for the PLCO and US Air Force 
Servicemen cohorts, respectively) (see Annex 3, 
Supplementary analyses used in reviewing 
evidence on cancer in humans, available from: 
https://publications.iarc.who.int/636). Repeat bio- 
monitoring of PFOA and PFOS in the general 
population is described in Section 1.4.3.

It is important to be careful when comparing 
measured concentrations reported in the 

https://publications.iarc.who.int/636
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various studies, since PFOA and PFOS isomers 
have been treated differently among studies. 
This is of particular importance for PFOS since 
branched isomers may comprise up to 50% of 
the total concentration of PFOS (Haug et al., 
2009); whether or not the branched isomers are 
included could make a significant difference to 
participant exposure levels. Results from studies 
using untargeted methods also present limita-
tions when comparing exposure concentrations 
with results from other studies.

Most studies relied on a single blood sample 
to classify lifetime exposure to PFOA and PFOS. 
In case–control studies, one blood sample was 
collected near the time of diagnosis. In the 
cohort and nested case–control studies, the time 
between blood collection and diagnosis ranged 
from 0 to 20  years, as described above. Thus, 
there is a possibility that measured blood levels of 
PFOA and PFOS do not reflect exposure at crucial 
windows in cancer development. However, as 
described above, the results of studies of repeated 
human serum measurements of PFOA and PFOS 
have shown strong correlations over time.

(i)	 Case–control studies
In the study by Vieira et al. (2013), exposure 

was assigned on the basis of address at the time 
of cancer diagnosis; this could result in expo-
sure misclassification if individuals changed 
addresses before cancer diagnosis. However, the 
authors stated that the median residence time 
at current address was 17 years, suggesting that 
this issue was unlikely to be a source of exposure 
misclassification.

All the other case–control studies used 
biomonitoring for exposure assessment, and 
thus generally had the same strengths and limi-
tations. While blood samples provide specific 
measures of PFOA and PFOS exposure, biolog-
ical samples are influenced by interindividual 
variability. For the case–control studies, the fact 
that blood samples were collected at or near the 
time of diagnosis means that these biological 

markers may be influenced by the disease process. 
If cancer were to alter the absorption, distribu-
tion, metabolism, or excretion (ADME) of PFOA 
and PFOS, then the measured levels in the cases 
could not be compared with measured levels in 
the controls, thus resulting in differential expo-
sure misclassification.

A limitation of these studies is that most 
did not measure other carcinogens in the blood 
samples, and that only limited information on 
exposure to other carcinogens was available from 
the questionnaires. In the studies by Bonefeld-
Jørgensen et al. (2011) and Wielsøe et al. (2017), 
other substances classified by IARC in Group 1, 
carcinogenic to humans (PCBs, β-hexachloro
cyclohexane, cadmium, and cotinine as a 
biomarker of tobacco smoking), were measured. 
Bonefeld-Jørgensen et al. (2011) reported high 
correlations between PFAS and other persis-
tent organic pollutants (r = 0.42–0.55; P < 0.05), 
although no information on specific compounds 
was reported. A strength of the exposure assess-
ment in this study was that correlations with 
biomarkers of co-exposures were assessed.

In summary, for all case–control studies 
(except Vieira et al., 2013), blood levels were 
measured and used as the exposure metric. A 
main strength was that the measured levels 
represent combined exposure through all expo-
sure pathways. Measurement error was also 
thought to be low in all studies in which targeted 
analyses were performed, whereas the untar-
geted methods applied in other studies might 
have lower precision. A major weakness of all the 
case–control studies was that the blood samples 
for the cases were collected after the participants 
had been diagnosed. Thus, the measured levels 
may not reflect exposure at crucial windows 
in cancer development, and if cancer alters the 
ADME of PFAS, there could be differential expo-
sure misclassification.
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(ii)	 Cohort studies
In the majority of studies with occupational 

