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4.1 Introduction

Nearly all epidemiological studies of 
carcinogenic hazards suffer to some 
degree from error due to the methods 
used to measure exposures and out- 
comes; this error is commonly referred 
to as measurement error or misclassi-
fication (described in this chapter; see 
also the Preface). Measurement error 
can occur both in studies that use 
continuous measures of exposure 
and in studies that use categorical 
measures. Any bias resulting from 
such error is generally referred to as 
information bias (Lash et al., 2021).

Exposure assessments based 
on questionnaires are often prone 
to several sources of measurement 
error. Of particular concern is the 
validity of exposure information from 
interviews of the next of kin rather than 
the study participants themselves. 

In occupational studies, exposure 
assessments are commonly based 
on the development of a job-expo-
sure matrix (JEM), which assigns 
exposures to individuals on the basis 
of their job, department, industry, or 
time period (or a combination of these) 
(Stewart et al., 1996). This often intro-
duces errors, because not everyone 
assigned to an exposure group is 
likely to have the same exposure.

Even in the rare instance that 
objective physical measurements are 
available to estimate individual expo-
sures, there is still a potential for expo-
sure measurement error due to the 
instrumentation used. For example, 
personal measurements of radiation 
exposure using radiation dosime-
ters have been used in numerous 
epidemiological studies. Exposure 
estimates used in these studies will 
be subject to measurement errors, 

which could vary with the different 
radiation dosimeters used over time 
(Daniels and Schubauer-Berigan, 
2005; Stayner et al., 2007; Thierry-
Chef et al., 2007, 2015).

Epidemiologists frequently use 
qualitative categories of potential 
exposure (e.g. high, medium, or low) 
when quantitative data on exposures 
are lacking, or to create catego-
ries from what is truly a continuous 
measure of exposure, using cut-points 
that may reflect the distribution of 
exposures in the study population 
(e.g. percentiles). Exposure misclas-
sification occurs when study partic-
ipants are incorrectly categorized 
with respect to their true exposure. 
Categorization can result in infor-
mation bias due to mismeasurement 
of the individual exposures. In other 
words, an individual may have been 
placed in a high exposure group 
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who should have been placed in a 
lower exposure group, or vice versa. 
Misclassification may also occur in 
circumstances where the exposure is 
naturally categorical. For example, in 
some studies participants are classi-
fied as having ever been exposed or 
never been exposed. If this categori-
zation is based on questionnaire data 
or inadequate work history informa-
tion, then exposure misclassification 
may occur.

Measurement error and misclas-
sification can be either differential 
or non-differential. Errors in expo-
sure measurement or classification 
are differential when they vary by 
disease status. For example, differen-
tial misclassification of exposure may 
occur in a case–control study that 
uses questionnaire data collected 
after the outcome was observed. 
Case participants may be more likely 
than control participants to recall past 
exposures, because case participants 
may be searching for an explanation 
for their disease. This could result in 
case participants recalling their expo-
sure more accurately than control 
participants, because they may have 
spent more time thinking about the 
possible causes of their disease. 
However, this could also mean that 
reporting of exposures by case 
participants is less accurate than that 
by control participants (e.g. if there is 
social stigma around the exposure 
and/or the outcome). This type of bias 
is called recall bias. Non-differential 
exposure measurement errors occur 
when the rate of misclassification 
is equal between participants in the 
case and control groups or, in other 
words, when the measurement error 
is independent of the disease status. 
For example, differential misclassifi-
cation of exposure would be unlikely 

in a prospective cohort study, in which 
exposures are measured before 
follow-up, when the investigators 
had no information on future disease 
status.

The potential for misclassification 
or mismeasurement of exposure 
is particularly applicable to cancer 
studies, because the etiologically 
relevant exposures for most carcino-
gens are, in general, longer than the 
preceding 5–10  years, for leukae-
mias (Finkelstein, 2000; Schubauer-
Berigan et al., 2007a, b), or the 
preceding 10–20  years, for solid 
tumours. Often, records of expo-
sure measurements during the early 
years of a study do not exist or can 
only be estimated with a large degree 
of uncertainty. In many situations, 
historical measurements of exposure 
have been collected for regulatory 
compliance purposes and may be 
focused on documenting that the 
highest exposures are below occu-
pational or environmental standards. 
Thus, historical measurements may 
not be representative of past expo-
sures, and this could lead to substan-
tial measurement error.

Misclassification of disease status 
can also be differential or non-dif-
ferential with respect to exposure 
status. Non-differential misclassifi-
cation occurs when there is overas-
certainment or underascertainment 
of disease, and the probability of 
disease misclassification is the same 
for exposed and unexposed study 
participants. Differential misclassifi-
cation occurs when case identifica-
tion is more accurate or less accurate 
in exposed participants than in unex-
posed participants. For example, 
women who work night shifts may be 
less likely to undergo breast cancer 
screening, and this may result in 

underdiagnosis (or late diagnosis) 
of breast cancer. In epidemiological 
studies of cancer risk, misclassifi-
cation of disease is perhaps a less 
common issue than misclassifica-
tion of exposure. However, there are 
exceptions, such as when studies of 
cancers with a low fatality rate are 
based on death certificate diagnosis 
rather than incident cases from tumour 
registries, or when data on outcomes 
are poorly recorded (e.g. in lower-in-
come countries) or may simply be 
unavailable or of poor quality. Such 
misclassification would typically be 
non-differential with respect to expo-
sure status.

In the past, epidemiologists and 
statisticians have perhaps paid insuf-
ficient attention to evaluating the 
potential for biases resulting from 
measurement error and misclas-
sification of exposure or disease 
(Shaw et al., 2018). Non-differential 
exposure error typically creates a 
bias towards the null (i.e. towards 
observing no effect), but this is not 
always the situation, as discussed 
in Section 4.2.1. There has been an 
increasing trend in the development 
and use of new methods to assess the 
direction and magnitude of bias and 
to bias-adjust the effect measures to 
correct for measurement error (e.g. 
Cole et al., 2006; Lash et al., 2014; 
Corbin et al., 2017; Keogh et al., 2020; 
Shaw et al., 2020). In this chapter, 
we discuss these approaches with 
particular emphasis on methods that 
can be used with published studies 
to assess misclassification and 
measurement error in exposure and 
outcome, because IARC Monographs 
reviewers and other expert review 
groups would seldom have access 
to the raw data from epidemiolog-
ical studies. We start by discussing 
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qualitative approaches for evaluating 
the direction of bias due to errors in 
exposure, considering first contin-
uous and then categorical exposures.

4.2 Qualitative evaluation of 
the direction of bias due to 
errors in exposures

4.2.1 Non-differential errors  
in exposure

(a) Measurement errors of 
continuous variables

The direction of the bias associated 
with measurement errors of contin-
uous exposures depends on which 
error models apply (see Side Box 4.1 
for the definitions).

Classical non-differential mea- 
surement errors are expected to 
lead, on average, to underestima-
tion of the association between the 
exposure and the disease. Thus, 
although the measurement method 
is itself unbiased, in the sense that 
the average measured exposure is 
equal to the true exposure, the esti-
mated exposure–cancer association 
arising from such measurements 
tends to be biased towards the null 
value, on average (Spearman, 1904; 
Armstrong, 1998).

Under a linear model in which the 
measurements are not, on average, 
equal to the true value (i.e. are biased) 
and the measurement errors are 
non-differential, the bias can, theo-
retically, lead to either overestimation 
or underestimation of associations 
between an exposure and a health 
outcome. However, when a linear 
model is applied to self-reported 
dietary and physical activity data, 
the random errors are often so large 
that they dominate and, as with the 
classical model, lead, on average, to 

underestimation of exposure–cancer 
associations (Freedman et al., 2011).

In the event that Berkson errors 
are correlated with covariates in the 
outcome model, appreciable distor-
tion of the exposure–response rela-
tion can result, and the association 
may be biased towards underestima-
tion or overestimation in an unpredict-
able manner (see Keogh et al., 2020).

(b) Misclassification of 
categorical variables

The direction and magnitude of bias 
associated with non-differential mis- 
classification of categorical exposure 
variables will depend on how many 
categories have been used, how 
accurate the assessment of the 
exposure is, and the prevalence of 
the exposure.

In a situation where a single expo-
sure is declared present or absent, 
non-differential misclassification oc- 
curs when the sensitivity (the prob-
ability of having been identified as 
exposed when the individual is truly 
exposed) and the specificity (the 
probability of having been identified 
as unexposed when the individual 
is truly unexposed) of the errors are 

the same for cases and non-cases of 
disease.

One should realize that any given 
study could still show a bias away 
from the null due to random variabil- 
ity, given that any study is simply a 
single realization of a measurement 
process and may deviate from the 
expectation (Jurek et al., 2005; Loken 
and Gelman, 2017). However, the 
larger the sample size, the smaller 
this chance (Wacholder, 1995; Yland 
et al., 2022).

Misclassification might even 
change the direction of the slope 
across exposure categories (Dose- 
meci et al., 1990), unless the true 
exposure–response relation is posi-
tive and monotonic (Weinberg et al., 
1994).

Berkson errors are special and 
are different from classical errors 
in that they are not expected to 
appreciably distort the exposure–
response relation, for example 
when the assigned exposures 
are the means of the true dose in 
the groups (Gilbert, 2009).

However, as in the classical 
error model, Berkson errors 
do reduce the precision of the 
estimated exposure–response re- 
lation.

Key message
Non-differential misclassification 
of a dichotomous exposure (ex-
posed or unexposed) will, on 
average, result in attenuation of 
effect estimates towards the null 
(Wacholder, 1995; Armstrong, 1998), 
as seen in Example 4.3.

Key message

The extent of the expected atten-
uation from non-differential expo-
sure misclassification will depend 
on the prevalence of the exposure 
and the specificity and sensitivity 
of the exposure assessment and 
assignment.

When there are several cate- 
gories (e.g. unexposed, low, me-
dium, or high), non-differential 
misclassification can result in the 
overestimation of risk in an inter-
mediate exposure category and 
the underestimation of risk in the 
highest category.

Key message



Chapter 4. Information bias: misclassification and mismeasurement of exposure and outcome 91

C
H

A
P

T
E

R
 4

Side Box 4.1. Three common models describing measurement error in epidemiological studies

Besides the issue of whether the exposure measurement error is differential or non-differential, another aspect 
that influences the effect of the error on the results is the relation of the erroneous measurement to its underlying 
true value. This relation is usually described in terms of a statistical model. Any type of model is possible, but for 
continuous exposure variables (e.g. the time spent using a mobile phone over a specified period, or the mass of red 
meat consumed on a typical day), three models (described here) are most commonly found in the epidemiological 
literature. Because the impact (or non-impact) of the error on the estimated associations depends on the type of 
error, it is important for those reviewing the literature to know about them. These models all postulate additive 
random error. Multiplicative error can sometimes be handled by these models through transformation of the 
variables to a logarithmic scale. More-complex models involving random error that is “shared” between individuals 
have been postulated recently for occupational cohort studies (Stram and Kopecky, 2003; Hoffmann et al., 2018) 
but are not covered here.

(a) Classical model

This is the simplest model to describe measurement errors. If X denotes the true underlying exposure value and 
X * denotes the measured value, then the relation between them is described by the model as

X * = X + U	 (E4.1)

where U is a random error that has a mean of zero and is independent of the true value X. Thus, the model 
describes an erroneous measurement method that gives the correct value on average but yields a somewhat 
different value each time it is applied, sometimes larger than and sometimes smaller than the true exposure. 
Because the average error is zero, such a measurement method is called unbiased. Such measurements are 
commonly encountered in laboratory work, for example with assessments of serum levels of cholesterol (Glasziou 
et al., 2008) or C-reactive protein (Koenig et al., 2003). This model is also used when one is interested in an 
individual’s average value of the measure over a specified period (the true value) but the measure is determined 
only once (or a few times) within the study period.

(b) Linear model

A somewhat more complex model is required for measurements that are not, on average, equal to the correct 
value. One way of describing such measurements, which is often used for self-reported dietary intake and physical 
activity data, is to postulate a linear relation between the measurement and its true value, as

X * = α0 + α XX + U	 (E4.2)

where α0 and αX are the intercept and the slope, respectively, of the linear relation, and U, as before, is a random 
error that has a mean of zero and is independent of the true value X (see Keogh et al., 2020). The intercept α0, 
known as the location bias, shifts the measurements up or down on average, while the slope αX, known as the 
scale bias, governs how much the mismeasurement depends on the true value of the exposure. Although this 
model includes the classical model as a special case (when α0 = 0 and αX = 1), in its general form the model 
describes an erroneous measurement method that, on average, gives not the correct value X but an incorrect 
value α0 + α XX. Because of this property, such a measurement method is called biased. Such measurements are 
commonly encountered in self-reported behaviours (e.g. dietary intake). It is often found that α0 is greater than 0 
and αX is positive but less than 1. Such values describe a pattern when underreporting becomes more severe as 
the true exposure increases (Example 4.1).

