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A3.1 Multiple-bias analysis: 
worked examples

The goal of bias analysis is to esti-
mate the expected effect that would 
have been estimated in the study, had 
that study not been subject to the bias 
of concern. For the purposes of this 
book, estimates of the risk ratio are 
considered, contrasting the cumula-
tive risk of an outcome at two levels 
of exposure. The risk ratio obtained 
in a given study is referred to as the 
apparent risk ratio, RRapp, and the risk 
ratio after performing bias analysis 
is referred to as the adjusted risk 
ratio, RRadj. The true target of RRadj 
is RRunbiased, the risk ratio that would 
have been estimated in the absence 
of any systematic bias, but RRadj is 
used to emphasize the necessary 
simplifying assumptions that feed 
into a bias analysis and the reality 
that the only bias parameters that 

may be available are typically, at 
best, approximations to the true bias 
parameters.

The following worked example 
offers a template for adapting multi-
ple-bias analysis to new scenarios, 
but it also indicates a unique aspect 
of multiple-bias analysis that sets 
it apart from single-bias analyses: 
the approach to serial multiple-bias 
analysis ought to vary according to 
the order in which biases are thought 
to occur for the RRapp under consider-
ation. Smith et al. (2021, p. 627) write, 
“In general, we can think of biases as 
layers that we must peel off sequen-
tially and the order in which we do so is 
the reverse of the order in which they 
occurred in the data.” Fox et al. (2021, 
pp. 416–417) state, “Bias-adjustment 
does not generally reduce to inde-
pendent multiplicative bias factors 
[…], so the order of bias-adjustments 
can affect the ultimate result.”

Two primary approaches to bias 
analyses could be considered: (i) the 
approach of Smith et al. (2021), which 
uses (dependent) bias factors to esti-
mate upper or lower bounds of bias for 
a range of bias parameters, and (ii) an 
approach given in Fox et al. (2021) 
that involves the calculation of pseu-
do-data. In the first approach, a bound 
of the value of RRadj is established 
that is typically a direct answer to the 
question “What is the most extreme 
value of the true risk ratio that is still 
consistent with RRapp under the bias 
parameters?” This approach answers 
the useful question (for hazard identi-
fication) “Can we rule out bias as the 
sole explanation of a non-null effect 
estimate?” However, the approach 
described by Smith et al. (2021) has 
not been studied extensively, so it 
is not known how conservative the 
bound is (e.g. how likely it is that a 
bound will indicate consistency with 
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the null hypothesis). Furthermore, this 
bounding approach does not easily 
accommodate scenarios in which 
biases may offset each other. The 
second approach establishes a value 
for RRadj that is derived by stacking the 
approaches used in other chapters of 
this book for individual biases. Rather 
than a bound, the second approach 
provides a single best estimate under 
a given set of bias parameters. This 
approach can be extended in a proba-
bilistic bias analysis to accommodate 
uncertainty in the bias parameters.

A3.1.1 Worked example with 
a single study on opium 
consumption and bladder 
cancer

The primary examples are based on 
a study on opium consumption and 
bladder cancer (Aliramaji et al., 2015). 
Fig.  A3.1 expresses three potential 
biases that might be considered. 
Specifically, these are related to 
issues of exposure misclassification, 
unmeasured confounding, and selec-
tion bias, the last of which arises from 
the method of selecting the study 
population. In the analysis of Aliramaji 
et al. (2015), which is a case–control 
study, odds ratios, rather than risk 
ratios, are reported. The bias correc-
tion methods used here rely variously 
on odds ratios and risk ratios, but note 
that, given a rare disease like bladder 
cancer, these can be considered 
nearly equivalent so that methods to 
adjust a risk ratio can be used with an 
odds ratio.

Aliramaji et al. (2015) do not report 
measures of association, but the 
apparent odds ratio is calculable as 
the crude odds ratio (Table  A3.1). 
Note that the crude odds ratio of 
2.72 is different from the odds 
ratio given in Table  6.4, which was 

calculated as the crude odds ratio 
among tobacco non-smokers. The 
odds of having bladder cancer 
(case odds) are 2.15 among those 
who reported opium use and 0.79 
among those who did not, leading 
to an apparent odds ratio of 2.72. 
As noted, for this odds ratio there 
is a concern over unmeasured con- 
founding (because an adjusted esti- 
mate of association for key con- 
founders of age and smoking was not 
reported). Selection bias concerns 
arise because the control participants 
were selected from among hospital-
ized patients who were being treated 
surgically for gall bladder stones; 
in addition, as noted in Fig.  A3.2, 
selection bias may arise because 
there was frequency matching on 

sex (Mansournia et al., 2018). Opium 
exposure misclassification concerns 
arise because these were identified 
in prior validation studies on self-re-
ported opium consumption. This bias 
analysis is focused on the scenario in 
Fig. A3.2, in which selection bias due 
to matching is of greater concern than 
Berkson bias (which was discussed in 
Chapter 5), because of the recruitment 
of hospitalized control participants.

A3.1.2 Order of bias 
corrections

This example, drawn from Aliramaji 
et al. (2015), is an interesting case stu- 
dy in multiple-bias analysis because 
it demonstrates issues of measured 

Fig.  A3.1. Simplified directed acyclic graph (DAG) showing potential areas 
where bias correction may be used in an analysis of a study on opium 
consumption and bladder cancer (Aliramaji et al., 2015). This DAG illustrates 
three biases: (i)  differential exposure measurement error: measured 
exposure (A*) is a mismeasured proxy of true exposure (A), in which 
measurement error depends on the outcome (Y); (ii)  selection bias: the 
recruitment of hospitalized control participants raises concerns that selection 
in the study may be affected by opium use, because opium use can cause 
other hospitalizable outcomes; and (iii)  confounding by age and smoking  
(C1, C2). SES, socioeconomic status. 