exposure and in communities with high expo-
sure, PFOA and PFOS exposure was determined 
by exposure reconstruction, based either on 
occupational or residential history. Most studies 
used exposure reconstruction techniques that 
provided cumulative exposure estimates to rank-
order individuals according to PFOA and PFOS 
exposure. These cumulative exposure estimates 
allowed for exposure–response analysis, which 
may strengthen the argument for causality. In 
several studies, cumulative serum-level estimates 
were developed using retrospective modelling 
(Steenland and Woskie, 2012; Barry et al., 2013; 
Steenland et al., 2015; Girardi and Merler, 2019); 
these studies have added strength because they 
included both environmental and biological 
measurements to support their estimates. In 
one study, cumulative estimates of air levels of 
APFO were developed that enabled workers to be 
ranked according to exposure, because the main 
source of PFOA was expected to be occupational 
(Raleigh et al., 2014). In other studies, cumula-
tive categorical estimates were developed based 
on occupational history information (Alexander 
et al., 2003; Alexander and Olsen, 2007; Lundin 
et al., 2009; Consonni et al., 2013). One study 
relied solely on residence to assign a categor-
ical exposure, although serum levels were said 
to validate the categories (Li et al., 2022b); this 
study also lacked specificity for individual PFAS, 
limiting its utility to the evaluation of the carci-
nogenicity of PFOA or PFOS individually. Many 
of these studies focused only on PFOA (Lundin 
et al., 2009; Steenland and Woskie, 2012; Barry 
et al., 2013; Steenland et al., 2015; Girardi and 
Merler, 2019); none presented isomer-specific 
estimates of exposures. In the study by Girardi 
and Merler (2019), workers may have been 
exposed to other PFAS, including PFOS, but 
these exposures were not evaluated. In one occu-
pational cohort (Consonni et al., 2013) focusing 

on TFE workers, a very high correlation between 
cumulative weighted categorical exposures to 
TFE and cumulative weighted categorical expo-
sures to APFO (ρ = 0.72) was reported in exposed 
workers, therefore, it was difficult to ascertain 
differences between these exposures. Another 
study focused on categories of POSF-exposed 
workers, resulting in estimates only of indirect 
exposure to its metabolite PFOS; however, serum 
levels of PFOS were used to validate the expo-
sure estimates. Co-exposure to PFOA was likely 
but was not assessed (Alexander et al., 2003; 
Alexander and Olsen, 2007).

In all cohorts, exposure was ascertained 
before cancer diagnosis or cancer death. Because 
exposure was assigned before diagnosis and all 
individuals were evaluated in the same way, the 
potential for differential exposure misclassifica-
tion was limited for both cohort studies and the 
resulting nested case–control studies.

All the nested case–control studies and 
one cohort analysis (Wen et al., 2022) relied 
on biomarker measurement of PFAS in serum 
or plasma samples, although van Gerwen et al. 
(2023) and Zhang et al. (2023) used an untar-
geted analysis method. As discussed for the 
case–control studies, blood is an appropriate 
matrix for biomonitoring of PFOA and PFOS. 
The use of non-targeted methods does not allow 
quantification of PFAS concentrations but does 
provide appropriate rank ordering of individ-
uals. Most studies evaluated PFOA and PFOS 
separately. Frenoy et al. (2022) primarily used 
principal components analysis to characterize 
exposure to both PFOA and PFOS together with 
other PFAS and brominated flame retardants, 
which made individual PFOA or PFOS determi-
nations challenging.

All studies except that by Hurley et al. (2018) 
used blood samples collected before case ascer-
tainment, although the range of time between 
blood collection and case ascertainment varied 
widely. PFOA and PFOS have a relatively long 
half-life in blood, making them good measures 
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of long-term exposure. However, single sample 
exposure measurements may not reflect expo-
sure at crucial windows in cancer disease devel-
opment. All studies, except those by Purdue et al. 
(2023) and Rhee et al. (2023a), used a single blood 
sample to determine exposure status. Purdue 
et al. (2023) collected samples at two points in 
time and analysed them both separately and as 
a combined exposure metric; this may reduce 
exposure misclassification but also reduced the 
study power since not all participants had two 
samples. The results of the ICC analysis by Rhee 
et al. (2023a) suggested that PFOA and PFOS 
concentrations in blood samples remain rela-
tively constant over time, suggesting that a single 
measure may correctly classify individuals. A 
bias analysis of these samples by the Working 
Group demonstrated little misclassification error 
when considering samples collected within an 
interval of 5–8 years (see Annex 3, Supplementary 
analyses used in reviewing evidence on cancer 
in humans, available from: https://publications.
iarc.who.int/636).