Note that, as in this example, the exposure is often measured on a logarithmic scale, and the additive random 
error becomes multiplicative on a linear scale. 
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Side Box 4.1. Three common models describing measurement error in epidemiological studies (continued)

Example 4.1. Linear models for measurement error of protein intake from food frequency questionnaires

Kipnis et al. (2003) used data from the Observing Protein and Energy Nutrition (OPEN) study and reported 
that for natural log-transformed self-reported total protein intake using a food frequency questionnaire, the 
value of αX for men was 0.67. From the reported geometric mean intakes of protein in that study (Table 2 of 
Subar et al., 2003), one can calculate that α0 was 1.18. These values imply that for a low total protein intake of 
68.3 g/day (2.5th percentile), the average reported intake was exp[1.18 + 0.67ln(68.3)] = 55.1 g/day, with an 
underestimation of 19%, whereas for a high total protein intake of 158.3 g/day (97.5th percentile), the average 
reported intake was exp[1.18 + 0.67ln(158.3)] = 96.9 g/day, with a much larger degree of underestimation 
(39%).

(c) Berkson model

Another type of error, called Berkson error (Berkson, 1950), is only subtly different from the classical model but 
is important, both because it arises in many epidemiological settings and because its effects on results are very 
different from those of classical error. The relation between the measured value and the true value is described 
by this model as

X = X * + U	 (E4.3)

where U is a random error that has a mean of zero and is independent of the measured value X * but is not 
independent of the true value X. Berkson error commonly occurs in occupational health studies, when individual 
workers in the same job group are assigned the average measured exposure of their group or an exposure based 
on a JEM. In these cases, the true exposure of an individual equals the mean exposure in the job group to which 
the individual is assigned plus some independent random error. Berkson errors may also occur in studies of 
environmental exposures (Example 4.2). (text continues on page 90)

Example 4.2. Berkson error in an example from blood lead and intelligence quotient testing

In a study (Armstrong, 1998), the intelligence quotient measured at age 10 years of children living in the 
vicinity of a lead smelter was studied in relation to the children’s exposure to lead. Blood lead levels were 
measured in a random sample of the study group; the full study group was then classified into subgroups 
according to the distances of their homes from the smelter, and the average blood lead level in each subgroup 
was assigned as the exposure level for all the children in that subgroup. Such an exposure measure can be 
assumed to have Berkson error, in the same way as for exposure assessments based on a JEM.

For the different impacts of classical errors, linear measurement errors, and Berkson errors, see Section 4.2.1(a).
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The expected magnitude of the 
bias in the intermediate categories 
will depend on how much the risk 
of disease differs across exposure 
groups and the actual shape of the 
exposure–response relation (Yland 
et al., 2022).

4.2.2 Exposure measurement 
errors that could be non-
differential or differential: 
interviewer error or bias

In studies that involve an expert-
based approach to assess exposures 
(e.g. having an expert panel of indus-
trial hygienists assess exposures on 
the basis of work histories obtained 

by interview), the interviewer can 
play a critical role in obtaining the 
description of the tasks, agents, 
or protective measures that will be 
used to infer exposures. There is 
evidence that interview quality can 
lead to non-differential exposure 
misclassification and bias towards 
the null (Edwards et al., 1994), as in 
Example 4.5. Some interviewers can 
be more knowledgeable than others 
and elicit more clues; this will influ-
ence the reliability of the information 
(Example 4.6). Interviewer bias is also 
possible when additional information 
on exposure (e.g. asbestos expo-
sure) is elicited by an interviewer who 

believes that asbestos is associated 
with the disease of the interviewee 
(e.g. lung cancer, mesothelioma), 
or the interviewer may not question 
control participants as deeply as 
case participants. These problems 
can, to some extent, be overcome 
by better interviewer training or by 
blinding interviewers to case–control 
status, although such blinding is 
rarely possible in cancer case–
control studies (Edwards et al., 1994). 
These issues are addressed further 
in Section 4.2.4(b), in the context of 
negative control exposures.

4.2.3 Differential errors in 
exposure

Bias from differential errors in expo-
sure can occur in both cohort and 
case–control studies. However, it is 
perhaps more common in case– 
control studies in which informa-
tion on exposure is collected using 

Misclassification of exposure may also occur when a continuous error- 
prone exposure variable (e.g. cumulative exposure) is categorized 
(Example 4.4). Categorization of a continuous exposure variable with 
error can actually result in differential misclassification if the probability 
of disease is a function of the continuous exposure rather than of the 
exposure categories (Flegal et al., 1986).

Key message

Example 4.4. Misclassification from categorizing a continuous exposure variable in workers exposed to crystalline 
silica

A pooled case–control study of respirable crystalline silica exposure and lung cancer (Ge et al., 2020) showed 
a largely flat exposure–response relation, particularly in the middle exposure categories (odds ratios [ORs] of 
1.15, 1.33, 1.29, and 1.45 for cumulative exposure quintiles of > 0–0.39, 0.40–1.09, 1.10–2.39, and ≥ 2.40 mg/
(m3·years), respectively), whereas the analysis with continuous cumulative exposure showed a monotonic linear 
increase in risk for both untransformed and log-transformed exposure. (text continues above)

 Example 4.3. Non-differential exposure misclassification when exposure is rare versus when exposure is common

In a general population case–control study with a low prevalence (< 10%) of occupationally exposed individuals, low 
specificity will result in a large number of false-positives for the exposure and consequently result in considerable 
attenuation towards the null (Flegal et al., 1986). For this reason, when JEMs aim to assess occupational exposure 
in the general population where exposure is rare (e.g. population-based case–control studies), specificity should 
be favoured over sensitivity (Kromhout and Vermeulen, 2001). In contrast, in studies with a high prevalence 
of exposure (e.g. industrial cohort studies), low sensitivity will result in attenuation towards the null; therefore, 
sensitivity should be favoured over specificity. (text continues on page 90)
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questionnaires administered retro-

spectively, after the disease under 

study has been diagnosed in the case 

participants.

When exposure assessment is 

based on objective measures, a case– 

control study is no more prone to infor-

mation bias than the corresponding 

cohort study that uses the same 

exposure history records. However, 
many case–control studies do involve 
retrospective collection of exposure 
information; therefore, in this section, 
several types of differential informa-
tion bias are considered that are of 
particular concern in case–control 
studies of this type.

(a) Recall and information bias

Case–control studies are often por- 

trayed as being more prone to infor-

mation bias when they involve the 

use of exposure questionnaires. This 

is not unique to case–control studies. 

Many cohort studies involve exposure 

questionnaires (on opium use, meat 

consumption, night shift work, etc.) at 
baseline and at follow-up. However, a 
potential additional problem in case–
control studies is that exposure ques-
tionnaires are usually administered 
after the case or control status is 
known by the participants, and often 
also by the interviewers.

To understand the differential na- 
ture of this misclassification, consider 
that someone who has developed 
cancer is likely to have thought a 
great deal about the possible causes 
of their condition and may have 
sought further information (e.g. from 
the Internet). The same will usually 
not apply to control participants 

Recall bias is not an inherent fea-
ture of case–control studies; for 
example, exposure estimation 
may be based on historical rec
ords (e.g. work history records) or 
biospecimens banked in the past.

Key message

Example 4.5. Assessing for varying quality of the interviewee response in assessing tobacco smoking

Villanueva et al. (2009) conducted a multicentre hospital-based study of 1219 patients with incident bladder 
cancer and 1271 control participants, recruited in Spain in 1998–2001. Study information was obtained by trained 
interviewers, who administered structured computer-assisted personal interviews. The information was categorized 
into five sections (sociodemographic, smoking, occupational, residential, and medical history). At the end of 
each interview, the interviewer recorded the perceived quality of the interview for each section as unsatisfactory, 
questionable, reliable, or of high quality. It was found that 10% of the interviews were of unsatisfactory quality with 
regard to smoking history. It was also found that the strength of the association between cigarette smoking and 
bladder cancer increased with increasing interview quality, from an odds ratio of 3.20 (95% confidence interval [CI], 
1.13–9.04) for interviews scored as unsatisfactory or questionable overall (taking into account all of the variables 
considered in the interviews) to an odds ratio of 7.70 (95% CI, 3.64–16.30) for high-quality interviews. Lower-
quality interview scores were found with increasing age, poorer self-perception of health, and low socioeconomic 
status. However, differences were not found in the quality of interviews according to case or control status: 9% of 
patients had unsatisfactory or questionable interviews, compared with 7% of control participants (P = 0.109). (text 
continues on page 93)

Example 4.6. Assessing for varying quality of interviewer in assessing job histories

In a validity study, reports of job histories were compared with employers’ records (Baumgarten et al., 1983). There 
was no evidence that the quality of job history information obtained from control participants was systematically 
different from that obtained from patients with cancer, although there was some evidence that different interviewers 
obtained job histories of varying quality, irrespective of case–control status. (text continues on page 93)
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drawn from the general population. 
For example, it has been suggested 
that patients with cancer may recall 
minor exposures to pesticides (e.g. 
spray drift from a neighbouring farm), 
whereas control participants from the 
general population may not recall 
such minor exposures (Smith et al., 
1988). In this situation, differential 
recall could occur, and the propor-
tion of case participants reporting 
past exposure to pesticides may be 

greater than the proportion of control 
participants, even if the pesticides 
actually do not cause the type of 
cancer under study. It is important to 
emphasize that such recall bias does 
not necessarily involve biased recall 
by the case participants; in fact, it may 
involve a lack of recall by the control 
participants. Examples  4.7 and 
4.8 illustrate some of these impor-
tant concepts surrounding recall 
bias with respect to two key topics.

(b) Differential information when 
provided by proxies

Proxies are sometimes recruited in 
studies of cancers with poor prog-
noses or of aggressive types of 
cancer, to better cover the base popu-
lation of case participants. However, 
proxy respondents can sometimes 
provide information of a poorer quality 
than self-respondents; this can bias 
findings if the quality of exposure 
information differs by case status 
(Example 4.9).

Example 4.7. Recall bias and knowledge of carcinogenicity

Most studies of shift work are based on self-reported information about current and previous jobs. Information on 
job history and periods of work has been repeatedly shown to be accurately recalled. Recall of shift work details 
of previous jobs is more complex and may be prone to exposure misclassification. For example, in a case–control 
study in Spain (MCC-Spain), the frequency of shift work (nights per month) was more difficult to recall than its 
duration, and this led to a higher proportion of missing data (Papantoniou et al., 2016). It is unlikely that differential 
recall has been important in case–control studies of shift work and cancer. The potential carcinogenicity of night 
shift work was not well known in the wider population in the past 10–20 years, when most existing studies were 
conducted. However, recall bias is not necessarily avoided for this reason if night shift workers report differentially 
on factors that could be intermediate factors associated with disease, such as sleep. There do not seem to be any 
published studies examining this type of differential recall in detail. (text continues above)

 Example 4.8. Estimation of the extent of recall bias

In the Interphone study (Vrijheid et al., 2009), validation studies were conducted to assess the potential for 
differential misclassification of self-reported mobile phone use. The investigators collected mobile phone records 
of case and control participants from network operators in three countries over an average of 2  years and 
compared them with self-reported mobile phone use. The ratio of reported to recorded phone use was estimated. 
Mean ratios were very similar for case and control participants; both underestimated the number of calls (mean 
ratio, 0.81) and overestimated call duration (mean ratio, 1.4). For case participants, but not control participants, the 
ratios were further away from 1.0 for time periods further before the interview. In addition, the ratios were greater 
for higher levels of use. These findings are very provisional, because they were based on records obtained for only 
a few participants with the relevant data. Nevertheless, based on the available data, there was little evidence for 
differential recall errors overall or in recent time periods. In contrast, there appeared to be overestimation of use 
by case participants in more distant time periods; this could cause positive bias in estimates of the odds ratios for 
mobile phone use. (text continues above)
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4.2.4 Tools for assessing 
differential exposure 
information bias

When a published paper is consid-
ered, it is important to assess the 
potential for information bias, as 
well as its probable magnitude and 
direction. A key issue is whether 
any misclassification of (categorical) 
exposure or disease is likely to be 
non-differential or differential. This 
section is particularly focused on 
the situation where information bias 
is likely to be differential, although 
many of the methods can also be 
used to assess non-differential infor-
mation bias. We particularly consider 
assessment using substantive knowl- 

edge (external to the published 
paper) and the use of directed acyclic 
graphs (DAGs; see Chapter 2). As in 
Chapter  3, some tools are outlined 
that expert review groups can use to 
examine the influence of exposure 
measurement error.