Smoking
(measured C2)

SES
(unmeasured)

Age
(measured C1)

Opium
consumption

(any, prior 10 years, A)

Bladder
cancer (Y) S

Reported
consumption (A*)



216

confounding, effect measure modi-
fication, and selection bias aris- 
ing from matching on confounders. 
The order of bias correction is guided 
by the order in which biases may 
appear in the data. In this study, 
frequency matching of the study 
design on confounding factors (age 
and sex) can introduce selection bias 
in analyses that are unadjusted for 

these factors. Thus, selection bias 
occurs because of an open path from 
the outcome to the (correctly classi-
fied) exposure through the selection 
node and the frequency-matched 
factors. Adjusting for this bias 
requires that pathway to be closed; 
this can be done by adjusting for the 
matched factors. Selection bias can 
thus be considered as the first bias 

to address, given that true exposure 
need not be measured. Had expo-
sure directly influenced selection (as 
might occur if opium were a cause of 
a condition that resulted in a person’s 
being selected as a control partici-
pant), misclassification bias would 
necessarily first have been consid-
ered for adjustment. Once study 
selection is adjusted for, exposure 
misclassification can be adjusted 
for. Finally, consideration is given to 
confounding, which is considered to 
be a function of reality, rather than 
study design or measurement issues. 
This bias would therefore be consid-
ered to happen first (in temporal 
order), and correction for it would 
come last. Smith et al. (2021) and Fox 
et al. (2021) both consider alternative 
orderings in multiple-bias analysis.

A notable issue when selecting 
the order of bias correction for this 
example is in regard to the avail-
able data. Fox et al. (2021, p.  417) 
perfectly encapsulate this scenario: 
“Classification parameters might 
be measured in a population-based 
setting (i.e. negligible selection bias), 
but be applied to a data set where 
selection bias is a concern. In this 
setting, the analyst should bias-ad-
just for selection bias before bias-ad-
justing for misclassification, even 
if the selection bias preceded the 
misclassification in the data genera-
tion process.” Thus, even if true expo-
sure plays a role in selection bias, the 
role of opium in inducing selection 
bias is less pertinent to the biases at 
issue than the role of misclassifica-
tion in effect estimation. Thus, there is 
an additional reason in this example 
to apply misclassification parameters 
in data that are already adjusted for 
selection bias, rather than the other 
way around.

Table A3.1. Raw exposure and case status data, and calculated crude odds 
ratio

Case 
participants

Control 
participants

Case  
odds

Opium use Yes 58 27 2.15
No 117 148 0.79

Crude/apparent odds ratio 2.72

Source: Aliramaji et al. (2015).

Fig.  A3.2. Simplified directed acyclic graph (DAG) showing alternative 
specification in which bias correction may be used in an analysis of a study 
on opium consumption and bladder cancer (Aliramaji et al., 2015). This 
DAG illustrates three biases: (i)  differential exposure measurement error: 
measured exposure (A*) is a mismeasured proxy of true exposure (A), in which 
measurement error depends on the outcome (Y); (ii) selection bias: hospitalized 
control participants were being treated surgically for gall bladder stones, for 
which there is no known association with bladder cancer; however, control 
participants were matched with case participants on sex; this latter factor was 
left uncontrolled in the analysis, leading to selection bias; (iii) confounding by 
age and smoking (C1, C2). SES, socioeconomic status.
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A3.2 Overview of multiple-
bias analysis of the data of 
Aliramaji et al. (2015) using 
pseudo-data and bias-factor 
approaches

The pseudo-data approach (using  
bias parameters to calculate bias-ad-
justed data, which can then be 
analysed as though they were real 
data) is used for plausible (under 
reasonable assumptions) ranges of 
bias arising from exposure misclassi-
fication and selection bias. The pseu-
do-data approach begins with an 
apparent odds ratio that is unadjusted 
for confounders. Consideration is also 
given to measured confounding, sim- 
ilar to the selection bias adjustment 
example of Chapter 4. The bias-factor 
approach, as described by Smith et al. 
(2021), is used to place a lower bound 
on the multiple-bias-adjusted odds 
ratio, given a set of bias parameters. 
The bias-factor approach begins with 
an apparent odds ratio that is adjust- 
ed for confounders. The parameters 
needed in the bias-factor approach 
are summarized in Table A3.2. Both 
approaches are demonstrated in the R 
code provided in Annex 2 (online only; 
available from: https://publications.
iarc.who.int/634#supmat).

A3.2.1 The apparent odds ratio 
as the basis for subsequent 
calculations

The crude odds ratio of Table  A3.1 
can be used as the apparent odds 
ratio for subsequent analysis in the 
pseudo-data approach. Alternatively, 
Aliramaji et al. (2015) give enough 
information to infer smoking-stratified 
results (in the results, sample sizes 
were reported for case and control 
participants who had both consumed 
opium and smoked cigarettes for 

longer than 1  year); these figures 
are given in Table  A3.3 and yield a 
smoking-adjusted odds ratio of 1.25 
from unconditional logistic regres-
sion and stratum-specific odds ratios 
of 4.1 among non-smokers and 0.5 
among smokers. The stratum-spe-
cific results indicate substantial odds 
ratio modification; this is a key consid-
eration, as discussed for unmeasured 
confounding in Section 3.3. This ad- 
justed odds ratio can, nonetheless, be 
selected as the apparent odds ratio 
for the bias-factor approach because 
it does not rely on tabulated data.

A3.2.2 Selection bias 
adjustment using bias factors

As shown in Table A3.2, adjustment 
for selection bias using the bias-factor 
approach involves consideration of a 
factor, US, that influences selection 
into the study and is also condition-
ally associated with the outcome. 
In this analysis, US is considered as 
sex only, given that opium use varies 
strongly with sex, and sex was used 
as a matching factor for the study 
but was not subsequently adjusted 
for. Matching without adjustment 
for sex created a backdoor biasing 
pathway, because of conditioning 
on the collider S (opium consump-
tion ← sex → S ← bladder cancer). 
For a causal interpretation of the 
selection-bias adjustment, adjust-
ment for US should be sufficient to 
render the study outcome and study 
selection (the node S in Figs.  A3.1 
and A3.2) independent, given other 
factors that are included in the 
analysis. Crucially, the selection bias 
under consideration here affects the 
meaning of S. By definition, S  =  1 
is the value of S for members in the 
study population; S  =  0 is given for 
individuals who would have been part 

of the study data, had they not been 
selected out of the study. Generally, 
to adjust for selection bias, one must 
know or assume something about 
those for whom S  =  0. Here, those 
for whom S  =  0 are a (potentially 
hypothetical) group of women who 
were at the hospital used in the study 
for surgical treatment of gall bladder 
stones but were not included in the 
study. To simplify further calculations, 
it is assumed that selection into this 
eligible population is not related to 
sex; thus, a similar sex ratio among 
potential control participants to that in 
the underlying source population (i.e. 
1:1) is expected.