While all cohort and nested case–control 
studies accounted for potential co-exposures to 
some substances classified by IARC as carcino-
genic to humans (Group 1), mostly by ques-
tionnaire, most studies focused solely on PFAS 
exposure. Many studies quantified additional 
PFAS in serum samples and presented risk esti-
mates for individual and total PFAS as well. The 
most common co-exposures to carcinogens were 
smoking, alcohol consumption, and use of oral 
contraceptives, although information on occu-
pation type was also collected by Eriksen et al. 
(2009) and Feng et al. (2022). Madrigal et al. (2024) 
also measured PCB congeners, organochlorine 
pesticides, and polybrominated diphenyl ethers 
(PBDEs) in serum samples. At present, little is 
known about the correlation between exposure 
to PFAS and to other substances classified by 
IARC as carcinogens.

1.6.2	 Quality of exposure assessment in key 
mechanistic studies in exposed humans

(a)	 Exposure assessment methods

The exposure assessment methods used in the 
key mechanistic studies in humans are discussed 
below according to study design. [The Working 
Group did not review all mechanistic studies in 
exposed humans but reviewed a representative 
sample of studies for each type of study design.]

(i)	 Cross-sectional studies
The Working Group reviewed the exposure 

assessment methods used in 18 studies with a 
cross-sectional design (Knox et al., 2011; Fletcher 
et al., 2013; Watkins et al., 2014; Lin et al., 2016, 
2020c; Lopez-Espinosa et al., 2016; Liu et al., 
2018b; Pan et al., 2019; Abraham et al., 2020; 
Aimuzi et al., 2020; Di Nisio et al., 2020; Kvalem 
et al., 2020; Clarity et al., 2021; Lopez-Espinosa 
et al., 2021; Omoike et al., 2021; Cheng et al., 
2022; Zhang et al., 2022; Wang et al., 2023). The 
studies were conducted in the USA and several 
European and several Asian countries. In all 
these studies, both PFOA and PFOS were evalu-
ated, and the exposure assessment was based on 
biomonitoring.

In 16 of these studies, PFOA and PFOS 
concentrations were measured in the serum or 
plasma fractions of blood. These matrices are 
considered suitable for exposure assessment of 
environmental contaminants, including long-
chain PFAS such as PFOA and PFOS (Calafat 
et al., 2019; Vorkamp et al., 2021; NASEM, 2022) 
and have been used as the exposure metric in 
most epidemiological studies of PFAS. PFOA 
and PFOS concentrations were measured in cord 
blood in one study (Liu et al., 2018b), in semen (as 
well as in serum) in the study by Pan et al. (2019), 
and in the placenta in the study by Wang et al. 
(2023). Relatively few studies have used semen or 
placenta for the assessment of exposure to PFAS.

Twelve of the 18 studies were of participants 
from the general population. In 6 of these 12 

https://publications.iarc.who.int/636
https://publications.iarc.who.int/636
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studies, the study populations included men 
who visited a fertility clinic (Pan et al., 2019), 
patients undergoing surgery for benign diseases 
or an elective reason (Cheng et al., 2022), chil-
dren (Lin et al., 2016), and pregnant women (Liu 
et al., 2018b; Aimuzi et al., 2020; Wang et al., 
2023). Another 6 of the 12 studies (Knox et al., 
2011; Fletcher et al., 2013; Watkins et al., 2014; 
Lopez-Espinosa et al., 2016, 2021; Di Nisio et al., 
2020) were of populations with elevated exposure 
to PFOA from contaminated drinking-water. 
However, exposure to PFOS in these populations 
was not higher than in the general population.

In all studies, PFAS were measured at the 
same time point as the assessment of the outcome, 
and in one study (Watkins et al., 2014), they were 
also measured 4–5  years before assessment of 
the outcome, but the two measures of PFAS were 
averaged to give a single exposure measure. In all 
the studies, PFOA and PFOS were analysed using 
LC-MS/MS.