(a) Tool E-1: use of substantive 
knowledge and DAGs for 
misclassification

Assessing the potential for differen-
tial information bias requires expert 
knowledge, usually from previously 
published studies, and mechanistic 
knowledge. The key feature of 
differential information bias is that 
the misclassification of exposure 
depends on disease status, or vice 

versa (the misclassification of disease 
status depends on exposure). For 
differential misclassification of (cate-
gorical) exposure status, this means 
that the sensitivity or specificity (or 
both) of the exposure measurement 
instrument is different for those with 
or without disease.

Misclassification can be summa-
rized using a DAG (Hernán and Cole, 
2009); these are covered in detail in 
Chapter 2 and are only briefly consid-
ered here. A DAG can help to clarify 
whether disease or exposure misclas-
sification is differential or non-differ-
ential, for example when people with 
cancer (case participants) are likely to 
have different recall of past exposures 

 Example 4.9. Proxy respondents and recall bias in a study of pesticide exposure

Brown et al. (1991) conducted a methodological study to compare information on pesticide use from farmers 
and their surrogates. The study included 95 farmers and their spouses or other close family members. Both 
the farmers and the proxies were asked about the farmers’ pesticide use. Although there was good agreement 
between the farmer and the proxy about whether seven common pesticides had ever been used, there was much 
more variable agreement between the two regarding the frequency of use, with correlation coefficients ranging 
from 0.23 to 0.80 for number of days of use.

Later, the same researchers recruited proxy respondents in a series of case–control studies focused on 
pesticides and non-Hodgkin lymphoma. In a publication focused on the risk of non-Hodgkin lymphoma and use 
of the insecticide lindane, Blair et al. (1998) evaluated the effect of information provided by next-of-kin proxy 
respondents on risk estimates. Both living and deceased people were included, and control participants for 
deceased people in the case group were identified from death records and matched on age and year of death. 
For these deceased people, interviews were conducted with their next of kin, and living participants provided 
information directly. Study participants who could not recall whether they (or their proxies) had used lindane 
were excluded from analysis. The percentage of living case participants who could not recall whether they had 
used lindane was 6.0%, while that for proxy respondents of deceased people was 8.2%; 9.6% of living control 
participants and 11.1% of proxy respondents of deceased control participants could not recall whether lindane 
had been used. In addition, results were stratified by whether information on lindane was provided directly by the 
case or control participant or by a proxy. The odds ratio for whether lindane had ever been used was 1.3 (95% 
CI, 0.9–1.8) for direct respondents and 2.1 (95% CI, 1.0–4.4) when information was provided by a proxy. Similar 
differences in risk were seen for the number of days of use of lindane and whether or not personal protective 
equipment was used during application, with higher associations among those with information provided by a 
proxy. Although other factors could explain these results, differential misclassification of exposure could not be 
ruled out. (text continues below)
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compared with healthy control partic-
ipants. A similar bias can occur when 
there is a factor (e.g. ethnicity, socio-
economic status) that is a risk factor 
for disease (e.g. the disease is more 
common among less-affluent people) 
and affects the accuracy of exposure 
recall (e.g. less-affluent people are 
less aware of, or have different recall 
of, past exposures). Researchers can 
use DAGs to help determine whether 
differential misclassification, through 
a variety of mechanisms, is plausible.

The DAG will not identify whether 
such a bias is likely to occur or its 
probable magnitude and direction, 
but it does provide a framework for 
considering whether such a bias is 
possible and assessing any strate-
gies that the investigators may have 

adopted to minimize, to control for, or 
to assess it (Example 4.10).

The use of DAGs can help study 
reviewers to identify whether differen-
tial or non-differential bias is possible 
in a given study. When several 
different studies are conducted for 
the same exposure–outcome rela-
tion, it is important to note that the 
DAG could be different for each study; 
some studies may be more or less 
prone to differential or non-differen-
tial misclassification, depending on 
the study design.

(b) Tool E-2: negative control 
exposures and positive control 
outcomes

A negative control exposure approach 
involves assessing the association 
with another exposure that is not 

associated with the outcome under 
study but is likely to be subject to 
a similar information bias (Lipsitch 
et al., 2010; Arnold et al., 2016; Lawlor 
et al., 2016). 

Although this approach can also 
be used to assess other types of 
bias (e.g. confounding), the focus in 
this section is on recall bias in case–
control studies, as in Example 4.11.

A key assumption of the use of 
negative control exposures is that 
any tendency for reduced or ex-
aggerated recall of exposure is 
likely to be similar for the main 
study exposure and the negative 
control exposure. 

Key message

Example 4.10. Using DAGs to identify recall bias

In the Interphone case–control study of mobile phone use and brain tumours (Cardis et al., 2007), researchers 
conducted a validation study on a subsample of the participants by comparing the self-reported mobile phone 
use with data from network operators (Vrijheid et al., 2009). The number of calls was underestimated, but the 
underestimation was similar among case and control participants, suggesting that there was non-differential 
misclassification for this exposure variable. In a DAG, this would translate into a lack of an arrow from the case 
status to the reported mobile phone use, as shown in Fig. 4.1, even if there were still factors that affected the 
reported exposure status other than the actual exposure. (text continues above)

Fig. 4.1. Directed acyclic graph of a study with underreporting of the prevalence of mobile phone use (exposure) 
but non-differential misclassification by brain tumour (outcome) status.

Fig. 4.1

Unknown factors 
influencing reporting

True mobile
phone use

Brain tumour

Reported mobile
phone use
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A related approach is the exami-
nation of positive control outcomes 
to assess the validity and quality 
of the exposure metric for an agent 
that has been found to be associated 
with other outcomes besides the one 
being investigated (Example 4.12).

(c) Tool E-3: examination of 
exposure information from 
different sources

In some instances, exposure infor-
mation (e.g. from questionnaires) 
can be combined with more objective  
exposure measures. For example, de- 
termining whether participants have 
worked as a farmer would be a rela-
tively poor measure of exposure to 
pesticides, but this can be ascertained 
reasonably accurately, through either 
questionnaires or examination of 
work history records. If, for example, 
there were recall bias with regard to 
exposure to pesticides, with case 
participants more likely than control 
participants to recall and report past 
exposures, one might expect this to 
be apparent in artificially high odds 

ratios when using exposure ques-
tionnaires, but one would not expect 
this bias to occur when “whether the 
participant has ever worked as a 
farmer” was the exposure metric; in 
this situation, taking the participant’s 
being a farmer as the exposure might 
be expected to involve some non- 
differential information bias (which 
would usually be towards the null 
because the exposure is dichot-
omous) but would probably avoid 
or minimize differential recall bias. 
Similar considerations would apply 
when examining analyses restricted 
to exposures involving major events 
(e.g. work as a pesticide sprayer) 
rather than minor events (e.g. spray 
drift from a neighbouring farm).

(d) Tool E-4: comparisons with 
external data

Another approach for assessing in- 
formation bias involves comparing 
the study data with external data on 
the prevalence of the exposure in the 
source population (Examples  4.13 

and 4.14). This can involve infor-
mation either on the exposure itself 
(e.g. smoking rates in the general 
population) or on a surrogate of the 
exposure. For example, if the expo-
sure under study is the use of a 
pharmaceutical drug (prescribed or 
non-prescribed) and it is believed 
that control participants (but not case 
participants) may be underreporting, 
or not recalling, previous exposures, 
then one might compare the exposure 
prevalence in the control participants 
with that expected on the basis of 
general population rates of use.

(e) Tool E-5: consideration of 
analysis stratified by index versus 
proxy interviews

In studies involving proxy interviews, 
sensitivity analyses stratified on index 
interviews versus proxy interviews 
(i.e. interviews with the relevant 
case or control participant versus 
interviews with a proxy) can provide 
indirect evidence about whether the 
use of proxy interviews introduced 

 Example 4.11. Negative control exposures to assess recall bias in a study of pesticide exposure

In a case–control study of a particular pesticide (pesticide A) and cancer, any influences on the reporting of 
exposures (e.g. case participants being more likely than control participants to recall pesticide exposures) are 
likely to apply to pesticides in general, rather than only to pesticide A. If it is well established that another pesticide 
(pesticide B) is not associated with the cancer under study (e.g. if there had been a cohort study of workers 
predominantly exposed to this other pesticide), then pesticide B could serve as a negative control exposure. Thus, 
if a strong association was found between pesticide B and the outcome in the case–control study, this would 
provide evidence of information bias, as well as its likely magnitude and direction. (text continues below)

 Example 4.12. Positive control outcomes to assess exposure misclassification in a study of benzene exposure

In an evaluation of whether benzene is a cause of lung cancer, IARC Monographs reviewers considered whether a 
cohort study demonstrated the expected association between benzene and leukaemia. A finding that the benzene 
exposure metric did not show this anticipated association for leukaemia led to scepticism of the adequacy of the 
exposure assessment (IARC, 2018). (text continues above)
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information bias; however, such ana- 
lyses entail strong assumptions. 
Typically, investigators report the full 
results and the results of the analysis 
restricted to the interviews with the 
index participants (because proxy 
interviews are used mainly or exclu-
sively with case participants). If data 
from index participants are perfect 
(i.e. no exposure measurement error) 
or very nearly so, then conducting 
stratified analyses and estimating 
the exposure–outcome association 
among the index case participants can 
reduce bias. As shown by Greenland 
and Robins (1985), this approach has 
very important limitations. First, if 
the sensitivity and specificity are not 
perfect among the index case partic-
ipants, there is no guarantee that this 
approach will yield less bias than an 

analysis that ignores the distinction 
between index and proxy responses. 
Second, such stratified analyses can 
increase the variance of study esti-
mates; researchers need to weigh the 
benefits of a reduction in bias against 
a corresponding increase in variance. 
If such analyses are to be undertaken, 
it would be good practice to estimate 
the magnitude of bias under plausible 
sensitivity and specificity parameters 
for proxy and index case participants, 
as exemplified in Greenland and 
Robins (1985).

(f) Tool E-6: triangulation using 
comparisons across studies

Information bias from differential 
errors in exposure can also be as- 
sessed using triangulation approaches, 
introduced in Chapter  3, by making 

comparisons across studies. This 
applies particularly when similar 
studies have been conducted in the 
same population (e.g. cohort studies 
involving the same industry or the 
same group of workers, or case–
control studies conducted in the same 
populations). However, comparisons 
can also be made between studies in 
different populations where it is rea- 
sonable to assume that the strength 
of the main exposure–outcome 
association is likely to be similar. For 
example, one might compare the 
findings from studies in which inter-
views were used to obtain exposure 
information with those from studies in 
which more objective methods, such 
as the analysis of personnel records 
on work history (e.g. Example 4.15), 
were used. Such comparisons across 
studies are discussed in Chapter 6.

  Example 4.13. Using national statistics to assess recall bias

The European Union (EU) Labour Force Survey (Eurostat, 2022) reports statistics for the number of people working 
at night as a percentage of the total number of employed people in Europe, stratified by geopolitical entity, sex, age 
class, and calendar year. Similar data are available in other areas of the world. This information can be compared 
with the prevalences obtained for control participants in case–control studies on night shift work and cancer risk. 
Note that this is a rough comparison, because data would not be specific for the exact age distribution, study 
area, or study period. Nevertheless, these statistics can be used to identify the presence of major information bias 
problems. However, it should also be recognized that if such problems exist, they could reflect either information 
bias or selection bias (see Chapter 5). (text continues on page 98)

Example 4.14. Recruiting different types of control groups to assess recall bias

In IARC Monographs Volume 126, on opium use (IARC, 2021), the Working Group evaluated two case–control 
studies of oesophageal cancer (carried out by a single research team), in which different control groups were 
recruited: one hospital-based and one neighbourhood-based (Shakeri et al., 2012). The Working Group concluded 
that the neighbourhood-based control group probably provided a less biased estimate, because the prevalence 
of opium use reported by the neighbourhood-based control participants was similar to that reported from other 
sources for the general population of the region. (text continues on page 98)
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4.3 Tools for quantifying bias 
due to errors in exposure

4.3.1 Tool E-7: simple bias 
analysis for exposure 
misclassification

Bias analyses of exposure misclas-

sification for a binary (i.e. yes or 

no) exposure can be performed if 

one has information on the sensi-

tivity and specificity of the exposure 

measurement method. These data 

may be available from an internal 

validation study or from external 

sources, such as previous validation 

studies published in the literature. 