Calculating the bias factor for 
this example involves specifying 
(for binary misclassified exposure 
A*) Pr(US = u  | A* = a, S = a, C = c), 
Pr(US = u  | A* = a, S = 1 − a, C = c) 
(the prevalence parameters), and 
Pr(Y = 1 | A* = a, C = c, US = u) (the 
risk parameters), which are the prev-
alence of the unmeasured factor at 
some level u (i.e. male or female for 
the binary in this example) and the risk 
of the outcome at specified values of 
A*, C, and US.

To inform the prevalence parame-
ters, data were included from a na- 
tional survey of residents of the Is- 
lamic Republic of Iran conducted by 
Moradinazar et al. (2020), who esti-
mated the prevalence of drug use, 
stratified by several demographic var- 
iables, using the survey question 
“Have you used illicit drug more 
than one time during a lifetime?” 
The average prevalence was esti-
mated as 24.1% among men and 
2.2% among women. These survey 
data correspond to the sex-specific 
prevalences, Pr(A* = a | US = u); it is 
assumed that this does not vary mean-
ingfully across levels of covariates C 

https://publications.iarc.who.int/634#supmat
https://publications.iarc.who.int/634#supmat
https://publications.iarc.who.int/634#supmat


218 Table A3.2. Summary of parameters that determine bias factors according to the multiple-bias bounding method of Smith et al. (2021)

Type of biasa Identifier Parameter Definition and notes Investigator-
specified 

values

Calculated 
value

Unmeasured 
confounding

D Pr(Uc = u | A = 1, C = c) Prevalence of Uc = u, among exposed, given observed confounders. ✓ 
E Pr(Uc = u | A = 0, C = c) Prevalence of Uc = u, among unexposed, given observed confounders. ✓
RRAUC maxu(D/E) The maximum factor (over levels of the unmeasured confounder) by 

which exposure is conditionally associated with a given value of the 
unmeasured confounder in an analysis free of selection bias and 
misclassification bias. For binary Uc, this is the maximum prevalence 
ratio contrasting levels of exposure, given measured confounders.

✓

F Pr(Y = 1 | A = a, C = c, Uc = u) The risk of Y, given exposure, observed confounders, and 
unmeasured confounders.

✓

RRUCY maxa[maxu(F)/minu(F)] The maximum value (across levels of exposure) of the ratio of the 
maximum risk (across different levels of Uc) and minimum risk 
(across different levels of Uc). This is the maximum possible risk 
ratio contrasting the outcome risk across levels of Uc and describes 
confounding bias above and beyond measured confounding in an 
analysis free of selection bias and misclassification bias.

✓

BFC g(RRUCY, RRAUC) Multiplicative bias factor, confounding. This is interpreted as the 
confounding-bias risk ratio or the ratio of the risk ratio adjustment for 
Uc to the risk ratio with unmeasured confounding by Uc.

Differential or 
non-differential 
exposure 
misclassification

G Pr(A* = 1 | Y = 1, A = 0, S = 1, C = c) False-positive probability among case participants (1 − specificity) ✓
H Pr(A* = 1 | Y = 0, A = 0, S = 1, C = c) False-positive probability among non-case participants (1 − specificity) ✓
I Pr(A* = 1 | Y = 1, A = 1, S = 1, C = c) True-positive probability among case participants (sensitivity) ✓
J Pr(A* = 1 | Y = 0, A = 1, S = 1, C = c) True-positive probability among non-case participants (sensitivity) ✓
FPOR (G/H)/[(1 − G)/(1 − H)] False-positive odds ratio ✓
SEOR (I/J)/[(1 − I)/(1 − J)] Sensitivity odds ratio ✓
CCR (I/J)/[(1 − G)/(1 − H)] Correct classification ratio ✓
ICR (G/H)/[(1 − I)/(1 − J)] Incorrect classification ratio ✓
ORA*Y max(FPOR, SEOR, CCR, ICR) Maximum selection odds ratio ✓
BFM ORA*Y Multiplicative bias factor, differential exposure misclassification. Note 

that this is a bias odds ratio and applies when the effect estimate is 
an odds ratio. In rare disease settings, this approximates the risk 
ratio and can be used for risk ratios.

✓
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Type of biasa Identifier Parameter Definition and notes Investigator-
specified 

values

Calculated 
value

Selection bias K Pr(Y = 1 | A = a, C = c, US = u) The risk of Y, given exposure, observed confounders, and an 
unmeasured source of selection bias

✓

RRUSY(a) max(K)/min(K) The ratio (at a given level of exposure, and given confounders) of 
the maximum risk of the outcome (across levels of the unmeasured 
source of selection bias) and the minimum risk of the outcome 
(across levels of the unmeasured source of selection bias). This is 
the maximum possible risk ratio contrasting levels of the variable 
that is a source of selection bias. If US is binary, this is simply the 
conditional risk ratio contrasting US = 1 against US = 0, or its inverse, 
whichever is larger.

✓

L Pr(US = u | A = a, S = a, C = c) Prevalence of US = u at a given level of exposure, among those 
who were selected into the study (if exposed) or among those not 
selected into the study (if unexposed), given observed confounders

✓

M Pr(US = u | A = a, S = 1 − a, C = c) Prevalence of US = u at a given level of exposure, among those who 
were selected into the study (if considering the unexposed) or among 
those not selected into the study (if considering the exposed), given 
observed confounders

✓

RRSUS(a) max(L/M) The maximum ratio by which selection into the study increases the 
prevalence of some value of US, within strata of exposure, given 
confounders. For binary US, this is the prevalence ratio for US, given 
exposure and confounders, comparing those selected into the study 
versus those who are not selected, or its inverse, whichever is larger.

✓

BFS g[RRUSY(a = 1), RRSUS(a = 1)] 
× g[RRUSY(a = 0), RRSUS(a = 0)]

Multiplicative bias factor, selection bias. This is interpreted as 
the selection-bias risk ratio or the ratio of the risk ratio under no 
selection bias to the risk ratio with selection bias.

