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3.1 Introduction

As noted in the Preface, confounding 
arises when the exposure and the 
outcome of interest share a common 
cause. Informally, confounding may 
be described as a condition in which 
the association of exposure with the 
outcome is, in part, due to differences 
in outcome risk between the exposed 
and the unexposed that are not due 
to exposure effects on the outcome. 
A confounder is then defined as a 
variable that is responsible for con- 
founding; typically, such a variable is 
a cause of the outcome that is asso-
ciated with exposure but not affected 
by exposure. More precise definitions 
can be provided within formal causal 
models, such as potential-outcome 
and graphical models (Greenland 
et al., 1999a; Hernán and Robins, 
2023; see also Chapter  2); these 

models will not be discussed here, but 
the reader is warned that there can 
be various definitions of confounding 
and confounders in these more formal 
discussions.

At an IARC Monographs meeting, 
the epidemiological studies under 
review are typically observational, 
meaning that the investigators did 
not have control over the exposure of 
interest (or any other variables) and, 
importantly for this chapter, did not 
randomly assign study participants 
to exposure. In observational studies, 
it is seldom reasonable to assume 
that pre-exposure factors that affect 
the outcome are equally distributed 
across subgroups defined by expo-
sure; rather, exposure is often influ-
enced by other factors, some of which 
may be risk factors for the cancer 
outcome of interest. Consequently, 
confounding is a common concern 

for Working Group members. Thus, 
one of the primary questions posed 
to reviewers in an IARC Monographs 
Working Group is “Can we reason-
ably rule out confounding as an 
explanation for an observed expo-
sure–cancer association?”

A standard approach to the prob- 
lem of confounding is to measure 
the important factors (e.g. pre-expo-
sure factors that are predictive of the 
outcome in a cohort study) that may 
differ between exposure groups and 
to match on them in the study design 
(to the extent possible) or adjust for 
them in the analysis. If all the impor-
tant confounders were accurately 
measured, an investigator might be 
able to obtain a valid estimate of 
the causal effect of the exposure on 
the outcome. However, the choice 
of which variables to control for (a 
judgement informed by causal, in 
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addition to statistical, considerations) 
is crucial because bias in an estimate 
of a defined exposure–disease asso-
ciation can be induced, or increased, 
by inappropriate control for covari-
ates (Greenland et al., 1999b; Cole 
et al., 2010). Occasionally, IARC 
reviewers may encounter a study that 
used an approach intended to control 
for unmeasured as well as measured 
potential confounders. A classic ex- 
ample of such an approach is a 
randomized controlled trial, but other 
examples encountered in obser-
vational studies include analyses 
that leverage a natural experiment 
or an instrumental variable (such 
as genetic variation in a Mendelian 
randomization analysis; see Side 
Box  3.1). However, many epidemi-
ological studies of cancer cannot or 
do not use these approaches; hence, 
uncontrolled confounding is often an 
important consideration for reviewers.

In Section 3.2, the reader will gain 
an understanding of how to evaluate 
control for confounding in published 
studies. Directed acyclic graphs 
(DAGs) (Chapter 2) will be referenced 
to represent assumptions regarding 
causal relations between variables 
and to assist in identifying causal 
effects. In Section 3.3, the reader will 
gain an understanding of approaches 
to assess potential bias due to uncon-
trolled confounding.

Given the focus on cancer studies, 
throughout the chapter confounding 
is considered as it applies to analyses 
of a binary outcome variable and ratio 
measures of association (such as rate 
ratios, odds ratios, hazard ratios, or 
risk ratios, as typical of most cancer 
studies). It is assumed that reviewers 
are interested in the total effect of the 
exposure on an outcome; therefore, 
mediation analysis, which is covered 

in VanderWeele (2016) and Hernán 
and Robins (2023), is not addressed 
here.

Chapter  2 introduced the use of 
DAGs to frame the identification and 
control of confounding. The focus 
in this chapter is on the evaluation 
of confounding within the context of 
a review that aims at hazard identi-
fication. Consequently, the focus is 
on whether uncontrolled confounding 
of a particular study result is a major 
source of bias and could meaning-
fully change a conclusion regarding 
that study’s contribution for (or 
against) evidence of an association 
between the agent under review 
and the cancer outcome of interest. 
Evaluation of control for confounders 
is also commonly included in system-
atic reviews and meta-analyses 
through the use of tools to assess 
study quality. Such approaches rely 
on methods to assess the risk of bias 
due to confounding. While tools to 
assess study quality can be useful for 
helping a reviewer to think systemat-
ically about sources of bias, they are 
best used by substantive experts who 
can also consider the direction and 
magnitude of potential confounding 
and consider a range of methods to 
assess it. An uncritical use of risk-of-
bias tools can lead to unwarranted 
dismissal of some studies because of 
alleged but unimportant confounding 
(Steenland et al., 2020). Methods 
are described in this chapter for an 
assessment of potential confounding 
bias, which may be useful when 
reviewing studies that inform an IARC 
Monographs evaluation. As described 
in Chapter  1, IARC has published 
general guidelines regarding the 
assessment of bias, and the methods 
outlined here are consistent with this 
guidance (IARC, 2019).