Alternatively, expert opinion can be 

used to inform sensitivity and spec-

ificity parameters (Goldsmith et al., 

2023). However, the quality of the 

bias analysis will be determined by 

the quality of the sensitivity and spec-

ificity parameters, so these assump-

tions should not be made lightly.

The formulae in Table  4.1 enable 

us to predict which data would be 

observed if the counts of correctly 

classified data and the accompanying 

sensitivities and specificities were 

known. In practice, only the observed 

cell counts are known, with perhaps 

estimates of sensitivities and spec

ificities. Solving the four equations in 

Table  4.1 for the correctly classified 

cell counts results in the following 

simple formulae:

Chapter 4 equations

Equation (4.1):

𝐴𝐴𝐴𝐴 =
𝑎𝑎𝑎𝑎 − 𝑁𝑁𝑁𝑁1(1 − sp1)

se1 + sp1 − 1

Equation (4.3):

𝐶𝐶𝐶𝐶 =
𝑐𝑐𝑐𝑐 − 𝑁𝑁𝑁𝑁0(1 − sp0)

se0 + sp0 − 1

Equation (E4.4):

variance (ln(OR)) =
𝑁𝑁𝑁𝑁1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(se1 + sp1 − 1)2

(𝑁𝑁𝑁𝑁1se1 − 𝑎𝑎𝑎𝑎)2(𝑁𝑁𝑁𝑁1sp1 − 𝑎𝑎𝑎𝑎)2 +
𝑁𝑁𝑁𝑁0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(se0 + sp0 − 1)2

(𝑁𝑁𝑁𝑁0se0 − 𝑐𝑐𝑐𝑐)2(𝑁𝑁𝑁𝑁0sp0 − 𝑐𝑐𝑐𝑐)2

Equation (4.5):

𝐿𝐿𝐿𝐿1
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𝑠̈𝑠𝑠𝑠2
− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

Equation (4.6):
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Equation (E4.8):

𝜫𝜫𝜫𝜫 = � specificity 1 − sensitivity
1 − specificity sensitivity �

Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)

𝑐𝑐𝑐𝑐~Binomial(𝑁𝑁𝑁𝑁0, 𝑝𝑝𝑝𝑝0∗)

OR∗ =

𝑝𝑝𝑝𝑝1∗
1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)

𝑝𝑝𝑝𝑝0∗ = 𝑝𝑝𝑝𝑝0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝0)

 

(4.1)

B = N1 − A	 (4.2)
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Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)
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OR∗ =
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1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)
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(4.3)

D = N0 − C	 (4.4)

These formulae enable prediction 

of the data that would have been 

seen (correctly classified) given the 

observed cell counts and posited 

sensitivities and specificities.

This methodology is used in a 

spreadsheet for exposure misclas-

sification (Chapter  6) that accom-

panies the textbook by Fox et al. 

(2021) (https://sites.google.com/site/

biasanalysis/Home; the spreadsheet 

is provided in Annex  2, online only, 

available from: https://publications.

iarc.who.int/634#supmat), as demon-

strated in Examples 4.16 and 4.17.

4.3.2 Tool E-8: multidimen- 
sional analysis

A multidimensional sensitivity analy- 

sis can also be performed, in which 

various combinations of specificities 

or sensitivities in case and control 

participants are used to develop a 

range of bias-adjusted estimates (Fox 

et al., 2005; Johnson et al., 2014; Fox 

et al., 2023; Example 4.18).

  Example 4.15. Using triangulation to assess recall bias

Two exposure assessment approaches were used in population-based case–control studies included in IARC 
Monographs Volume 124, on night shift work (IARC, 2020). The first approach typically used subjective methods 
(questionnaires and interviews) to assess the exposure to night shift work, to ascertain precise information on 
jobs held, as well as start and end times for each job (e.g. Papantoniou et al., 2016). The second approach used 
general population-based JEMs exclusively when characterizing exposure (e.g. Hansen, 2001). The Working 
Group considered the second approach to be prone to a large degree of exposure misclassification in assessing 
night shift work, because it would provide a highly imprecise measure of the exposure (i.e. with non-differential 
information bias, usually towards the null). Therefore, they excluded such studies from further consideration. 
In contrast, the second approach would avoid or minimize differential recall bias. Questionnaires provide more 
precise assessments of the individual exposure, but the reporting might be affected by knowledge of the outcome 
status, resulting in (differential) recall bias (most probably away from the null). The Working Group could have 
compared the findings of studies using these two methods to assess their respective possible biases (which might 
be expected to operate in different directions). (text continues on page 99)

https://sites.google.com/site/biasanalysis/Home
https://sites.google.com/site/biasanalysis/Home
https://publications.iarc.who.int/634#supmat
https://publications.iarc.who.int/634#supmat
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Table 4.1. Relation between correctly classified (uppercase) and observed (lowercase) data in a case–control study 
with misclassification of exposure

Correctly classified Total Observed data

Exposed Unexposed Exposed Unexposed

Case participants A B N1 a = se1A + (1 − sp1)B b = (1 − se1)A + sp1B
Control participants C D N0 c = se0C + (1 − sp0)D d = (1 − se0)C + sp0D

se0, sensitivity for control participants; se1, sensitivity for case participants; sp0, specificity for control participants; sp1, specificity for case participants.

  Example 4.16. Analysis of bias from non-differential exposure misclassification

Fritschi et al. (2013) conducted a population-based case–control study in Western Australia that examined the 
association between shift work and breast cancer risk. The study involved 1202 case participants who had incident 
breast cancer and 1785 frequency age-matched control participants who were identified between 2009 and 2011. 
A self-administered questionnaire was used to collect information on demographic, reproductive, and lifestyle 
factors and lifetime occupational history, and a telephone interview was used to obtain further details about shift 
work and lifestyle risk factors. Weak evidence of an increase in the risk of breast cancer was observed among 
women who worked night shifts (OR, 1.16; 95% CI, 0.97–1.39).

The investigators did not report estimates of the sensitivity or specificity of their exposure measure, but it is 
likely that there was some degree of misclassification, given that the exposures were based on questionnaire data. 
For this exercise, it is assumed that some individuals failed to understand the questions or may not have correctly 
answered the questions for other reasons. It is also assumed that these errors were non-differential with respect 
to disease.

A simple bias analysis can be performed using the methodology described in this section, assuming that the 
misclassification errors in the study were non-differential with respect to the disease and that there was a modest 
amount of error (sensitivity, 80%; specificity, 90%). The crude (i.e. unadjusted for measurement errors) results 
from the study and the results adjusted for misclassification bias are presented in Table  4.2. The crude (i.e. 
unadjusted) odds ratio is 1.16 (95% CI, 0.98–1.38), which is almost identical to the results adjusted for measured 
confounders (OR, 1.16; 95% CI, 0.97–1.39) presented in the paper. However, the odds ratio derived from the 
bias-adjusted data (OR, 1.29) was somewhat greater than the results without adjustment for misclassification, 
suggesting that misclassification of exposure may have biased the results towards the null. Confidence intervals 
for the misclassification-adjusted estimate are available from either Greenland (1988) or Chu et al. (2006). 

Updated Equation (E4.4):

Var(ln OR) =
𝑁𝑁𝑁𝑁1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(se1 + sp1 − 1)2

(𝑁𝑁𝑁𝑁1se1 − 𝑎𝑎𝑎𝑎)2(𝑁𝑁𝑁𝑁1sp1 − 𝑎𝑎𝑎𝑎)2 +
𝑁𝑁𝑁𝑁0𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(se0 + sp0 − 1)2

(𝑁𝑁𝑁𝑁0se0 − 𝑐𝑐𝑐𝑐)2(𝑁𝑁𝑁𝑁0sp0 − 𝑐𝑐𝑐𝑐)2

 

	 (E4.4)

Table 4.2. Observed and misclassification-adjusted results from the case–control study of breast cancer by 
Fritschi et al. (2013) assuming non-differential errors and 80% sensitivity and 90% specificity

Observed data Total Data adjusted for misclassification

Exposed Unexposed Exposed Unexposed

Case participants a = 288 b = 914 N1 = 1202 A = 239.7 B = 962.3
Control participants c = 381 d = 1404 N0 = 1785 C = 289.3 D = 1495.7

In this problem, the resulting variance is 0.023, yielding a 95% confidence interval of (0.96, 1.73). This interval 
is slightly wider than the original interval; this is generally the result for bias analyses. (text continues on page 100)
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Example 4.17. Analysis of bias from differential exposure misclassification

The same methodology as in Example 4.16 can be used to assess exposure misclassification that is differential 
with respect to disease. For example, Mohebbi et al. (2021) reported findings from a case–control study of head 
and neck squamous cell carcinoma (HNSCC) and opium use. The study included 633 case participants with 
head and neck cancer, who had been identified in cancer hospitals in 10 provinces in the Islamic Republic of Iran. 
Control participants (n = 3065) were hospital visitors, frequency-matched to the case participants on age, sex, 
and location. Mohebbi et al. (2021) assessed opium use with a standardized self-reported questionnaire. Overall, 
they reported an increased risk of HNSCC among regular opium users compared with non-users, with an adjusted 
odds ratio of 3.76 (95% CI, 2.96–4.79). Mohebbi et al. (2021) expressed concern over possible misclassification 
of opium use and performed preliminary sensitivity analyses in their study.

In a separate publication, Rashidian et al. (2017) conducted a cross-sectional hospital- and community-based 
validation study of self-reported opioid use, using a urine rapid screening test for opioid metabolites as a validation 
measure, in hospitals that were referral centres for cancer in 4 of the 10 provinces in the Islamic Republic of Iran 
that were included in the case–control study conducted by Mohebbi et al. (2021). This study involved patients who 
were hospitalized with chronic or acute conditions not related to opioid use, who were believed to have a similar 
referral pattern to the case participants, and healthy participants, who were selected from people accompanying 
patients with a chronic condition to a hospital in a manner similar to the method of selecting control participants 
used by Mohebbi et al. (2021). Rashidian et al. (2017, Figure 1) reported results that yielded a sensitivity of 79% 
and a specificity of 83% among hospitalized patients and a sensitivity of 68% and a specificity of 93% among 
healthy participants for self-reported opioid use compared with urine analysis. Note that Rashidian et al. (2017) 
used a composite outcome (urine analysis and thin-layer chromatography) as their gold standard, but in this 
example only urine analysis is used, for ease of presentation.

An adjustment for bias due to the differential misclassification of exposures in the study of Mohebbi et al. 
(2021) can be performed using the estimates of sensitivity and specificity given by Rashidian et al. (2017) and 
the statistical methodology described in this section and in Fox et al. (2021). The crude (i.e. unadjusted for either 
confounding or misclassification) results from the study and the results adjusted for misclassification bias are 
presented in Table 4.3. The crude (i.e. unadjusted) odds ratio from this study is 5.33 (95% CI, 4.42–6.41), and 
the misclassification-bias-adjusted odds ratio is 7.19 (95% CI, 5.17–10.00). It is noteworthy that both the crude 
and misclassification-adjusted results are substantially greater than the confounding-adjusted results presented 
by Mohebbi et al. (2021) (OR, 3.76; 95% CI, 2.96–4.79). This suggests that the confounding-adjusted results are 
biased towards the null due to exposure misclassification, and also that the crude and misclassification-adjusted 
results appear to be biased by confounding, because the crude result differs from the confounding-adjusted result. 
(text continues on page 100)

Table 4.3. Observed and misclassification-adjusted crude results from Mohebbi et al. (2021) using estimates of 
sensitivity and specificity from Rashidian et al. (2017) 

Observed data Total Data adjusted for misclassification

Exposed Unexposed Exposed Unexposed

Case participants a = 295 b = 368 N1 = 663 A = 294.0 B = 369.0
Control participants c = 401 d = 2664 N0 = 3065 C = 305.7 D = 2759.3
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 Example 4.18. Multidimensional sensitivity analysis