Four studies (Fletcher et al., 2013; Di Nisio 
et al., 2020; Lin et al., 2020c; Cheng et al., 2022) 
reported only PFOA and PFOS. All the other 
studies also reported other PFAS. Although 
Knox et al. (2011) measured levels of other PFAS, 
they evaluated potential associations with the 
outcome only for PFOA and PFOS; Xie et al. 
(2023) reported 17 PFAS and considered the total 
concentration of the 17 PFAS that were evaluated.

In two studies (Omoike et al., 2021; Zhang 
et al., 2022), serum cotinine levels were measured 
as a biomarker for tobacco smoke, and in 11 studies 
(Knox et al., 2011; Fletcher et al., 2013; Watkins 
et al., 2014; Lin et al., 2016, 2020c; Pan et al., 2019; 
Aimuzi et al., 2020; Di Nisio et al., 2020; Lopez-
Espinosa et al., 2021; Wang et al., 2023; Xie et al., 
2023) information was obtained about either 
current or overall exposure to tobacco and/or 
tobacco smoke via questionnaires. In 10 studies 
(Knox et al., 2011; Watkins et al., 2014; Lin et al., 
2016, 2020c; Pan et al., 2019; Aimuzi et al., 2020; 
Di Nisio et al., 2020; Lopez-Espinosa et al., 2021; 
Zhang et al., 2022; Xie et al., 2023), information 

on alcohol consumption was obtained using a 
questionnaire. Watkins et al. (2014) and Lopez-
Espinosa et al. (2021) also obtained information 
on regular use of anti-inflammatory drugs over 
time through a questionnaire, Cheng et al. (2022) 
obtained information on use of hypolipidaemic 
drugs, and Knox et al. (2011) excluded partici-
pants who were taking hormonal medications.

In two studies, biomonitoring data were 
collected for contaminants other than PFAS. 
Abraham et al. (2020) measured PFAS in 
stored blood samples that were collected 
in the late 1990s and had previously been 
analysed for 2,3,7,8-substituted polychlo-
rinated dibenzodioxins (PCDDs) and 
polychlorinated dibenzofurans (PCDFs), 
including 2,3,7,8-tetrachlorodibenzo-p-dioxin 
(TCDD), which is classified as carcinogenic to 
humans, Group 1; IARC, 1997); non-dioxin- 
like-, mono-ortho-, and coplanar PCBs (classified 
as carcinogenic to humans, Group 1; IARC, 2015); 
4,4′-dichlorodiphenyltrichloroethane (DDT) and 
its metabolites (classified as probably carcino- 
genic to humans, Group 2A; IARC, 2017); 
hexachlorobenzene and β-hexachlorocyclo- 
hexane (both classified as possibly carcinogenic to 
humans, Group 2B; IARC, 1987, 2001); lead (clas-
sified as probably carcinogenic to humans, Group 
2A; IARC, 1979, 2006), cadmium (classified as 
carcinogenic to humans, Group 1; IARC, 1993, 
2012), and mercury. Clarity et al. (2021), in a study 
of firefighters, measured urinary levels of four 
brominated flame retardants and metabolites of 
six organophosphate flame retardants for which 
there was potential occupational exposure.

(ii)	 Prospective birth cohort studies
Exposure assessment methods were reviewed 

for six mechanistic studies with a prospective 
birth cohort design (Grandjean et al., 2012; 
Goudarzi et al., 2017; Miura et al., 2018; Manzano-
Salgado et al., 2019; Dalsager et al., 2021; Liu 
et al., 2022b). These studies were conducted in 
Denmark, the Faroe Islands (Denmark), Spain, 
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Japan, and the USA. All six studies included 
mother–child pairs with singleton births from 
the general population. Both PFOA and PFOS 
were evaluated, and the exposure assessment was 
based on blood biomonitoring.

In all six studies, PFOA and PFOS were 
analysed using LC-MS/MS in maternal blood 
serum or plasma collected during pregnancy. 
Grandjean et al. (2012) also measured PFAS 
in the children at age 5  years. Among the six 
studies, outcomes were measured in children at 
time points ranging from birth to age 12 years.