While this chapter focuses solely 
on confounding, there may be factors 
that are modifiers of the associa-
tion under study (as well, perhaps, 
as confounders of it). In addition 
to considering whether a factor 
is a confounder, a reviewer might 
consider whether that factor modifies 
the association under study, meaning 
that the association on the selected 
measurement scale (e.g. relative risk) 
varies across values of the factor. 
Given a published report, a reviewer 
may be limited in such considera-
tions by the information reported. For 
example, if the authors of a publica-
tion only report a covariate-adjusted 
estimate, then a reviewer cannot 
distinguish confounding by that factor 
from effect measure modification. 
However, if results have been strati-
fied on a factor, and if the association 
varies importantly across strata of 
that factor, then there is modification 
of the association on that effect scale. 
Conversely, if the association is the 
same across strata, then the factor is 
probably not a modifier of the asso-
ciation (but could be a confounder of 
the association in a crude analysis 
that collapses information across 
strata of the factor). A variable can 
be a confounder, an effect measure 
modifier, both, or neither.

3.2 Evaluating control for 
confounding

When evaluating control for confound- 
ing in a published study (Fig. 3.1), re- 
viewers will typically consider the fol- 
lowing four topics (these will be 
explained in Sections 3.2.1–3.2.4):

•	 the study design;
•	 the study setting and restriction 

of the study population;
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Side Box 3.1. Study designs or analyses and confounding considerations

Study design or 
analysis

Confounding consideration

Randomized 
controlled trial

Randomized trials are the most widely accepted method of addressing concern about confounding 
without necessarily measuring or adjusting for covariates. Nonetheless, randomized trials are rarely 
used in human subjects for evaluations of known or suspected carcinogens, because the administration 
of suspected carcinogens is unethical and because a long follow-up period is typically required in 
studies of cancer to observe the effect of exposure on cancer occurrence. Consequently, there are 
seldom many relevant randomized controlled trials to assess the carcinogenic potential of substances 
reviewed in IARC Monographs.
Possible reasons for confounding in a randomized trial include imperfect allocation concealment, 
blinding, and adherence (i.e. compliance), as well as loss to follow-up; such considerations are 
important in studies of cancer outcomes because it is difficult to maintain adherence to a treatment 
protocol over many years.

Case-only  
(self-controlled)

Case-only designs, such as case-crossover and case-specular studies, are used to address concerns 
about potential confounding by characteristics that are constant over time. Only those participants 
who experience the outcome of interest are included, and study participants act as their own control. 
Because comparisons are made within individuals, confounding by characteristics that are constant 
over time is not possible. However, self-controlled designs do not typically lend themselves to 
investigations of cancer, which often feature long induction and latency periods.
Possible reasons for bias in a self-controlled design include time-varying confounders and selection 
bias.

Matched fixed 
effects design  
(e.g. sibling or 
twin study)

Sibling and twin designs are used to address concerns about potential confounding by measured and 
unmeasured time-invariant factors. These studies involve pairs of participants who might be viewed as 
matched for a large number of potential confounders (e.g. genetics and childhood environment); these 
are shared or invariant characteristics within pairs and are often handled as fixed effects (intercepts) 
in a model.
Possible reasons for bias in such designs include confounding by non-shared factors (i.e. those that 
may vary within a twin pair or sibling set) and selection bias (Frisell et al., 2012; Sjölander et al., 2022).