In the validation study by Rashidian et al. (2017), 45 of 57 hospitalized people whose urine tested positive for 
opioids also reported use of opioids. From this, we can calculate a sensitivity of 79% with a 95% confidence 
interval of 66–89%. Repeating this for specificity, we obtain a specificity of 83% and a 95% confidence interval of 
76–90%. Among healthy individuals in the validation study, we obtain a sensitivity of 68% (95% CI, 50–82%) and 
a specificity of 93% (95% CI, 87–96%). The sensitivity of the misclassification-adjusted odds ratio from Mohebbi 
et al. (2021) to the chosen values of sensitivity and specificity can be investigated by repeating this bias analysis 
using the estimated upper and lower confidence bounds of sensitivity and specificity. These values were chosen 
because they represent the limits of the sensitivity and specificity values supported by the validation data and 
therefore the most “extreme” possibilities. The results from the multidimensional analysis are shown in Table 4.4. 
At the lower limit of specificity among the control participants (87%), almost all control participants who reported 
opioid use are assumed to have been misclassified, and the misclassification-adjusted number of exposed control 
participants is quite small, resulting in implausibly large misclassification-adjusted odds ratios. The remaining 
permutations of the bias parameters all result in elevated odds ratios; however, four sets of values result in adjusted 
odds ratios that are nearer to 1 than the crude estimate. This illustrates how with differential misclassification one 
can have results that are biased either towards or away from the null. (text continues on page 104)

Table 4.4. Multidimensional analysis of data on opioid use and head and neck squamous cell carcinoma from 
Mohebbi et al. (2021), adjusted for misclassification of self-reported opioid use

Bias parameter Adjusted cell count ORadj

se1 sp1 se0 sp0 A B C D

1 1 1 1 295.0 368.0 401.0 2664.0 5.33
0.66 0.76 0.5 0.87 323.5 339.5 6.9 3058.1 422.87
0.89 0.76 0.5 0.87 209.0 454.0 6.9 3058.1 204.34
0.66 0.9 0.5 0.87 408.4 254.6 6.9 3058.1 711.74
0.89 0.9 0.5 0.87 289.5 373.5 6.9 3058.1 343.92
0.66 0.76 0.82 0.87 323.5 339.5 3.7 3061.3 789.43
0.89 0.76 0.82 0.87 209.0 454.0 3.7 3061.3 381.46
0.66 0.9 0.82 0.87 408.4 254.6 3.7 3061.3 1328.69
0.89 0.9 0.82 0.87 289.5 373.5 3.7 3061.3 642.03
0.66 0.76 0.5 0.96 323.5 339.5 605.2 2459.8 3.87
0.89 0.76 0.5 0.96 209.0 454.0 605.2 2459.8 1.87
0.66 0.9 0.5 0.96 408.4 254.6 605.2 2459.8 6.52
0.89 0.9 0.5 0.96 289.5 373.5 605.2 2459.8 3.15
0.66 0.76 0.82 0.96 323.5 339.5 356.9 2708.1 7.23
0.89 0.76 0.82 0.96 209.0 454.0 356.9 2708.1 3.49
0.66 0.9 0.82 0.96 408.4 254.6 356.9 2708.1 12.17
0.89 0.9 0.82 0.96 289.5 373.5 356.9 2708.1 5.88

ORadj, adjusted odds ratio; se0, sensitivity for control participants; se1, sensitivity for case participants; sp0, specificity for control participants;  
sp1, specificity for case participants.
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4.3.3 Limitations of methods 
for analyses of exposure 
measurement errors

A major limitation of these methods 
that were used to conduct sensitivity 
analyses or adjust for misclassifi-
cation errors is that they all involve 
using the crude results (i.e. unad-
justed results) from the studies and 
thus ignore potential bias due to 
confounding. This is not problematic 
when the crude results are nearly 
equivalent to the results from the 
adjusted analyses, as seen in the 
study by Fritschi et al. (2018). However, 
Mohebbi et al. (2021) found evidence 
of confounding: the crude odds ratio 
(5.33; 95% CI, 4.42–6.41) and the con- 
founding-adjusted odds ratio (3.76; 
95% CI, 2.96–4.79) are appreciably 
different. A technically appropriate 
adjustment for confounding and 
exposure misclassification requires 
access to individual-level data. Such 
approaches are explained in detail in 
Fox et al. (2021). In practice, an IARC 
Monographs Working Group may be 
interested in adjusting for confounding 
(see Chapter 3) and misclassification 

but will generally only have access to 
aggregate data. In this situation, an 
approximate approach that can be 
used to adjust for confounding is to 
compute the ratio of the adjusted and 
crude odds ratios, ignoring misclas-
sification, and apply that ratio to the 
misclassification-adjusted odds ratio, 
as demonstrated in Example  4.19. 
See Chapter 6 for further discussion 
of multiple-bias analysis.

4.3.4 Tool E-9: multiple 
categorical bias analysis

A similar approach to that used for 
binary exposures (Sections  4.3.1 
and 4.3.2) could be taken for a study 
with a larger number of categories of 
exposure. To do this, one would have 
to know the percentage of individuals 
who were incorrectly classified in each 
category, and into which category 
they were inappropriately classified. 
This type of information is less likely 
to be available in epidemiological 
publications and would be particularly 
difficult to obtain for studies with a 
large number of categories, or where 
categories are unique to a particular 

study. However, assuming that the 
information is available, one could 
use this method to conduct a sensi-
tivity analysis (Example 4.20).

The results from this sensitivity 
analysis do not suggest a monotonic 
decrease in risk with increasing dura-
tion of exposure, as was observed in 
the results reported in the study.

4.3.5 Tool E-10: probabilistic 
bias analysis

As mentioned in Sections  4.3.1 and 
4.3.2, one or more values of the 
bias parameters must be specified 
when quantifying bias. The approach 
described in this section, probabilistic 
bias analysis, is an extension of multi-
dimensional bias analysis and en- 
ables incorporation of the uncertainty 
in the bias parameters into the mea- 
sures of association. In practice, prob- 
abilistic bias analysis involves spec-
ifying a probability distribution for 
each bias parameter that repre-
sents the uncertainty in the values. 
Samples are repeatedly drawn from 
each bias parameter distribution, and 
a simple bias analysis is repeated for 
each set of sampled bias parameters. 

Example 4.19. Sensitivity analysis for both confounding and misclassification

For the study by Mohebbi et al. (2021), the ratio of the confounding-adjusted odds ratio to the crude odds ratio 
is 3.76/5.33 = 0.705. This ratio is the extent to which the observed crude odds ratio is altered after adjusting 
for confounding, and it can be applied to the misclassification-adjusted odds ratios calculated previously. For 
example, when adjusting for misclassification of opioid use, a misclassification-adjusted odds ratio of 7.19 was 
found. Multiplying this effect by the ratio of the confounding-adjusted odds ratio to the crude odds ratio gives an 
approximate estimate of a confounding- and misclassification-adjusted odds ratio of 7.19 × 0.705 = 5.07. Adjustment 
for misclassification bias increased the odds ratio, whereas adjustment for confounding bias decreased the odds 
ratio. In this example, the two sources of bias nearly cancel each other out, resulting in a bias-adjusted odds ratio 
that is very similar to the crude odds ratio. However, this will not always be the situation. (text continues above)
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The uncertainty in the bias parame-
ters is thus taken into account in the 
resulting error-adjusted estimates. 
The distribution of the error-adjusted 
estimates gives the analyst a more 
complete idea of the distribution of 
plausible effects than can be obtained 
through simple bias analysis or multi-
dimensional bias analysis, and it 
is used to derive point and interval  
estimates, such as the median or 

the 95% simulation interval (i.e. the 
interval between the 2.5th and the 
97.5th percentiles). Probabilistic bias 
analysis relies on the assumption that 
the specified bias parameter distribu-
tions are valid. Fox et al. (2021) provide 
more detailed information about prob-
abilistic bias analysis and extend the 
idea of probabilistic bias analysis 
outlined here by incorporating random 
error introduced by the data collection 

process in addition to systematic 

error arising from misclassification 

(the accompanying spreadsheets as 

well as SAS and R code help facilitate 

application of the method; see Fox 

et al., 2021 and https://sites.google.

com/site/biasanalysis/Home; R code 

is provided online only, available 

from: https://publications.iarc.who.

int/634#supmat); see Example 4.21.

 Example 4.20. Sensitivity analysis for categorical exposure misclassification

Fritschi et al. (2013) conducted a population-based case–control study that examined the association between 
shift work and breast cancer risk (as described in Section 4.3.1). An inverse exposure–response relation was 
observed in the study for duration of work in the night shift and breast cancer risk, as summarized in Table 4.5.

Table 4.5. Association between duration of exposure to working in the night shift and breast cancer risk (Fritschi 
et al., 2013)a

Duration of exposure Case participants Control participants Crude OR  
(95% CI)

Age-adjusted OR 
(95% CI)

Never 914 1404 Reference Reference
< 10 years 164 199 1.27 (1.01–1.59) 1.25 (1.00–1.56)
10 to < 20 years 71 98 1.11 (0.80–1.54) 1.09 (0.79–1.50)
≥ 20 years 53 84 0.97 (0.67–1.40) 1.02 (0.71–1.45)

CI, confidence interval; OR, odds ratio.
a Crude odds ratios were estimated using data presented in Table 2 in Fritschi et al. (2013). Confidence intervals were estimated using exact 
methods.

To check whether exposures were being underestimated in this study, a sensitivity analysis might be conducted, 
with the assumption that 20% of each category belonged in the next highest category. This would yield the adjusted 
results presented in Table 4.6. (text continues on page 104)

Table 4.6. Sensitivity analysis, assuming that 20% of case and control participants in each category should be 
in the next highest exposure group

Duration of exposure Case participants Control participants Misclassification-adjusted  
odds ratio

Never 731.2 1123.2 Reference
< 10 years 314.0 440.0 1.10
10 to < 20 years 89.6 118.2 1.16
≥ 20 years 67.2 103.6 1.00

https://sites.google.com/site/biasanalysis/Home
https://sites.google.com/site/biasanalysis/Home
https://publications.iarc.who.int/634#supmat
https://publications.iarc.who.int/634#supmat
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4.3.6 Tool E-11: regression 
calibration for continuous  
and categorized measures  
of exposure

(a) Continuous measures of 
exposure

In Section  4.2.1 it was discussed 
how errors in exposure measurement 
might cause bias in the estimated 
associations of the exposure with 
health outcomes. Regression cali-
bration (Rosner et al., 1990; Section 5 

of Keogh et al., 2020) is a statistical 
method to account for non-differential 
measurement errors in an exposure 
that is measured on a continuous 
scale, yielding an estimate that, in the 
best circumstances, is free from such 
bias, or at least has bias that is consid-
erably reduced (Example 4.22a).

Regression calibration can be used 
to provide adjustment for non-differ-
ential measurement errors in epide-
miological models. Simple regression 
calibration requires the following three 

basic steps. (To keep the description 
simple, confounder variables are not 
shown in the models.)
•	Step (i). Regress the outcome (Y) 
on the measured exposure (X *) to 
obtain a raw estimate of the as-
sociation through a rate ratio or a 
hazard ratio. For example, the out-
come model may be a Cox regres-
sion model, h(t)  =  h0(t)exp(β1X *), 
where h(t) is hazard of an event 
(Y = 1) at time t and the association 
is measured as β1, the log hazard 

Example 4.21. Probabilistic bias analysis for exposure misclassification

The example described in Sections 4.3.1 and 4.3.2 on the association between differentially misclassified opium 
use and HNSCC provides a good illustration of probabilistic bias analysis. To express the uncertainty in each of 
the bias parameters, a triangular distribution is used as the bias parameter distribution, with the most probable 
values from Rashidian et al. (2017) as the mode and the respective limits of the 95% confidence intervals as the 
limits of the triangular distribution (Table 4.7). Probabilistic bias analysis is applied, as described in Fox et al. 
(2021), to account for random and systematic errors. We assumed no correlation between sensitivities among 
cases and controls or between specificities among cases and controls, although other assumptions are available.

Table 4.7. Parameters of triangular distributions used as bias parameter distributions for probabilistic bias analysis 
of data from Mohebbi et al. (2021) on misclassified opium use and head and neck squamous cell carcinoma

Bias parameter Distribution parameters of triangular distribution

Minimum (%) Mode (%) Maximum (%)

se1 66 79 89
sp1 75 83 90
se0 50 68 82
sp0 87 93 96

se0, sensitivity for control participants; se1, sensitivity for case participants; sp0, specificity for control participants; sp1, specificity for case 
participants.