✓

A, exposure of interest; C, measured confounders; OR, odds ratio; Pr, prevalence; RR, risk ratio; S, selection into study; UC, unmeasured factor that introduces confounding bias (unmeasured 
confounder); US, unmeasured factor that introduces selection bias; Y, outcome of interest.
a The biases included in this particular bias analysis include (binary) differential exposure misclassification among the study population, selection bias in which bias can be envisioned as 
selection on a factor that results in the expected effect in the study population differing from the expected effect in the target source population, and unmeasured confounding that results 
from a single confounder. Note that this table presents one possible set of hypothesized biases; Smith et al. (2021) discuss a broader set of potential bias combinations for which multiple-bias 
bounding can be used. The function g(a, b) = (a × b)/(a + b − 1) is given by Smith et al. (2021).
Source: Smith et al. (2021).

Table A3.2. Summary of parameters that determine bias factors according to the multiple-bias bounding method of Smith et al. (2021) (continued)
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(this may not hold well for tobacco 
smoking, which was strongly related 
with drug use in the survey, but 
there are insufficient data to proceed 
using a smoking-specific correction, 
given the limitations of performing 
bias corrections on published data). 
Under the assumption that exposure 
itself does not affect selection, given 
sex, prevalences from the survey can 
be expanded to Pr(A*  =  a  |  US  =  u) 
= Pr(A* = a  | US = u, S = s) and the 
sex-specific survey data can be used 
in further calculations. Some selec-
tion-bias adjustment parameters will 
also be based on study data, but 
note that the effect estimate in the 
study (adjusted odds ratio) is used to 
approximate the adjusted risk ratio 
from a cohort analysis, so selection 
parameters that rely on the study 
data should be estimated from only 
the data for control participants. In 
an unmatched case–control study, 
the control participants should repre-
sent the distribution of exposures 
in the source population. In this 
matched setting, the control partic-
ipants represent a stratified sample 
from the source population, where 
the sampling proportions are derived 

from the distribution of sex among the 
case participants.

The sex-specific prevalences of 
drug use from the survey can then be 
transformed to yield prevalences of 
each sex in each category of expo-
sure, using Bayes’ theorem. This is 
given as:

Pr(US = u | A* = a, S = s) 

= Pr(A* = a | US = u, S = s)  

× Pr(US = u | S = s)/Pr(A* = a | S = s) (A3.1)

The multiplicative factor Pr(US = u | 
S = s)/Pr(A* = a | S = s) can be esti-
mated from study data, demographic 
data, and the population distribu-
tion of sex (here, a 1:1 female:male 
ratio is assumed). The sex-specific 
proportions in the control data are 
Pr(US  =  u  |  S  =  1), and are given 
as 87.4% for men and 12.6% for 
women. The distribution of exposure 
in the control participants is given as 
Pr(A*  =  a  |  S  =  1) (15.4% exposed, 
84.6% unexposed). The sex-standard
ized survey estimate of drug use prev-
alence (24.1%  ×  0.5  +  2.2%  ×  0.5 
=  13.2%) is used as the assumed 
exposure prevalence in the target

control population, and can be given 
as

Pr(A* = a) = Pr(S = 1)Pr(A* = a | S = 1) 
+ Pr(S = 0) Pr(A* = a | S = 0)	 (A3.2)

This enables solving for Pr(A* = a | 
S  =  0), noting that the selection 
probabilities are derived by dividing 
the number of control participants 
by the expected number of con- 
trol participants if sex had not 
been used as a matching factor, 
(153  men  +  22  women)/(153  +  153) 
= 57%, and Pr(A* = 1 | S = 0) = 10.1%, 
which supports the idea that the 
unselected population will have less 
exposure than the selected control 
participants (prevalence  =  15.4%), 
because the unselected population 
will include women who were omitted 
from the study as a consequence of 
matched sampling. However, this 
percentage is substantially higher 
than the female-specific prevalence 
of drug use in the survey data of 2.2%, 
which is an alternative value that could 
be used in a sensitivity analysis.

Finally, note that Pr(A* = a | US = u, 
S = s) = Pr(A* = a  | US = u), through 
the assumptions of Fig.  A3.2, be- 
cause selection and exposure are in- 
dependent, given sex. Thus, exposure 

Table A3.3. Tobacco smoking-stratified estimates of the odds ratio, and summary adjusted odds ratio (via logistic 
regression) inferred from Table A3.1 and results reported from Aliramaji et al. (2015)a

Bladder cancer

Smokers Non-smokers

Case 
participants

Control 
participants

Case 
participants

Control 
participants

Opium use Yes 44 20 14 7
No 50 11 67 137
Total 94 31 81 144

Stratified odds ratio (smokers) 0.48
Stratified odds ratio (non-smokers) 4.09
Summary odds ratio 1.25

a Numbers of case and control participants with exposure to both smoking and opium use, as well as marginal totals of smokers and non-smokers by 
case status, were given in the paper; this information could be used to complete the table.
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prevalence by sex can be taken 
directly from the survey data esti-
mates of 24.1% among men and 
2.2% among women. Calculations of 
Pr(US  =  u  |  A*  =  a, S  =  s) can then 
be made by application of Bayes’ 
theorem, as before.

The risk parameters are used in 
the bias-factor method by taking the 
maximum ratio (at each level of expo-
sure) by which US could increase the 
risk. Consequently, the exact risks 
are not crucial, but the risk ratio 
comparing bladder cancer across 
levels of US is crucial. For non-binary 
US, the risk ratio would be calculated 
for the lowest risk value of US against 
the highest risk value of US. Here, it is 
possible simply to fill in an arbitrary 
(valid) value for the risks for unex-
posed (or exposed) men and use the 
risk ratio for being female compared 
with that of being male among the 
unexposed (or exposed) partici-
pants to calculate the second set of 
risks. Ideally, these values could be 
informed through regression coeffi-
cients for sex from a study in which 
sex was included in a model for the 
risk of bladder cancer, given opium 
use. This would be different from a 
crude risk ratio contrasting men and 
women, because opium use is a 
potential mediator between sex and 
bladder cancer, and the parameter 
needed in this case is the risk ratio for 
sex with adjustment for opium use as 
a mediator. Such coefficients may not 
be available in the literature because 
they may not be a central feature of 
interest in a regression analysis. For 
example, Hadji et al. (2022) estimate 
an opium-adjusted odds ratio for sex 
but do not report the coefficient for 
sex in the model. Consequently, the 
crude odds ratio estimate for sex, 
0.33, given by Hadji et al. (2022) is 