Instrumental 
variables, natural 
experiment, 
or Mendelian 
randomization 
analysis

Instrumental variables (IVs) are variables that are only associated with the outcome via their association 
with the exposure but are not affected by the exposure.
A natural experiment is a type of IV analysis that involves settings in which the exposure variation 
for an individual (or a group of people) is due to an external factor, such as a natural disaster or an 
industrial accident, that is assumed to be related to the disease only through the exposure.
A Mendelian randomization study is a type of IV analysis in which the investigators use genetic variation 
as the basis for a type of natural experiment. One important motivation for its use is that it offers the 
possibility to control for unmeasured confounders in an observational study (under certain strong 
identifying conditions). A Mendelian randomization analysis requires that the exposure under study 
has known genetic variants, which are strongly associated with it (an assumption termed relevance); 
it also requires that these genetic determinants are not associated with the outcome independently 
of the exposure (an assumption termed exclusion restriction), and it requires that the association 
between the instrument and the outcome is not confounded (an assumption termed independence) 
(Pierce et al., 2018). An increasing number of observational studies are using Mendelian randomization 
methods to study the effects of exposures, lifestyle factors, or biomarkers on cancer.
If the necessary conditions do not hold, IV estimates may be biased (Hernán and Robins, 2006).

Cohort study Cohort studies are commonly encountered in IARC evaluations of human carcinogens; these are 
observational in nature and are susceptible to confounding. This is particularly an issue when 
considering socioeconomic and lifestyle factors and cancer risk, because these factors tend to cluster 
and confounding within such studies can be substantial (Davey Smith et al., 2007). The collection of 
information on potential confounders in a retrospective cohort design may be limited by the available 
historical information, and that in a prospective cohort design may be limited by the knowledge at the 
time of study enrolment. Nested case–control studies (nested within cohorts) may be conducted for 
efficiency or to collect information on important confounders that may not have been collected in the 
original cohort study.
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Study design or 
analysis

Confounding consideration

Case–control 
study

Case–control studies often involve the collection of detailed information on at least a few potential 
confounders that are of primary focus; they typically focus on one outcome and are usually smaller 
than cohort studies, allowing for a richer collection of data on risk factors for the single outcome 
of interest and other covariates than a cohort study. Matching on potential confounders, more 
commonly observed in case–control studies than in cohort studies, can improve efficiency when 
adjusting for confounders (and may permit control for confounding that is otherwise difficult to achieve, 
as in neighbourhood matching). Within case–control studies, there may be issues with the control 
participants not being representative of the population from which the case participants arose, which 
could introduce confounding; also, confounders may not be measured well if individuals are asked to 
recall lifestyle factors that occurred before cancer symptoms were observed. In addition, confounders 
may be recalled differently by case and control participants (selection bias and information bias; see 
Chapters 4 and 5).
From a confounding perspective, nested case–control studies have similar issues to cohort studies.

Ecological study These are studies in which the exposure is studied at a population level rather than an individual level, 
and variation in outcome is examined in relation to variation in population prevalence of exposure.
Ecological studies often have limited or no information on individual-level confounders and are 
consequently susceptible to confounding (including a particular form of bias that may arise in 
ecological study analyses because of confounding or effect measure modification between groups 
under comparison).

Cross-sectional 
study

Such studies typically play a minor role in cancer evaluations.
Confounding is an issue; cross-sectional studies often have the additional complexity of temporal 
ambiguity. It may be unclear whether the exposure preceded the disease; it may also be unclear 
whether a covariate preceded the exposure and thus whether it is a confounder. (text continues on 
page 65)

Side Box 3.1. Study designs or analyses and confounding considerations (continued)

Fig. 3.1. Steps to take when assessing confounding in individual studies.

Read

• Study design
• Study setting
• Restrictions

Review

• List potential confounders
• What was controlled for
• How control was obtained

Assess

• Proxies
• Negative controls
• Sensitivity analyses

Fig. 3.1
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•	 the set of covariates that were 
adjusted for in the analysis (and 
how those covariates were mea- 
sured and modelled); and

•	 important confounders that were 
not controlled for.

3.2.1 Study design

The study design is an important 
starting point for evaluating control for 
confounding; it is possible to control 
for confounding in the study design 
phase. The choice of study design 
may direct a reviewer’s attention to 
certain key areas for consideration, 
such as the appropriateness of an 
external comparison group for the 
analysis of standardized mortality 
ratios in an occupational cohort study. 
It may even obviate the need to focus 
attention on the adequacy of control 
for certain types of confounders. For 
example, matched designs involving 
siblings born of the same mother 
are sometimes used to control for 
maternal factors that remain constant 
between pregnancies, such as ma- 
ternal genetics and some aspects of 
lifestyle and socioeconomic status 
(see Side Box 3.2).