Fig. 4.2 shows the distribution of the error-adjusted odds ratios from 100 000 iterations. The median error-
adjusted odds ratio is 8.66, with a 95% simulation interval of 4.13–38.9. About 89% of the error-adjusted odds 
ratios are greater than the unadjusted odds ratio of 5.33, indicating a bias towards the null in the analysis of 
Mohebbi et al. (2021). Because the 95% simulation interval is much wider than the 95% confidence interval 
of the unadjusted odds ratio, and because neglecting random error changes the error-adjusted odds ratio only 
slightly (median error-adjusted OR, 8.62; 95% simulation interval, 4.41–37.33, based on 10 000 iterations), the 
potential effect of systematic error due to exposure misclassification on the analysis is stronger than the effect of 
random error. This bias analysis offers some confirmation that the positive association in Mohebbi et al. (2021) is 
not a spurious finding from exposure misclassification, and it also highlights the extreme uncertainty around the 
magnitude of effect after adjusting for misclassification. (text continues above)
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ratio for a unit increase in the mea-
sured exposure (Example 4.22b).

•	Step (ii). An attenuation factor, 
usually denoted by λ, is estimat-
ed from some validation data. The 
simplest way to estimate λ is to 
obtain a reference (gold standard) 
measure of the exposure (X) in a 
subgroup of participants and per-
form a linear regression of X on 
X *: X  =  λ0  +  λX *  +  ε. This model 
is called the calibration model, and 
the attenuation factor is estimated 
as the regression coefficient, λ, of 
X * (λ0 represents an offset value, 
and ε represents the error term). 
When reference measurements 
are not available, even in a sub-
group of participants, the attenua-
tion factor might be estimated from 
data that are external to the study 
(Example 4.22c).

When external data are used to 
estimate the attenuation factor, 
the study being analysed and the 
external study must be similar 
with respect to the main assess-
ment instrument used to measure 
the exposure, the distribution 
of exposure among the popula-
tion, and the covariates used for 
adjustment.

•	Step (iii). The association is ad-
justed for measurement error by 
dividing the estimated associa-
tion parameter β1 by the estimat-
ed attenuation factor; in mathe-
matical notation, β1-adjusted  =  β1/λ 
(Example 4.22d).
These three steps form the core 

of the regression calibration method 
in its simplest form. Different types 
of validation data can be used when 

Example 4.21. Probabilistic bias analysis for exposure misclassification (continued)

Fig. 4.2. Distribution of error-adjusted odds ratios (ORs) resulting from probabilistic bias analysis of data from 
Mohebbi et al. (2021) on misclassified opium use and head and neck squamous cell carcinoma.

In most applications, as in Example 4.22, the attenuation factor (λ) in 
regression calibration is positive and less than 1, and usually ranges 
between 0.3 and 0.7, indicating, respectively, limited and adequate ac-
curacy of the observed assessments compared with the truth. There-
fore, the adjustment of dividing by λ inflates, or de-attenuates, the esti-
mated association. Sensitivity analyses using a range of estimates for 
this attenuation factor (e.g. 0.3–0.7) can provide an understanding of 
the magnitude of the underestimation of the risk due to measurement 
error.

Key message

Density
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 Example 4.22a. Regression calibration for adjustment for measurement error

Within the Swedish Mammography Cohort, a rate ratio for colorectal cancer incidence of 1.20 (95% CI, 0.99–1.45) 
was reported for an increase of 100 g/day of red meat intake (Larsson et al., 2005). Red meat intake was based 
on dietary intake, self-reported in a food frequency questionnaire, which was subject to measurement errors. The 
estimated rate ratio needed to be adjusted for these errors. (text continues on page 106)

 Example 4.22b. Regression calibration for adjustment for measurement error (continued) 

In the Swedish Mammography Cohort, β1 was estimated as ln(1.20) = 0.18. (text continues on page 107)

 Example 4.22c. Regression calibration for adjustment for measurement error (continued) 

In the Swedish Mammography Cohort, no reference measurements were available. However, an attenuation factor 
could be estimated from data collected within the European Prospective Investigation into Cancer and Nutrition 
(EPIC), a large prospective study with more than 500 000 participants recruited in 10 European countries (Riboli 
et al., 2002). Reference measurements based on 24-hour recall data obtained from a subset of 36 994 participants 
were used to estimate an attenuation factor for food frequency questionnaire self-reported red meat intake of 0.51. 
(text continues on page 107)

 Example 4.22d. Regression calibration for adjustment for measurement error (continued) 

In the Swedish Mammography Cohort, the adjusted log hazard ratio was estimated as ln(1.20)/0.51 = 0.357; from 
this value, the adjusted hazard ratio may be estimated as exp(0.357) = 1.43. (text continues on page 107)

 Example 4.22e. Estimating an adjusted confidence interval with regression calibration 

In the Swedish Mammography Cohort, the unadjusted hazard ratio for colorectal cancer per increment of 100 g/day 
of red meat intake was reported as 1.20, with a 95% confidence interval of 0.99–1.45. Thus, the confidence 
interval for the log hazard ratio of 0.18 was ln(0.99) to ln(1.45), that is, from −0.01 to 0.37. The attenuation factor, 
λ, that was used for adjustment was 0.51. A simple approximate way of estimating the confidence limits for the 
adjusted log hazard ratio is to divide by λ, giving −0.02 to 0.73. Converting back to the hazard ratio scale, by 
exponentiating, gives a 95% confidence interval of 0.98–2.07 for the adjusted hazard ratio (recall that its value 
was 1.43). (text continues on page 109)
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estimating the attenuation factor, 
depending on the type of measure-
ment error (see Section 4 of Keogh 
et al., 2020). This description does not 
include other covariates in the expo-
sure–outcome model or in the ex- 
posure calibration model. Any other 
covariates that are included in the 
outcome model should also be 
included in the calibration model. In 
Example 4.22, and for most external 
validation data, the attenuation factor 
is derived from a calibration model 
that does not include the same covar-
iates as the outcome model. In that 
situation, the estimated attenuation 
factor must be regarded as an approx-
imation that may carry some bias.

Within the context of expert re- 
views, such as IARC Monographs 
evaluations, an important constraint 
is that the implementation of regres-
sion calibration must usually rely on 
external data, because attenuation 
factors are not reported for most 
studies. Therefore, the resulting ad- 
justed estimate of the association 
parameter should be regarded as a 
ballpark estimate. For an example 
of regression calibration carried out 
using the original study data, as rec- 
ommended wherever possible, see 
the description of a study of red meat 
consumption and colorectal cancer in 
Section 7.4.3.

Approximate upper and lower con- 
fidence limits for the adjusted associ-
ation can also be estimated. In math-
ematical notation, if L1 and L2 are the 
upper and lower confidence limits 
for the association parameter β1 (in 
Example 4.22, the log hazard ratio), 
then the adjusted confidence limits 
are L1/λ and L2/λ (Example 4.22e).

As shown in Example  4.22e, the 
regression calibration adjustment 
makes the confidence interval wider, 

expressing the extra uncertainty in 
the estimated association caused 
by the measurement error. Note also 
that, using this method, if the unad-
justed confidence interval for the 
association covers the null value, the 
adjusted confidence interval will still 
cover the null value. Thus, in general, 
this ballpark adjustment will not alter 
the judgement of whether the asso-
ciation is statistically significant, but, 
importantly, it will provide a better 
understanding of the likely magnitude 
of the association.

Note that this method of adjusting 
the confidence interval for the asso-
ciation is approximate and does not 
take into account the uncertainty in 
the estimate of the attenuation factor, 
λ. Rosner et al. (1989) give a method 
of incorporating this uncertainty into 
the confidence interval, which makes 
the interval still wider than the one 
estimated from the simple method 
provided here. For expert reviews in 
which access to original study data 
is lacking, the method of Rosner 
et al. (1989) could be used, but only 
when the attenuation factor estimate 
that is available is accompanied by 
an estimate of its standard error. In 
mathematical notation, suppose that 
the standard error of λ is s and the 
standard error of the unadjusted esti-
mate of the association parameter 
β1 is se, and that its 95% confidence 
limits, as before, are denoted by L1 
and L2. Then the lower confidence 
interval of the adjusted association 
parameter is given by
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Equation (4.1):

𝐴𝐴𝐴𝐴 =
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Equation (4.3):

𝐶𝐶𝐶𝐶 =
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Equation (E4.8):

𝜫𝜫𝜫𝜫 = � specificity 1 − sensitivity
1 − specificity sensitivity �

Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)

𝑐𝑐𝑐𝑐~Binomial(𝑁𝑁𝑁𝑁0, 𝑝𝑝𝑝𝑝0∗)

OR∗ =

𝑝𝑝𝑝𝑝1∗
1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)

𝑝𝑝𝑝𝑝0∗ = 𝑝𝑝𝑝𝑝0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝0)

	
(4.5)

and the upper confidence interval is 
given by
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variance (ln(OR)) =
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Equation (E4.8):

𝜫𝜫𝜫𝜫 = � specificity 1 − sensitivity
1 − specificity sensitivity �

Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)

𝑐𝑐𝑐𝑐~Binomial(𝑁𝑁𝑁𝑁0, 𝑝𝑝𝑝𝑝0∗)

OR∗ =

𝑝𝑝𝑝𝑝1∗
1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)

𝑝𝑝𝑝𝑝0∗ = 𝑝𝑝𝑝𝑝0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝0)

	  
(4.6)

When s, the standard error of λ, is 
set to zero, the formulae revert to 
the adjusted limits L1/λ and L2/λ given 
by the simpler method described 
previously.

To conclude this subsection, note 
that caution must be taken in using 
attenuation coefficients from sub- 
studies that use a self-report instru-
ment, albeit one that is more accu-
rate than the main study self-report 
instrument, as a reference measure. 
In the example of the EPIC study 
given here, 24-hour recall data were 
used as a reference measure for a 
food frequency questionnaire. The 
errors on two self-report instruments 
will often be correlated, introducing 
bias in the estimate of the attenua-
tion coefficient. However, in dietary 
studies there is usually no feasible 
alternative, except for a limited num- 
ber of nutrients, such as energy, 
protein, potassium, and sodium, for 
which reference biomarkers can be 
used.

(b) Categorized measure of 
exposure: mobile phone use  
and gliomas

The ballpark adjustment using the 
attenuation factor, as described in 
Section  4.3.6(a), is applicable when 
the exposure variable used in the 
exposure–outcome association mod- 
el is continuous. However, the expo-
sure–outcome association parameter 
is often expressed in terms of catego-
rized exposure variables, for example 
when the continuous exposure is 
transformed into quintiles of its distri-
bution. In nutritional epidemiology, it 
is quite common to report the relative 
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risk of a disease in the highest quintile 
of the dietary intake compared with 
the lowest quintile.

Example 4.23 illustrates this type 
of adjustment.

4.3.7 Tool E-12: other methods 
for quantifying bias

In this section, three methods that are 
commonly used to adjust estimates 
for exposure measurement error – 
simulation extrapolation (SIMEX), the 
Bayesian method, and multiple im- 
putation – are described in Side 
Boxes  4.2, 4.3, and 4.4, as other 
methods for quantifying bias due to 
exposure measurement error. How- 
ever, because these approaches gen- 
erally require individual-level data, 
they are only briefly outlined here 
with regard to summary-level data. 

Table  4.8 describes the process 
descriptions and situations in which 
these methods are preferable to 
those described previously.

4.4 Outcome misclassification

4.4.1 Non-differential outcome 
misclassification

In cancer epidemiology studies, out- 
come misclassification is not as 
common an issue as exposure mis- 
classification but may still occur under 
some circumstances (Example 4.26).

Like mismeasurement of the expo-
sure, misclassification or measurement 
error in the outcome can also bias 
results in epidemiological studies. 

The approximate adjustment is 
achieved by using, in place of 
the attenuation coefficient, the 
correlation coefficient between 
the continuous true and ob-
served exposures (Kipnis and 
Izmirlian, 2002), sometimes 
referred to as the validity coef-
ficient. In other words, for cate-
gorized exposures, the associ-
ation parameter estimated from 
the observed exposure can be 
adjusted for measurement error 
by dividing the estimate by the 
correlation coefficient, instead of 
by the attenuation factor. 

Key message

 Example 4.23. Bias adjustment for misclassified categorical exposures

Momoli et al. (2017, Table  5) analysed the Canadian data of the 13-country case–control Interphone study 
(INTERPHONE Study Group, 2010), reporting an estimated odds ratio of 2.0 (95% CI, 1.2–3.4) for glioma among 
the category of participants reporting a lifetime cumulative mobile phone use of more than 558 hours, compared 
with a reference category (reporting never use, irregular use, use only within a year before the reference date, 
or use only with a hands-free device). The odds ratio estimate was derived from a conditional logistic regression 
model, adjusting for age, sex, region, education level, and interview lag. The simple ballpark adjustment of this 
odds ratio estimate for non-differential random error in exposure measurements is considered here.