used to approximate the opium-con-
ditional odds ratio. Negligible effect 
measure modification by sex occurred 
for opium use, suggesting that similar 
risk ratios can be used for men and 
women. After filling in arbitrary values 
for exposed and unexposed men of 
0.08 and 0.02, respectively, and 
letting the odds ratio estimate for 
sex (0.33) stand in for the estimated 
risk ratio, risk estimates for exposed 
and unexposed women of 0.026 and 
0.0066, respectively, are used. Note 
that the method is not sensitive to the 
absolute values of risk or to the ratio 
of risks between exposed groups.

Finally, given that the prevalence 
and risk parameters have been fully 
enumerated, the bias-factor calcula-
tion leads to a selection-bias factor 
of BFS  =  1.40; after adjustment for 
selection bias, the lower bound of the 
adjusted risk ratio is 1.24/1.40 = 0.89. 
At this point one might stop, if the 
goal is to determine whether the 
plausible lower bound moves across 
the null from the study estimates, 
because further adjustments will only 
decrease this bound. One might also 
refine selection-bias adjustment by 
calculating an additional value of BFS 
for the impact of selection bias by 
recruiting hospitalized control partic-
ipants or matching on age; the lower 
bound of 0.89 would be divided by 
this additional factor to obtain a new 
lower bound. This use of the survey 
data from Moradinazar et al. (2020) 
demonstrates that data from outside 
sources can inform bias analysis in 
useful ways, even if the bias parame-
ters that are needed for analysis are 
not estimated directly in the study, 
provided that additional calculations 
can be performed, as was true here.

A3.2.3 Selection bias 
adjustment using pseudo-data

The selection bias induced by 
matching on sex and age means that 
in a study sample without this selec-
tion a different distribution of these two 
factors would be observed. A simple 
(and long-used) approach to estimate 
the effect of selection bias for an odds 
ratio (which is how the impact of opium 
use on bladder cancer was estimated 
by Aliramaji et al., 2015) is to multiply 
the odds ratio by the selection odds, 
which are calculated using the proba-
bility of selection into the study for the 
four combinations of case or control 
status and exposed or unexposed 
status. Fox et al. (2021) show that this 
is equivalent to inverse odds-of-se-
lection weighting in this simple case 
of four selection parameters. Inverse 
odds-of-selection weighting could 
be extended further, to account for 
selection bias that occurs specifically 
as a result of matching on sex and 
age, but such an approach would 
rely on having much more refined 
estimates than are available in the 
study of Aliramaji et al. (2015). Thus, 
the simpler approach to weighting is 
chosen here; this is equivalent to the 
selection-odds approach.

The selection probabilities for 
the combination of case or control 
status and exposed or unexposed 
status can be inferred partly by the 
study design. Because the concern 
for selection bias is matching of the 
control participants, there is no issue 
(in this situation) with selection of the 
case participants in terms of bias. It 
would be expected that the propor-
tion of exposed case participants in 
the study is equal to the proportion 
of exposed case participants in the 
source population, such that the se- 
lection probability of case participants 
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can be considered to be 1.0, i.e. there 
are no additional case participants 
who would have been observed in the 
population if matching had not been 
used (however, this would not be the 
situation if exact matching led to the 
exclusion of some unmatched case 
participants).

The selection proportions for the 
exposed and unexposed control 
participants can then be informed 
by the same survey data as before, 
given the rarity of bladder cancer in 
the population. These probabilities 
are given by Pr(S = 1 | Y = 0, A* = 1) 
and Pr(S = 1  | Y = 0, A* = 0), which 
are not directly given by the data or in 
validation data. However, these can 
be expanded to include sex by noting 
that

Pr(S = 1 | Y = 0, A* = a) 
= ΣuPr(S = 1 | Y = 0, A* = a, US = u)
Pr(US = u | A* = a, Y = 0) 	 (A3.3)

which are the sex-specific (and expo-
sure-specific) probabilities of selec- 
tion and the population exposure-spe-
cific probabilities of reporting sex as 
male or female.

First, it is necessary to find 
Pr(S  =  1  |  Y  =  0, A*  =  a, US  =  u). 
Because selection into the study did 
not depend on exposure, conditional 
on sex, Pr(S = 1 | Y = 0, A* = a, US = u) 

is equal to Pr(S = 1 | Y = 0, US = u). 
Next, using Bayes’ theorem:

Pr(S = 1 | Y = 0, US = u) 
= Pr(US = u | S = 1, Y = 0)Pr(S = 1 | Y = 0)/ 
   Pr(US = u | Y = 0) 	 (A3.4)

The value of Pr(US  =  u  |  S  =  1, 
Y = 0) is given by the study data as 
87.4% for men and 12.6% for women. 
Pr(US = u | Y = 0) is assumed to be 50% 
(1:1 female:male ratio in the source 
population, and a rare outcome, 
such that the ratio in the non-case 
participants will be very similar). 
Pr(S = 1 | Y = 0) is the overall selection 
proportion for non-case participants, 
for whom direct data are not available 
but can be derived using the idea that 
a control group with no selection bias 
ought to have a 1:1 sex ratio, and 
would thus be expected to include 
153 men and 153 women. This means 
that the probability of selection is 
(153 + 22)/(153 + 153) = 57.1%. As an 
example calculation for (exposed and 
unexposed) women, Pr(S = 1 | Y = 0, 
A* = a, US = female) is given as 0.126 
× 0.571/0.5 = 0.143; for men, this is 
0.874 × 0.571/0.5 = 0.998.