Miura et al. (2018) reported results only for 
PFOA and PFOS, whereas the other five studies 
also reported on other PFAS.

In some studies, information was collected 
on other exposures, including smoking, diet, and 
other environmental contaminants. Liu et al. 
(2022b) measured serum cotinine as a biomarker 
for maternal tobacco smoking. Grandjean 
et al. (2012), Manzano-Salgado et al. (2019), 
and Dalsager et al. (2021) collected information 
on smoking during pregnancy, and Goudarzi 
et al. (2017) collected information on parental 
smoking and environmental tobacco smoke 
when the children were aged 4 years. Manzano-
Salgado et al. (2019) also collected information 
on maternal diet, including fish consumption, 
with a questionnaire. Miura et al. (2018) did not 
provide information on exposure to any other 
agents. Five of the studies did not obtain biomon-
itoring data for contaminants other than PFAS, 
whereas Grandjean et al. (2012) measured PCBs 
in the serum samples; and none of the studies 
evaluated or measured exposure to agents other 
than those mentioned above.

(iii)	 Longitudinal and repeated-measures 
studies

Exposure assessment methods were 
reviewed for three studies with a longitudinal 
or repeated measures design (Kim et al., 2016,  
2020; Blake et al., 2018). In all three studies,  
LC-MS/MS was used to analyse serum levels 

of PFAS. Kim et al. (2020) measured serum 
levels of PFOA, PFOS, and 12 other PFAS and 
assessed outcomes in children from the general 
population of the Republic of Korea at the 
same three time points (ages 2, 4, and 6 years). 
Information on maternal smoking during preg-
nancy was collected. Blake et al. (2018) measured 
serum levels of PFOA, PFOS, and six other PFAS 
in a cohort of adults who were living near a river 
in the USA that was contaminated with PFOA 
and who were identified as being at high risk of 
elevated exposure to PFAS, particularly PFOA. 
The study group was a subset of residents near 
a uranium processing site, but this subset was 
unlikely to have uranium exposure above back-
ground. PFAS levels were measured at enrolment 
in the study and at one or two later time points 
for each participant, and outcomes were assessed 
at the same and/or different time point(s) as the 
collection of samples for measurement of serum 
levels of PFAS. In the first serum measurement, 
PFOA and PFOS were detected in all samples. No 
information on smoking or alcohol consumption 
was collected. Kim et al. (2016) measured levels 
of PFOA, PFOS, and 13 other PFAS in the serum 
of older adults (aged > 60 years) from the general 
population of the Republic of Korea who partici-
pated in a clinical trial on the effect of vitamin C 
on the outcomes. Serum levels of PFAS were 
measured at enrolment and at two additional 
time points over a 10-week period. Exposure 
to tobacco smoke (using urinary cotinine as a 
surrogate) and exposure to air pollutants (PM10, 
ozone, and nitrogen oxide) were evaluated.

(iv)	 Study on pathology samples
Exposure assessment was reviewed for a study 

on PFAS levels in glioma and non-glioma brain 
tissue in patients (aged 2–77 years) with glioma, 
in China (Xie et al., 2023). The study included 
paired glioma and non-glioma brain tissue for 18 
patients, as well as glioma or non-glioma brain 
tissue that did not come from the same patients, 
making a total of 137 glioma and 40 non-glioma 
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brain tissue samples. PFOA, PFOS, and 15 other 
PFAS were analysed using LC-MS/MS in these 
brain tissue samples to evaluate the potential 
association between PFAS levels and glioma 
pathological grade, as well as related biomarkers.

The MRL for PFOA and PFOS in brain tissue 
was 0.05  ng/g (wet weight). PFOA and PFOS 
were detected at concentrations above the RL in 
69% and 82%, respectively, of the glioma tissue 
samples, and in 33% and 65%, respectively, of the 
non-glioma tissue samples. The areas of the brain 
that were sampled for the non-glioma tissue 
samples were not provided, and a study by Di 
Nisio et al. (2022) showed that PFAS levels vary 
widely in different parts of the brain. This study 
did not report on brain tissue concentrations of 
contaminants other than PFAS.