Recall that the estimated association parameter is to be divided by the correlation coefficient between measured 
and true exposure. Vrijheid et al. (2006) describe a validation study in which data from 672 Interphone participants 
who reported cumulative hours of mobile phone use were compared with records obtained from their network 
operators, assumed to be their true exposure. The study-wide correlation coefficient between reported and true 
use measured on the logarithmic scale was 0.69, where recall was approximately 6 months after the actual use.

To perform the adjustment, first the odds ratio (2.0) and its confidence limits (1.2, 3.4) are converted to the 
natural log scale, because they are originally estimated from a logistic regression model:

ln OR = 0.69;    95% CI = (0.18, 1.22)	 (E4.5)

These values are then divided by the correlation coefficient, 0.69:

adjusted ln OR = 1.00;    adjusted 95% CI = (0.26, 1.77)	 (E4.6)

Finally, these values are converted back to the original scale, by taking their exponent:

adjusted OR = 2.7;     adjusted 95% CI = (1.3, 5.9)	 (E4.7)

Thus, after adjusting for non-differential random measurement error, the estimated odds ratio is increased from 2.0 
to 2.7, and its confidence interval is considerably wider, especially at the upper end. (text continues above)
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Table 4.8. Methods of adjustment for measurement error and situations in which they may be preferred

Method Process description Preferable in the following situations

Probabilistic bias 
analysis

Bias parameters are simulated. Original study data are unavailable 
Bias model is known

MC-SIMEX Increasing misclassification is simulated. Exposure variable with more than two categories 
Multiple regression models

Bayesian method Bias parameters, risk parameters, and other model 
parameters are simulated.

Integration of prior knowledge about model 
parameters other than bias parameters 
Flexible specification of the model beyond standard 
choices

Multiple imputation The missing true exposure values are simulated. Internal validation data are available 
Flexible specification of the risk model 
Bias model is unknown

MC-SIMEX, simulation extrapolation for misclassification.

 Side Box 4.2. Simulation extrapolation for misclassification (MC-SIMEX) 

In general, SIMEX (Cook and Stefanski, 1994) is a two-step approach: simulation and extrapolation. In the 
simulation step, the relation between the magnitude of the measurement error and the unadjusted risk estimate is 
approximated. For this purpose, the unadjusted regression model (e.g. a logistic regression model) is estimated 
several times using exposure data with gradually increasing measurement error. In the extrapolation step, the 
relation between the magnitude of the measurement error and the unadjusted risk estimates is extrapolated to the 
situation with no measurement error, yielding the error-adjusted risk estimate (see Fig. 4.3).

Fig. 4.3. Risk estimation using simulation extrapolation (SIMEX). Solid circles, unadjusted risk estimates based 
on observed and simulated data. Open circle, adjusted risk estimate. Solid line, model for the relation between the 
magnitude of the measurement error and the unadjusted risk estimates. Dashed line, extrapolation of the model 
to the situation with no measurement error.
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It is worth emphasizing that, as with 
non-differential exposure misclassi-
fication, bias towards the null from 
non-differential outcome misclassi-
fication is only an expectation; the 
results from an individual study could 
be biased away from the null due to 
random error.

In epidemiological studies of can- 
cer, outcome misclassification may 
arise for several reasons. In studies 
that rely on cancer or death certifi-
cate registries, misclassification can 
result from error-prone data in the 

registries related to changes in diag- 

nostic codes, incomplete data, or data 

coding errors. For certain cancers, 

there may also be problems with 

imperfect sensitivity and specificity 

(Example 4.27).

Outcome misclassification can 

also result when tumour character-

istics are overlooked, for example 

histological subtype or hormone 

receptor status (e.g. breast cancer) 

or aggressiveness (e.g. prostate 

cancer), which can have different risk 

factors, or from cancer misdiagnosis 

(e.g. peritoneal mesothelioma misdi-

agnosed as ovarian cancer), as in 

Example 4.28. This will be problem-

atic if an exposure is exclusively or 

disproportionately associated with 

only one cancer subtype.

4.4.2 Differential outcome 
misclassification

Outcome classification errors that are 
differential with respect to exposure 
can bias results in either direction 
(Example 4.29).

4.4.3 Quantitative assessment 
of bias due to outcome 
misclassification

The methods described in Sec- 
tions  4.3.1 and 4.3.2 can also be 
used to conduct sensitivity analyses 
of outcome misclassification based 
on assumptions about sensitivity 
and specificity or using data from 
a validation study (Gilbert et al., 
2016). Analyses based on the cancer 
screening history of study subjects 
can also help to capture the magni-
tude of errors resulting from outcome 
misclassification (Example 4.30).

Bias from outcome misclassifica-
tion is generally expected to be 
towards the null if the errors are 
non-differential with respect to 
exposure (i.e. there is no associ-
ation between exposure and the 
misclassification errors). 

Key message

 Side Box 4.2. Simulation extrapolation for misclassification (MC-SIMEX) (continued)

The SIMEX for misclassification (MC-SIMEX) method is based on the SIMEX concept; the main differences are 
that the error-prone variable X * is a discrete variable with k categories and that the magnitude of the measurement 
error is specified by the k × k misclassification matrix Π (Küchenhoff et al., 2006). In the situation of a single 
misclassified binary variable, the misclassification matrix can be determined using sensitivity and specificity:

Chapter 4 equations

Equation (4.1):

𝐴𝐴𝐴𝐴 =
𝑎𝑎𝑎𝑎 − 𝑁𝑁𝑁𝑁1(1 − sp1)

se1 + sp1 − 1

Equation (4.3):

𝐶𝐶𝐶𝐶 =
𝑐𝑐𝑐𝑐 − 𝑁𝑁𝑁𝑁0(1 − sp0)

se0 + sp0 − 1

Equation (E4.4):

variance (ln(OR)) =
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Equation (E4.8):

𝜫𝜫𝜫𝜫 = � specificity 1 − sensitivity
1 − specificity sensitivity �

Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)

𝑐𝑐𝑐𝑐~Binomial(𝑁𝑁𝑁𝑁0, 𝑝𝑝𝑝𝑝0∗)

OR∗ =

𝑝𝑝𝑝𝑝1∗
1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)

𝑝𝑝𝑝𝑝0∗ = 𝑝𝑝𝑝𝑝0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝0)

 
(E4.8)

The two steps in MC-SIMEX are simulation and extrapolation (Küchenhoff et al., 2006).
• Simulation: Simulate data with gradually increasing misclassification by reclassifying the observed data. 
Estimate the unadjusted regression model for each magnitude of misclassification.

• Extrapolation: Fit a parametric model for the unadjusted risk estimates depending on the magnitude of 
misclassification. Extrapolating this model to the situation with no misclassification yields the error-adjusted 
risk estimate.

Applications of this method can be found, for example, in Heid et al. (2008), Slate and Bandyopadhyay (2009), 
and Costas et al. (2015).

In contrast to the previously mentioned methods, MC-SIMEX can be used for an exposure variable with more 
than two categories and for multiple regression models. In addition, the approach to bias analysis with MC-SIMEX 
is very different from other bias analysis methods: all the necessary information about the misclassification is 
given in the misclassification matrix, so there is no need to specify a bias model. (text continues on page 110)
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 Side Box 4.3. Bayesian methods for error adjustment

A Bayesian approach allows for a very flexible consideration of the uncertainty regarding the bias parameters (e.g. 
dependencies between bias parameters). Bayesian approaches are used to estimate the distribution of the model 
parameters of interest from the prior distributions of the unobserved quantities and the data. A Bayesian model for 
quantifying bias consists of three model components (Fox et al., 2021):

• the risk model, i.e. the regression model, for the observed data;
• the bias model, i.e. the model describing the relation of the parameters in the risk model for the observed data  

and the corresponding error-free parameters; and
• the prior distributions for the unobserved quantities.
The prior distributions for the bias parameters included in the third model component correspond to the 

probability distributions for the bias parameters in the probabilistic bias analysis (Section 4.3.5). We chose trun- 
cated normal distributions for this example, but non-truncated normal distributions will generally be preferred. 
Application of both the Bayesian and probabilistic approaches requires a high degree of understanding and care 
(Fox et al., 2021).

The Bayesian model components for non-differential exposure misclassification in a case–control study are 
given in Example 4.24. The numbers of people observed to be exposed among case and control participants 
are modelled using binomial distributions, providing the odds ratio as a risk measure in the risk model. The 
relations between the proportions of the truly exposed and those observed to be exposed among case and control 
participants are described using sensitivity and specificity as bias parameters in the bias model. Because the error 
is non-differential, sensitivity and specificity do not differ between case and control participants. Independent beta 
distributions are chosen as prior distributions for the sensitivity and specificity.

This Bayesian model for quantifying bias includes both the parameters of the risk model, from which the 
carcinogenic risk estimate can be derived, and the bias parameters. In addition to prior information about the bias 
parameters, which is equivalent to the distribution placed on the sensitivity and specificity in probabilistic bias 
analysis, Bayesian methods can use prior distributions of other parameters (e.g. the risk parameter). Because 
Bayesian methods themselves already involve iterative sampling of data and parameters, their application for 
quantifying bias comprises only a single modelling step, which accounts simultaneously for the uncertainties in the 
parameters of the risk model and the bias parameters. More details on the difference between the Bayesian and 
probabilistic approaches to quantifying bias due to exposure misclassification can be found in Chu et al. (2006), 
MacLehose and Gustafson (2012), and Corbin et al. (2017). (text continues on page 110)

Example 4.24. Bayesian model components for non-differential exposure misclassification in a case–control study

Observed data

a Number of people observed to be exposed among case participants N1 Number of case participants
c Number of people observed to be exposed among control participants N0 Number of control participants
(1) Risk model (2) Bias model (3) Prior distributions
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Equations in Example 4.24:

(1) Risk model
𝑎𝑎𝑎𝑎~Binomial(𝑁𝑁𝑁𝑁1, 𝑝𝑝𝑝𝑝1∗)

𝑐𝑐𝑐𝑐~Binomial(𝑁𝑁𝑁𝑁0, 𝑝𝑝𝑝𝑝0∗)

OR∗ =

𝑝𝑝𝑝𝑝1∗
1 − 𝑝𝑝𝑝𝑝1∗
𝑝𝑝𝑝𝑝0∗

1 − 𝑝𝑝𝑝𝑝0∗

(2) Bias model
𝑝𝑝𝑝𝑝1∗ = 𝑝𝑝𝑝𝑝1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝1)

𝑝𝑝𝑝𝑝0∗ = 𝑝𝑝𝑝𝑝0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (1 − 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝)(1 − 𝑝𝑝𝑝𝑝0)

Unadjusted risk estimate:
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𝑝𝑝𝑝𝑝0~Beta(𝛼𝛼𝛼𝛼2,𝛽𝛽𝛽𝛽2)
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𝑝𝑝𝑝𝑝0

1 − 𝑝𝑝𝑝𝑝0

(3) Prior distributions
𝑝𝑝𝑝𝑝1~Beta(𝛼𝛼𝛼𝛼1,𝛽𝛽𝛽𝛽1)

𝑝𝑝𝑝𝑝0~Beta(𝛼𝛼𝛼𝛼2,𝛽𝛽𝛽𝛽2)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠~Beta(𝛼𝛼𝛼𝛼3,𝛽𝛽𝛽𝛽3)
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Equation (E4.10):
𝜫𝜫𝜫𝜫0 = �0.93 0.32

0.07 0.68�

Source: Adapted from Fox et al. (2021).
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 Side Box 4.4. Multiple imputation

Exposure measurement errors can be considered to be a problem of missing data: true exposure values are 
missing. Therefore, methods of accounting for missing data, such as multiple imputation, can be used to calculate 
error-adjusted estimates directly and to quantify bias due to exposure measurement error (Greenland, 2009). A 
prerequisite for the use of multiple imputation is the availability of adequate prior information on the true exposure 
values, usually in the form of internal validation data for a subset of individuals. From this, an imputation model 
for the true exposure is estimated in conjunction with the other study data (e.g. outcome and observed exposure). 
Random draws are generated based on the imputation model and serve as true exposure values (imputation). 
These are then used to calculate a risk estimate (estimation). Imputation and estimation are repeated several times, 
and the error-adjusted risk estimate is obtained by combining the risk estimates from the individual iterations, as 
shown in Example 4.25.