To complete the selection prob-
abilities, it is also necessary to find 
Pr(US = u | A* = a, Y = 0). Unfortunately, 
these probabilities are not given in 
the study data, but noting that for a 
rare disease Pr(US = u | A* = a, Y = 0) 

≈ Pr(US = u | A* = a), this quantity can 
be estimated from survey data and 
(again) Bayes’ theorem. First,

Pr(US = u | A* = a) = Pr(A* = a | US = u) 
Pr(US = u)/Pr(A* = a)	 (A3.5)

As before, exposure prevalence 
by sex can be taken directly from 
the survey data estimates of 
Pr(A*  =  a  |  US  =  male) =  24.1% and 
Pr(A* = a | US = female) = 2.2%. A 1:1 
sex ratio yields Pr(US = u) = 50%, and 
(for example) the marginal probability 
of misclassified exposure is given by 
the sex-standardized probability of 
exposure:

ΣuPr(US = u)Pr(A* = 1 | US = male) =  
0.5 × 0.022 + 0.5 × 0.241 = 0.1315 	(A3.6)

The full calculation yields selec-
tion probabilities of 0.93 for exposed 
control participants and 0.52 for unex-
posed control participants, which 
yields a selection-bias-adjusted rela-
tive risk of 4.9 (Table A3.4).

Although the selection-bias-ad-
justed relative risk of 4.9 obtained 
using the pseudo-data method and 
the lower bound relative risk of 0.89 
obtained using the bias-factor method 
seem to give conflicting results, there 
are important caveats to note. First, 
the bias-factor method is focused on 
extreme circumstances, such that 
even if, in expectation, a bias might be 
downwards, the bias-factor method 

Table A3.4. Selection-bias-adjusted pseudo-data, selection probabilities, and calculated selection-bias-adjusted risk 
ratio

Bladder cancer Case odds/OR

Case participants Control participants

Opium use Yes 58 29.08 1.99
No 117 285.76 0.41

Crude/apparent odds ratio 4.87
Selection probabilities Exposed 1 0.928

Unexposed 1 0.518

OR, odds ratio.
Source: Aliramaji et al. (2015).
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focuses on extrema of the bias, which 
could be in opposing directions from 
the expectation. Second, the process 
of adjusting for selection bias from 
matching using the pseudo-data 
method reintroduced confounding 
by sex (which was presumably what 
matching was intended to solve). 
Because being male is strongly posi- 
tively associated with both opium 
use and bladder cancer, this induced 
confounding is expected to be 
upwards, such that a confounding-bi-
as-adjusted relative risk would be 
expected to be less than 4.87. The 
topic of confounding by sex will be 
revisited in Section A3.2.6.

A3.2.4 Exposure misclassifica- 
tion bias adjustment using 
bias factors

Exposure misclassification is a spe- 
cial concern in studies of illicit drug  
use when self-report is used to deter- 
mine drug use and in any study in 
which recall periods are long for 
defining exposure. In the study of 
Aliramaji et al. (2015), a hospital-based 
study in the Islamic Republic of Iran, 
patients were considered exposed 
if opium consumption was noted in 
their files from the pathology depart-
ment, hospital archives, and phone 
calls (although scant details are 
given, each of these records presum-
ably originates from self-report or 
physician report, rather than routine 
biological test results). Exposure was 
defined as reported duration of use 
greater than or equal to 1 year.

Correction for exposure misclassi-
fication via bias factors requires values 
of specific sensitivity and specificity 
for case and control participants. 
Ideally, a validation study to adjust 
the estimates of Aliramaji et al. (2015) 
would be able to provide estimates of 

each of these parameters. The most 
relevant study that could be identified 
was that of Rashidian et al. (2017), 
who conducted an assay-based vali-
dation study of self-reported opioid 
use (primarily raw opium) among 
patients in a hospital in the Islamic 
Republic of Iran (also the study popu-
lation setting and country of origin for 
the analysis of Aliramaji et al., 2015). 
Self-reported regular use of opioids 
for 6  months or longer in the user’s 
lifetime was selected as the target 
variable, which was validated by two 
measures: self-reported use in the 
previous 72 hours and, among those 
who did not self-report use in the 
previous 72 hours, immunoassay by 
thin-layer chromatography from urine 
samples taken at interview. Sensitivity 
and specificity were estimated as 
0.775 and 0.921, respectively, among 
the hospital patients.

This validation study is not ideal; 
recent exposure could genuinely 
disagree with longer-term use without 
being a false-positive or a false-neg-
ative, and no case-specific estimates 
were given. However, in the validation 
study, investigators also noted that 
sensitivity was higher among hospital 
patients than among healthy control 
participants drawn from other visi-
tors to the hospital (0.775 vs 0.688), 
suggesting that the similar settings 
of Aliramaji et al. (2015) and the vali-
dation study are a strength (although 
an alternative explanation is that the 
conditions requiring hospitalization 
may have increased recent opioid use 
among regular users). Nonetheless, 
the sensitivity and specificity in this 
study are within the range of previous 
studies of illicit substance use (Har- 
rison et al., 2007).

The values of sensitivity and spec-
ificity were used to calculate a bias 

factor for exposure misclassification, 
which was assumed to be non-differ-
ential, because of the lack of infor-
mation about bladder cancer status 
in the validation study. Notably, the 
bias factor used here is valid when 
the target parameter is an odds ratio 
or in situations in which the target 
parameter estimates an odds ratio 
(e.g. the risk ratio estimates the odds 
ratio with a rare outcome), repre-
senting a limitation of the bias-factor 
approach to exposure misclassifica-
tion. Adjustment for outcome misclas-
sification is not subject to a similar 
caveat. A further shortcoming of this 
approach is that some misclassifica-
tion parameter values will be incom-
patible with the data (e.g. may result 
in implausible values for exposure 
prevalence). The misclassification 
bias factor was 1.0, which is a result of 
the observation that non-differential 
misclassification of a binary exposure 
will lead to bias away from the null, so 
that non-differential misclassification 
will not result in a reduction of the 
bound of plausible parameter values 
that are consistent with the data and 
bias parameters. The selection-bias- 
and exposure-misclassification-ad-
justed lower bound relative risk is 
equal to

RRapp/(BFS × BFM)  
= 1.24/(1.40 × 1.0) = 0.89 	 (A3.7)

A3.2.5 Exposure misclassifica- 
tion bias adjustment using 
pseudo-data

Again using the validation data 
from Rashidian et al. (2017), sensi-
tivity and specificity were estimated 
as 0.775 and 0.921, respectively. 
Fox et al. (2021) give a formula 
for creating pseudo-data from a 
2 × 2 table (binary exposure, binary 
outcome), which is used in the R code 
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provided in Annex 2 (online only; 
available from: https://publications.
iarc.who.int/634#supmat) (Fox et al., 
2021). This yielded pseudo-data ad- 
justed for selection bias and expo-
sure misclassification (Table  A3.5), 
which notably resulted in an adjusted 
odds ratio of 28.2 (which, it should be 
noted, is verging on implausible and 
relies on a corrected count of exposed 
control participants of only 6.2).