(b)	 Critical review of exposure assessment 
in key mechanistic studies in exposed 
humans

(i)	 Cross-sectional studies
Exposure assessment in all the cross-sec-

tional studies was based on biomonitoring data, 
and the studies shared many strengths and limi-
tations. In all of these studies, the analytical 
methods used were state-of-art at the time when 
the studies were conducted, and the LODs or 
LOQs for PFOA and PFOS, when provided, were 
sufficiently low to ensure detection or quantifica-
tion of PFOA and PFOS (when present) in all or 
most samples.

In cross-sectional studies in general, it is not 
possible to determine the temporal relationship 
between exposure and outcome. Relying solely 
on measurements made at a certain point in 
time makes it difficult to comprehensively assess 
the impact of long-term exposure on health. 
For cross-sectional studies in general, a single 
measurement may not accurately reflect long-
term exposure levels, because the concentration 
of chemicals in the human body may fluctuate 
with changes in the environment and lifestyle 

habits over time. However, measured serum 
or plasma concentrations of PFOA and PFOS 
are objective measures that integrate exposure 
from various sources and pathways, including 
contributions from metabolism of precursors to 
PFOA or PFOS (Section 4.1), and measurement 
error in the chemical analysis is low. Because 
PFOA and PFOS have long elimination half-lives 
(several years; see Section 4.1), the concentrations 
measured at a single time point represent past 
exposure over a relatively long period of time (see 
Section  1.4.3). For these reasons, measurement 
of serum or plasma PFOA and PFOS concentra-
tions at the same time as the outcome appraisal is 
considered to be an acceptable method of expo-
sure assessment for the outcomes considered in 
these studies, and this is also true for measure-
ment of PFOA and PFOS in cord blood (Liu et al., 
2018b). In 16 of the 18 cross-sectional studies, it 
was reported that PFOA and PFOS were detected 
at levels above the LOD or LOQ in all or almost 
all samples; Lin et al. (2020c) and Di Nisio et al. 
(2020) did not provide this information. These 
factors limit the potential for non-differential 
exposure misclassification, in general.

All studies except one collected blood samples 
once and assessed the outcome at the same time 
point (or during the same period, Zhang et al., 
2022) as the serum or plasma PFAS levels. In 
the study by Watkins et al. (2014), serum levels 
of PFAS were measured at two time points – 
several years before and at the same time that 
the outcome was assessed – and the analysis was 
based on the mean of the two serum PFAS values.

A potential limitation of cross-sectional 
studies is that exposures to other agents that 
were not measured or evaluated may be corre-
lated with PFOA and PFOS exposure and may 
also have an impact on the outcome (e.g. act as 
confounders or effect-modifiers). As one example, 
exposure to dioxins can result in immune system 
suppression (WHO, 2016). Different outcome(s) 
were evaluated in each study, and substances 
that are potential confounders would probably 
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differ according to the outcome. Thirteen studies 
assessed exposure to tobacco smoke with serum 
cotinine measurements or questionnaires, and 10 
studies assessed exposure to alcohol with ques-
tionnaires. Two studies (Watkins et al., 2014 and 
Lopez-Espinosa et al., 2021) obtained informa-
tion on regular use of anti-inflammatory drugs; 
one study (Cheng et al., 2022) obtained informa-
tion on use of hypolipidaemic drugs; and one 
study (Knox et al., 2011) excluded participants 
who were taking hormonal medications.

Several studies measured exposures to 
contaminants other than PFAS. Abraham 
et al. (2020) measured several other POPs and 
heavy metals in plasma, and Grandjean et al. 
(2012) measured PCBs; in both studies, these 
other contaminants were evaluated as poten-
tial confounders of associations with PFAS. 
Additionally, Clarity et al. (2021) measured 
10 flame retardants or their metabolites in the 
urine. However, exposures to other agents that 
may have an impact on the outcomes were not 
evaluated in the cross-sectional studies. This 
consideration may be particularly applicable in 
the study by Clarity et al. (2021) on firefighters 
and office workers. In this study, associations 
between the outcome and PFOA and PFOS were 
stronger in firefighters, who are exposed to many 
other contaminants in addition to PFAS (see 
Table S1.23, Annex  1, Supplementary material 
for Section 1, Exposure Characterization, online 
only, available from: https://publications.iarc.
who.int/636) compared with office workers.