Example 4.25. Opium use and HNSCC – bias analysis for categorical data

Quantifying bias due to misclassification using SIMEX, the Bayesian method, or multiple imputation usually 
requires the original study data. Only a very few scientific publications provide sufficient information for the 
application of these methods. To provide insight into the application of the Bayesian method and SIMEX, 
we again examine the example from Sections 4.3.1–4.3.3 and 4.3.5 on differentially misclassified opium 
use and HNSCC (Mohebbi et al., 2021). Multiple imputation cannot be used, because of a lack of internal 
validation data; as a way of working around this constraint, artificial validation data were generated and 
multiple imputation could then be applied to the example in this section, using the artificial validation data 
that had been generated.

The three components of Bayesian bias analysis are the same as in the example in Side Box 4.3. To apply 
this model, one must specify these components. The risk model results from the original scientific publication, 
and the bias model results from theoretical considerations. The prior distributions are selected during the 
bias analysis. Because there is no prior knowledge about the true proportions of exposed individuals among 
case participants (p1) or among control participants (p0), uninformative uniform priors with parameters 0 and 
1 are chosen; this is equivalent to a beta distribution with both parameters equal to 1 (α1 = β1 = α2 = β2 = 1). 
Truncated normal distributions are used as the prior distributions for the bias parameters, i.e. sensitivity and 
specificity among case and control participants. As in Section 4.3.5, the distribution parameters are derived 
from the validation study of Rashidian et al. (2017). The parameters of the normal distribution are specified 
by the parameters of the approximate normal distribution of the bias parameter estimate, and the normal 
distribution is truncated at the limits of the 95% confidence interval of the bias parameter estimate, as shown 
in Table 4.9.

Table 4.9. Distribution of the bias parameters for sensitivity and specificity, using the truncated normal 
distribution

Bias parameter Expectation (%) Distribution parameters of the truncated normal distribution

Standard deviation Minimum (%) Maximum (%)

se1 79 0.054 00 66 89
sp1 83 0.033 77 76 90
se0 68 0.076 96 50 82
sp0 93 0.021 42 87 96

se0, sensitivity for control participants; se1, sensitivity for case participants; sp0, specificity for control participants; sp1, specificity for 
case participants.
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 Side Box 4.4. Multiple imputation (continued)

Example 4.25. Opium use and HNSCC – bias analysis for categorical data (continued)

With these choices, the error-adjusted odds ratio is 7.66. Because truncated normal distributions were 
chosen as the prior distributions, the result differs from that of the probabilistic bias analysis (where the error-
adjusted odds ratio is 8.66), even though uninformative priors were chosen for p1 and p0.

To apply the MC-SIMEX method, one must calculate the unadjusted regression model, in this situation, a 
logistic regression model, and specify the misclassification matrices for case participants,

OR =

𝑝𝑝𝑝𝑝1
1 − 𝑝𝑝𝑝𝑝1
𝑝𝑝𝑝𝑝0
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(3) Prior distributions
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and control participants,
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(E4.10)

With the unadjusted regression model and the misclassification matrix, an error-adjusted odds ratio of 6.8 
is obtained, using the R package simex (Lederer et al., 2019). (text continues on page 110)

 Example 4.26. Non-differential outcome misclassification in studies of low-dose ionizing radiation

Linet et al. (2020) reviewed the potential for misclassification of leukaemia and all-cancer diagnosis in 26 studies 
of low-dose radiation exposure. False-negatives (underdiagnoses) were likely in only 2 of the 17 cancer incidence 
studies and 2 of the 9 mortality studies. False-positives (overdiagnoses) were likely in only one of the cancer 
incidence studies. Issues with the accuracy of the diagnoses were found in only two studies. (text continues on 
page 110)

 Example 4.27. Non-differential outcome misclassification from underdiagnosis of prostate cancer

Bell et al. (2015) found the prevalence of incidental prostate cancer at autopsy to range from 5% (95% CI, 3–8%) 
at age < 30 years to 59% (95% CI, 48–71%) at age > 79 years. This may mean that undiagnosed prostate cancers 
are often classified as non-cases; this possibility is often overlooked in both cohort and case–control studies. (text 
continues on page 112)
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4.5 Summary

Errors in the measurement of both 
exposures and outcomes are potential 
sources of information bias in epide-
miological studies. The errors for 
exposure measurement may be due 
to either misclassification (for a cate- 
gorical classification) or mismea
surement (for a continuous measure). 
Unless exposure is measured pro- 
spectively, epidemiological studies of 
exposures associated with cancer risk 
are particularly prone to this source 
of bias, because many cancers have 

a long latency (time since first expo-
sure) period (e.g. >  20  years), and 
therefore the relevant exposures may 
have occurred many years earlier. 
Misclassification or mismeasurement 
of cancer outcomes is less common 
but may occur when mortality data 
rather than incidence data are used, 
when case ascertainment is low (e.g. 
because of poor access to diagnostic 
health care), when a diagnostic test 
is used that has poor sensitivity 
and specificity (e.g. for prostate 
cancer), or because of changes in 
diagnostic categories over time (e.g. 

for mesothelioma or lymphatic and 
haematopoietic neoplasms).

Table  4.10 summarizes the ex- 
pected direction of the bias for  
different types of error. If the errors in 
exposure measurement are random 
and non-differential with respect to 
disease status, the resulting infor-
mation bias would be expected to 
be towards the null in studies with a 
binary (yes or no) exposure. However, 
the bias can be in either direction if 
the analysis includes more than two 
categories of exposure (e.g. high, 
medium, or low); in this situation, 

 Example 4.28. Non-differential outcome misclassification of tumour subtypes

Night shift work was seen to be more strongly associated with high-grade prostate cancer than with low-grade 
tumours (Papantoniou et al., 2015); however, there is evidence that, among proven cases of prostate cancer, 
detection of high-grade cancer has a sensitivity of 72% and a specificity of 92% upon initial diagnosis. If these 
errors are non-differential with respect to the exposure, then the expectation is that the association will be biased 
towards the null. (text continues on page 112)

 Example 4.29. Differential outcome misclassification among firefighters

An increased risk of prostate cancer could be observed in studies of firefighters, because they are likely to undergo 
more medical screening than the general population used as the referent (DeBono et al., 2023). This was an 
important consideration in the IARC Monographs Working Group’s determination that there was limited evidence 
for a causal association between occupational exposure as a firefighter and prostate cancer (IARC, 2023). (text 
continues on page 112)

 Example 4.30. Sensitivity analysis for outcome misclassification

In a study of night shift work and prostate cancer, analyses were conducted excluding control participants who 
had not recently been screened for this cancer and who therefore had a greater likelihood of having undetected 
prostate cancer. The findings from this study were not altered, suggesting that the lack of an association between 
night shift work and prostate cancer in this study was not due to the inclusion of unrecognized cases of prostate 
cancer in the control group (Barul et al., 2019). (text continues below)
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misclassification of exposure is most 
likely to result in overestimation of risk 
in an intermediate exposure category 
but underestimation in the highest 
exposure category, and there can 
even be a change in the direction of 
the slope across exposure categories 
under certain conditions (Dosemeci 
et al., 1990; Weinberg et al., 1994). 
Thus, categorization of a non-dif-
ferentially misclassified continuous 

exposure variable can result in differ-
ential misclassification (Flegal et al., 
1986). The bias can also be in either 
direction if the errors are differential 
with respect to disease.

For continuous measures, the 
effect of measurement error depends 
on the error structure, which could 
involve combinations of systematic 
error and random error following 
classical, linear, or Berkson error 

structures. These error structures 
could be additive, multiplicative, or 
mixed. Classical errors occur when 
there is an erroneous measurement 
method that gives the correct value 
on average but yields a somewhat 
different value each time it is applied, 
sometimes larger than and some-
times smaller than the true expo-
sure. The bias arising from using an 
exposure measure that has classical 

Table 4.10. Summary of expected direction of bias in the effect estimate due to exposure misclassification and 
measurement error, and methods that may be used for correction or for assessing the potential magnitude of the 
biases using sensitivity analyses

Exposure 
metric

Error type Expected 
direction 
of biasa

Methods for 
adjustment

Data needed for 
adjustment

Comments

Binary  
(yes or no)

Non-differential Towards 
the null

Simple analysis Simple 2 × 2 table of 
results; 
se and sp from a 
validation study

Assumptions can be made about 
se and sp if a validation study is not 
available.

Differential Either 
direction

Multidimensional 
analysis

Simple 2 × 2 table of 
results; 
range of plausible se 
and sp

The range of se and sp can be 
a plausible range chosen by the 
investigator.

Probabilistic 
analysis

Simple 2 × 2 table of 
results; 
se and sp from a 
validation study; 
distribution of se 
and sp

Assumptions can be made about the 
bias parameters if data on se and sp 
are not available.

Multilevel Non-differential 
or differential

Either 
direction

MC-SIMEX Raw data; 
misclassification 
matrices from a 
validation study

Continuous Non-differential
   Classical Towards 

the null
Regression 
calibration

Data from a 
validation study

   Linear Either 
direction

Regression 
calibration

Data from a 
validation study

   Berkson Unbiased 
for linear 
models

No adjustment 
required

Non-linear models are generally close 
to unbiased if the outcome is rare. 
Berkson error is unbiased only if it is 
independent of other covariates.

Differential Either 
direction

Multiple 
imputation

Data from an internal 
validation study for 
case and non-case 
participants

MC-SIMEX, simulation extrapolation for misclassification; se, sensitivity; sp, specificity.
a The expected direction of the bias is what is generally expected to be observed over a large number of trials or studies. An individual study finding 
may or may not be biased in the direction expected, because of random variation.
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errors is expected to attenuate the 
slope of the exposure–response 
relation. A linear model describes 
an erroneous measurement method 
that, on average, does not give the 
correct value of the exposure (i.e. is 
biased). The effect of using an expo-
sure measure with errors that are 
linear could be in either direction, 
depending on whether the expected 
value of the exposure is less than 
or greater than the true exposure. 
Finally, the Berkson error model is 
similar to a classical error model in 
having a mean of zero but, unlike in 
the classical error model, the error 
is not independent of the true value. 
Berkson errors are common in occu-
pational studies where a group mean 
is used to describe the exposures 
of workers engaged in a particular 
job. Using exposure measurements 
that have a Berkson error struc-
ture does not generally bias the 
effect measures but does increase 
standard errors. It is noteworthy that 
a particular study may be subject to 
a combination of these three error 
types; in this situation, the direction 
of the bias may be difficult to predict.

Differential misclassification of ex- 
posure is a common concern in 
studies that rely on questionnaire 
data to assess exposure. This is a 
problem particularly in case–control 
studies, in which interviews are 
conducted after the case status is 
known. It is less often a concern in 
cohort studies, in which exposure 

information is generally assessed 
before the disease occurrence. Recall 
bias and interviewer bias can intro-
duce differential misclassification of 
exposure. Blinding of the interviewers 
to the case status makes interview 
bias unlikely but will usually have little 
effect on recall bias. Interviews of 
proxies (e.g. next of kin) are often used 
in case–control studies where the 
case participants are deceased; this 
may result in differential information 
bias (e.g. if the proxies of deceased 
case participants have poorer 
knowledge of the case participants’ 
exposures than the living control 
participants have of theirs). The effect 
of differential misclassification may 
be in either direction. Recall and inter-
viewer biases are usually away from 
the null because case participants 
are more likely than healthy control 
participants to recall their exposures, 
and interviewers may be more likely 
to question case participants more 
deeply than control participants for 
their exposure histories. Proxy inter-
viewees would generally be expected 
to be less likely than control partici-
pants to recall exposure, resulting in 
a bias towards the null.

There have been substantial devel-
opments in methods for assessing the 
magnitude of errors and adjusting for 
these biases. These methods, which 
are summarized in Table  4.10, may 
also be adapted for assessing and 
adjusting for errors in outcome clas-
sification. Some of these methods 

require the use of data from valida-
tion studies, in which the measure-
ment method used in the study is 
compared with a gold standard. 
Frequently, results from validation 
studies may not be available to an 
IARC Monographs Working Group 
or other expert reviewers. However, 
a description of these methods is 
included, in the anticipation that more 
investigators will perform valida-
tion studies in the future. Sensitivity 
analyses can be conducted in most 
instances to estimate the magnitude 
of the error where assumptions are 
made about the sensitivity and spec-
ificity of the measurement methods. 
These methods can apply to situa-
tions where the errors are non-dif-
ferential or differential with respect to 
exposure and can also be extended 
to include a range of plausible values 
of sensitivity and specificity. These 
simple methods can provide reviewers 
with some perspective on how large 
or small a true association might 
be. Biases for continuous measures 
of exposure can be corrected using 
regression calibration, using data from 
a validation study. Methods that re- 
quire access to the raw study data 
(e.g. multiple imputation), which will 
not generally be available to an ex- 
pert review group, are also discussed 
in Chapter 7.
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