A3.2.6 Unmeasured 
confounding bias adjustment 
using bias factors

After correcting for selection bias 
by matching on sex, there will be 
residual confounding by sex in the 
study. One approach to this residual 
confounding is to treat sex as an 
unmeasured confounder and conduct 
a bias analysis. Bias analysis for 
unmeasured confounding through 
bias factors is operationally similar to 
that for selection bias, in that param-
eters for the conditional probability of 
the unmeasured confounder and the 
outcome must both be specified. That 
is, for an unmeasured confounder 
Uc with discrete levels, prevalence 
parameters given by Pr(Uc = u | A* = a, 
C = c) are required; these are used to 
quantify the maximal relation between 

the confounder and exposure and risk 
parameters given by Pr(Y = 1 | A* = a, 
C = c, Uc = u), which are used to quan-
tify the maximal relation between the 
confounder and the outcome. This 
approach is quite general, because 
Uc can be binary, categorical, or 
continuous; it is identical for many 
scenarios, and a full distribution of 
the confounder does not have to be 
specified.

As with selection bias, the preva-
lence parameters are used to quantify 
the maximum risk ratio that contrasts 
prevalence values across exposure 
values. For example, if Uc is sex, 
the prevalence ratio contrasts the 
prevalence of being male (or female) 
across levels of exposure, and takes 
the maximum of those two preva-
lence ratios. Here, the only parameter 
of crucial interest (for sex as a binary 
confounder) is

Pr(Uc = male | A* = 1, C = c)/
Pr(Uc = male | A* = 0, C = c) 	 (A3.8)

for which it is assumed that the 
measured covariates C are not crucial 
to the problem (e.g. the confounder–
exposure relation does not change 
substantially after adjusting for C, 
and the necessary parameters can 
be simplified to Pr(Uc = u | A* = a).)

These parameters can be drawn 
from survey data. As in the adjustment 

for selection bias, parameters are 
taken from the study by Moradinazar 
et al. (2020), which is used to present 
one conceptual issue: for selection 
bias, exposure from that study is 
treated as a mismeasured exposure, 
whereas for confounding bias it is 
necessarily treated as a gold standard 
exposure. Regardless, it is unlikely 
that survey data could be identified 
using a better measure of opium use 
than self-report, and an assump-
tion that there is no unmeasured 
confounding can be much stronger 
than the assumptions inherent in bias 
analysis.

To calculate the bias parameters, 
the first calculation is

Pr(Uc = u | A = a) = Pr(A = a | Uc = u)

Pr(Uc = u)/Pr(A = a) 	 (A3.9)

As before, exposure prevalence 
by sex can be taken directly from 
the survey data estimates of 
Pr(A*  =  a  |  US  =  male) =  24.1% and 
Pr(A* = a | US = female) = 2.2%. A 1:1 
sex ratio yields Pr(US = u) = 50%, and 
(for example) the marginal probability 
of misclassified exposure is given by 
the sex-standardized probability of 
exposure:

ΣuPr(US = u)Pr(A* = 1 | US = male)  

= 0.5 × 0.022 + 0.5 × 0.241  

= 0.1315 	 (A3.10)

Table A3.5. Selection-bias- and exposure-misclassification-adjusted pseudo-data, exposure misclassification param- 
eters from Rashidian et al. (2017), and the calculated selection-bias-adjusted risk ratio from Aliramaji et al. (2015)

Bladder cancer Case odds/OR

Case participants Control participants

Opium use Yes 63.49 6.24 10.18
No 111.51 308.61 0.36

Crude/apparent odds ratio 28.18
Misclassification Sensitivity 0.775 0.775

Specificity 0.921 0.921

OR, odds ratio.
Sources: Aliramaji et al. (2015); Rashidian et al. (2017).

https://publications.iarc.who.int/634#supmat
https://publications.iarc.who.int/634#supmat
https://publications.iarc.who.int/634#supmat
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The full calculation yields a preva-
lence of being male of 0.92 among the 
exposed participants and 0.44 among 
the unexposed participants (and can 
be used to calculate the same preva-
lences of being female).

As before, for a binary confound- 
er, the key aspect for the risk param-
eters is the risk ratio comparing the 
risk of the outcome for men versus 
that for women, which was given 
before as 0.33. These bias param-
eters yielded an unmeasured-con-
founding bias factor of 1.53. Thus, 
the selection-bias-, exposure-mis-
classification-, and unmeasured-con-
founding-bias-adjusted lower bound 
relative risk is equal to

RRapp/(BFS × BFM × BFC)  

= 1.25/(1.40 × 1.0 × 1.54) = 0.58 	(A3.11)

Thus, a true odds ratio of 0.58 is a 
lower bound of the true odds ratio that 
is consistent with the smoking-ad-
justed odds ratio of 1.25 presented 
in the study of Aliramaji et al. (2015). 
That is, after adjustment for selection 
bias, exposure misclassification, and 
unmeasured confounding, the study 
results are consistent with odds ratios 
as low as 0.58.

A3.2.7 Unmeasured 
confounding bias adjustment 
using pseudo-data

The bias parameters used for the  
pseudo-data approach also include 
the risk ratio, comparing the risk of 
outcomes for men versus women 
and the prevalence of being male 
(or female), given exposure. These pa- 
rameters resulted in a selection- 
bias-, exposure-misclassification-, 
and unmeasured-confounding-bias- 
adjusted relative risk of 18.6 
(Table A3.6). Notably, this approach 
assumes that the odds ratio is the 
same across levels of the covariate 
(no effect measure modification for 
the odds ratio), as demonstrated by 
the sex-specific odds ratios of 18.6.