In one of the studies, Abraham et al. (2020) 
evaluated potential associations between serum 
levels of PFAS and antibody response to vaccina-
tion in children aged 1 year, including breast-fed 
and formula-fed children. In this study, samples 
were collected between 1997 and 1999, which 
corresponds with the period of highest PFOA 
and PFOS levels in the general population (see 
Section 1.4.3).

(ii)	 Prospective birth cohort studies
In the six prospective birth cohort studies, 

maternal serum or plasma PFAS level measured 
during pregnancy was used as an indicator of 
prenatal PFAS exposure for the children, in whom 
the outcomes were assessed at birth and/or at 
later time points. In one study (Grandjean et al., 
2012), PFAS levels were also assessed in the chil-
dren at age 5 years. The analytical methods used 
were state-of-art, and the LODs or LOQs for 
PFOA and PFOS, when provided, were suffi-
ciently low to ensure detection or quantifica-
tion of PFOA and PFOS in all or most samples. 
Because PFOA and PFOS have long elimination 
half-lives (several years; see Section  4.1), the 
concentrations measured in serum or plasma 
represent maternal exposure over a relatively 
long period of time.

Blood serum or plasma concentrations are 
an objective measure of exposure; the concentra-
tions represent the combined exposure through 
all exposure pathways over a period of time and 
include contributions from the metabolism of 
precursors to PFOA or PFOS (see Section 1.4(d) 
or Section 4.1); and the measurement error 
in the chemical analyses is low. These factors 
limit the potential for non-differential expo-
sure misclassification, in general. Five of the six 
studies (Goudarzi et al., 2017; Miura et al., 2018; 
Manzano-Salgado et al., 2019; Dalsager et al., 
2021; Liu et al., 2022b) reported low LODs or 
LOQs for PFOA and PFOS, and the sixth study 
(Grandjean et al., 2012) did not provide informa-
tion on the values of the LODs or LOQs. [The 
Working Group noted that even though not 
explicitly reported, data reported on tertiles of 
measured concentrations suggested that detec-
tion frequencies for PFOA and PFOS were high.] 
In the study by Manzano-Salgado et al. (2019), 
PFOA and PFOS were detected at concentra-
tions above the LOD or LOQ in all or almost all 
samples, whereas Grandjean et al. (2012), Miura 

https://publications.iarc.who.int/636
https://publications.iarc.who.int/636
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et al. (2018), and Liu et al. (2022b) did not provide 
this information.

Factors such as plasma volume expansion and 
changes in glomerular filtration rate that occur 
during pregnancy may result in decreased PFAS 
concentrations in serum or plasma, and this effect 
may be greater when PFAS is measured later in 
pregnancy (reviewed in US  EPA SAB, 2022). 
Maternal PFAS concentration was measured in 
the first trimester of pregnancy in the studies by 
Manzano-Salgado et al. (2019) and Dalsager et al. 
(2021), in the second or third trimester of preg-
nancy by Miura et al. (2018), in the first, second, 
or third trimester by Liu et al. (2022b), and in 
the third trimester by Grandjean et al. (2012) 
and Goudarzi et al. (2017). [The Working Group 
noted that although serum PFAS concentrations 
may decrease during pregnancy, this is unlikely 
to result in substantial exposure misclassification 
in studies in which blood PFAS concentrations 
are measured at the same time point in preg-
nancy in all participants. There is a higher risk 
of exposure misclassification in studies when 
serum PFAS concentrations are not measured 
during the same time period (e.g. trimester) in 
all participants.]