Unlike the bias-factor approach, 
the pseudo-data approach uses 
an apparent relative risk that is 
adjusted for confounding by smoking. 
Comparing the crude relative risk 
with the smoking-adjusted relative 
risk yields a measured-confounding 
bias of 2.71/1.25  =  2.17, indicating 
that the crude estimate is too high. 
The selection-bias-, exposure-mis-
classification-, and unmeasured-con-

founding-bias-adjusted odds ratio 
is further divided by this bias factor. 
This yields a final adjusted odds ratio 
of 8.6, which is adjusted for selec-
tion bias, exposure misclassification, 
unmeasured-confounding bias, and 
measured-confounding bias. This last 
calculation ignores the fact that esti-
mates of confounding bias will change 
on adjustment for selection bias and 
exposure misclassification bias, but it 
is relatively simple to implement, and 
estimates are used directly from the 
data. Unlike the bias-factor approach, 
which yielded a worst-case odds ratio 
estimate of 0.58, the pseudo-data 
approach provides a best-guess odds 
ratio estimate of 8.6. These results are 
consistent with each other because 
they are interpreted differently. The 
bias-factor estimate indicates that it 
is possible (but not necessarily likely) 
that the positive study result could 
have occurred due to bias alone. The 
pseudo-data estimate indicates that 
the positive study result is nonethe-
less most likely an underestimate of 
the true odds ratio.

Table  A3.6. Selection-bias-, exposure-misclassification-, and unmeasured-confounding-bias-adjusted pseudo-data 
and risk ratio derived from Aliramaji et al. (2015) and validation studies noted in the text

Bladder cancer

Women Men

Case  
participants

Control 
participants

Case 
participants

Control 
participants

Opium use Yes 1.87 0.52 61.62 5.71
No 33.42 173.76 78.09 134.85
Total 35.29 174.28 139.71 140.56

Stratified odds ratio (women) 18.63 
Stratified odds ratio (men) 18.63
Summary odds ratio 18.63

Source: Aliramaji et al. (2015).
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A3.3 Sensitivity analysis

As explained elsewhere in this book 
(e.g. the multidimensional analysis in 
Section 4.3.2), it is useful to assess 
how reasonable departures from 
chosen parameters may influence 
results. The following scenarios were 
assessed using the pseudo-data 
approach: (i)  measured-confounding 
bias only (to assess the accuracy of 
correcting for measured confounding 
as a last step); (ii)  no false-positive 
exposures (often assumed where ex- 
posure may carry stigma); (iii)  false- 
positive exposures among case par- 
ticipants only; (iv)  false-positive ex- 
posures among control participants 
only; (v)  a stronger unmeasured- 
confounder–outcome relation; (vi) se- 
lection bias arising from the re- 
cruitment of hospital-based control 
participants; and (vii)  alternative 
exposure misclassification param- 

eters obtained from a study by 
Abnet et al. (2004). Notably, point 
estimates from this sensitivity anal- 
ysis ranged from 1.28 (false-positive 
exposures among case participants 
only) to 15.4 (additional selection bias 
arising from the recruitment of hospi-
tal-based control participants), but 
none of the point estimates was below 
the null (Table A3.7).

A3.4 A potential probabilistic 
multiple-bias analysis strategy

Either the bias-factor approach or 
the pseudo-data approach could be 
amenable to a probabilistic bias anal- 
ysis, wherein the fixed values of the 
bias parameters given are replaced 
with values drawn from appro-
priate distributions (Table  A3.2). 
Examples of such an approach are 
given elsewhere in this book (e.g. 

Example 4.21), and there are no addi-
tional complications to applying those 
approaches to multiple-bias analysis, 
so an explicit example of probabilis- 
tic multiple-bias analysis is omitted 
here. However, the R code provided 
in Annex 2 (online only; available 
from: https://publications.iarc.who.
int/634#supmat) gives an example 
of how such an analysis could be 
carried out using the same functions 
used to conduct the multiple-bias 
analysis with pseudo-data discussed 
in Section A3.2. Crucially, the param-
eter distributions used in the code 
were arbitrarily chosen because 
reasonable parameter distributions 
could not be obtained for the example 
in this annex. Nonetheless, the code 
may be used to facilitate probabilistic 
bias analysis when reasonable and 
informative distributions can be spec-
ified over the bias parameters.

https://publications.iarc.who.int/634#supmat
https://publications.iarc.who.int/634#supmat
https://publications.iarc.who.int/634#supmat
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Table A3.7. Sensitivity analysis results with the pseudo-data approach using alternative bias parameters

No bias 
adjustment

Bias adjustment scenario

Base 
analysis

No false-
positive 

exposures

False-
positives 

among cases 
participants 

only

False-positives 
among control 

participants 
only

Stronger 
confounder–

outcome 
relation

Additional 
selection 

from hospital-
based control 
participants

Misclassification 
parameters 

from Abnet et al. 
(2004)

Selection bias
   Selection probability, exposed  
   case participants

1 1 1 1 1 1 1 1

   Selection probability,  
   unexposed case participants

1 1 1 1 1 1 1 1

   Selection probability, exposed  
   control participants

1 0.93 0.93 0.93 0.93 0.93 1.00 1.00

   Selection probability,  
   unexposed control participants

1 0.52 0.52 0.52 0.52 0.52 0.52 0.52

Exposure misclassification
   Case sensitivity 1 0.78 0.78 0.78 0.78 0.78 0.78 0.90
   Case specificity 1 0.92 1.00 0.92 1.00 0.92 0.92 0.93
   Control sensitivity 1 0.78 0.78 0.78 0.78 0.78 0.78 0.90
   Control specificity 1 0.92 1.00 1.00 0.92 0.92 0.92 0.93
Unmeasured binary confounder
   RR(U → Y) 1 0.33 0.33 0.33 0.33 0.16 0.33 0.33
   Pr(U = 1 | exposed) 1 0.08 0.08 0.08 0.08 0.08 0.08 0.08
   Pr(U = 1 | unexposed) 1 0.56 0.56 0.56 0.56 0.56 0.56 0.56
Measured-confounding bias 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17
Summary odds ratio 1.25 8.58 1.68 1.28 11.24 7.42 15.40 4.95

Sources: Abnet et al. (2004); Aliramaji et al. (2015).
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