In two of the studies (Miura et al., 2018; 
Liu et al., 2022b), exposure and outcome were 
assessed in the same cord blood samples at birth, 
limiting the potential for non-differential expo-
sure misclassification related to PFAS exposures 
other than from maternal fetal transfer. However, 
potential associations between the outcome and 
maternal PFAS concentrations were evaluated 
by Manzano-Salgado et al. (2019) at ages 1.5, 4, 
and 7  years, and by Dalsager et al. (2021) and 
Goudarzi et al. (2017) at up to age 4 years. The 
potential association between the outcome and 
maternal PFAS concentrations was evaluated by 
Liu et al. (2022b) at age 7 or 12 years as well as 
at birth, and by Grandjean et al. (2012) at ages 
5 and 7 years. However, the potential impact of 
PFAS exposures that occurred postnatally was 
not considered, except by Grandjean et al. (2012), 

who also assessed the association between serum 
PFAS concentration at age 5  years with the 
outcome at age 7  years. [The Working Group 
noted that prenatal exposures are an impor-
tant time window of exposure for epigenetic 
changes.] Health outcomes assessed in these 
children may be associated with postnatal PFAS 
exposure instead of or in addition to prenatal 
exposure. Breastfeeding has an impact on post-
natal exposure, with the magnitude of the impact 
being dependent on breastfeeding duration, as 
well as exposure through drinking-water, diet, 
consumer products, and other sources. Although 
there may be some relationship between expo-
sure to the mother (and associated prenatal 
exposure) and postnatal exposure (e.g. if the 
mother and child both drink the same contam-
inated drinking-water), maternal/prenatal and 
postnatal exposure are not necessarily strongly 
correlated. For example, Grandjean et al. (2012) 
reported weak correlations (Pearson coefficients 
of 0.19 for PFOA and 0.27 for PFOS) for maternal 
PFAS concentrations at week 32 of pregnancy and 
postnatal PFAS concentrations at age 5 years.

In these studies, exposures to other agents 
that were not measured in the mothers or chil-
dren (see Section 1.6.2(a) above) may be corre-
lated with PFAS exposure and may also have 
an impact on the outcome as confounders or 
effect-modifiers.

(iii)	 Longitudinal and repeated-measures 
studies

Longitudinal or repeated measures were used 
in three studies. The strengths of these studies 
include that repeated measurements provide 
information on the variability of biomarkers over 
time. Other strengths include that, in all three 
studies, the analytical methods used were state-
of-the-art, and the LODs or LOQs for PFOA and 
PFOS were sufficiently low to ensure detection 
or quantification of PFOA and PFOS in all or 
almost all samples. Because PFOA and PFOS 
have long elimination half-lives (several years; 
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see Section  4.1), the concentrations measured 
in serum represent exposure over a relatively 
long period of time. Blood serum concentra-
tions are an objective measure of exposure, the 
concentrations represent the combined exposure 
through all exposure pathways over a period of 
time, and the measurement error in the chemical 
analyses is low. These factors limit the potential 
for non-differential exposure misclassification, 
in general.

(iv)	 Study on pathology samples
In this study with a case–control design, 

Xie et al. (2023) measured concentrations of 
PFOA, PFOS, and 17 other PFAS in samples of 
glioma and non-glioma brain tissue. Although 
the analytical method (LC-MS/MS) was state-
of-the-art, the percentage of samples in which 
PFOA and PFOS were detected at levels above the 
RL was 69% and 82%, respectively, of the glioma 
tissue samples, and 33% and 65%, respectively, of 
the non-glioma tissue samples, compared with 
other studies in which PFAS were detected in 
all or almost all samples in serum or plasma, or 
other matrices. [The Working Group noted that 
the low number of samples and low detection 
frequencies limited the informativeness of this 
study.]

In this study, paired glioma and non-glioma 
samples were available from only 18 patients, and 
the remainder of the total of 137 glioma and 40 
non-glioma brain tissue samples did not come 
from the same patients. Additionally, the areas of 
the brain that were sampled for the non-glioma 
tissue samples were not reported. The compar-
isons of PFAS concentrations in glioma versus 
non-glioma tissue samples in this study were 
highly uncertain because, as previously stated, 
the specific part(s) of the brain that were sampled 
and compared were not known, and PFAS levels 
vary widely in different parts of the brain (Di 
Nisio et al., 2022). Also, comparison of PFAS 
levels in tumour and non-tumour brain tissues 
from different individuals is challenging to 

interpret because PFAS exposures vary widely 
among individuals. Finally, it is possible that 
PFAS accumulate more in tumour tissue than 
in non-tumour tissue in the brain, resulting in 
reverse causation.
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