3.2.2 Study setting and 
restrictions

A careful decision regarding study 
setting can help to minimize con- 
founding, for example by finding 
populations that lack an association 
between a confounder and the expo-
sure of concern. For instance, a large 
cohort of Seventh-Day Adventists 
offers a setting with little or no 
confounding by alcohol consumption 
or smoking, because these behav-
iours are largely absent in that popu-
lation (Butler et al., 2008). Similarly, 
restriction of the study population 

(e.g. by sex, geography) can help to 
control for confounding. Sometimes 
restriction on a confounder can 
provide control over factors that would 
otherwise be difficult to measure 
and control for in an analysis. For 
example, restriction to a single conti-
nental population, such as Europeans 
(Auton et al., 2015), to minimize 
population stratification (confounding 
by ancestry) is common in genome-
wide association studies (although 
many contemporary genome-wide 
analyses also adjust for finer popula-
tion structure). As another example, 
occupational cohort studies are often 
conducted in a setting in which the 
workers involved share similarities in 
terms of education, income, access 
to medical care, geography, and life-
style factors (e.g. diet). Consequently, 
in occupational studies with internal 
comparisons, such factors are usually 
of less concern as confounders than 
they are in environmental studies, 
because these lifestyle factors should 
have limited associations with occu-
pational exposure.

However, inappropriate restriction 
can lead to bias (e.g. if restriction is 
on an intermediate or mediating vari-
able or collider; see Chapters 2 and 
5). Moreover, restriction necessarily 
affects the generalizability of results 
(and reduces sample size), so it 
should be carefully assessed.

3.2.3 Covariates that were  
(and were not) adjusted for  
in a published analysis

A standard approach to addressing 
the problem of confounding is to 
measure important factors that may 
differ between exposure groups and 
adjust for them in the analysis. Here, 
the focus is on analyses where the 

aim is to control for confounding by 
adjustment for measured variables 
(e.g. adjusting for the variable in a 
regression model for the outcome).

It is important to consider both the 
confounder–outcome association 
and the confounder–exposure asso-
ciation. Those involved in an expert 
review, such as an IARC Monographs 
evaluation, will often come to a 
consensus on the important potential 
confounders of an association under 
evaluation. One source of information 
about such potential confounders is 
the study publications under review; 
authors often provide useful guid-
ance in their publications about 
measured and unmeasured poten-
tial confounders, as well as omitted 
potential confounders. However, re- 
gardless of the authors’ description 
of important potential confounders, 
reviewers may have a different view. 
Authors often describe their approach 
to the final selection of their covariate 
adjustment set; again, regardless of 
how the adjustment variables were 
selected in a given publication, the 
reviewers’ responsibility at this stage 
is to assess whether the important 
potential confounders have been 
sufficiently controlled for.

Reviewers may wish to start by 
considering the confounder–outcome  
association, focusing on those factors 
that are established causes of the 
cancer outcome under study. Useful 
sources of such information are the 
IARC Monographs and the IARC list 
of classifications of agents for which 
there is sufficient and limited evidence  
of carcinogenicity in humans by can- 
cer site; similarly, the IARC Hand- 
books of Cancer Prevention can 
provide information on potential 
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Side Box 3.2. Some approaches to control for confounding

Matching in the design of a study can sometimes allow for control for factors that would otherwise be difficult to 
adjust for efficiently in the analysis (e.g. in the absence of a matched design, because of sparse data). 

Matching may be used in cohort or case–control studies. In a matched cohort study, an investigator might 
enumerate an unexposed group of study participants who match the exposed study participants in terms of some 
characteristics (such as age and sex) that are of concern as potential confounders; a comparison of the occurrence 
of cancer between the exposed and unexposed groups will not be confounded by those factors that were matched 
on in the design. Matching is often used in case–control studies of cancer outcomes, with the aim of improving 
efficiency in a case–control analysis when it would otherwise be necessary to adjust for a matching factor, such 
as attained age. Similarly, in a population-based case–control study of a rare cancer, neighbourhood matching 
of case and control participants may allow for adjustment for characteristics that are shared by neighbours, such 
as socioeconomic, diet, or lifestyle factors, but that may be difficult to adjust for in the analysis in the absence of 
such matching, because of sparse data or difficulty in obtaining sufficient or accurate data to control for such hard-
to-quantify variables. In certain settings, self-matching can be used (e.g. the case–control status is determined 
by the location of the tumour in relation to the exposure within the body, as in Example 3.1). However, as noted 
in Chapter 2, an important difference from matching in cohort studies is that case–control matching is a form of 
selection bias that distorts associations and trends (Mansournia et al., 2018). To control this bias, the analysis 
must include adjustment for the matching variables in a form at least as detailed as the form used for matching; 
this means, for example, that if age matching is done in 5-year categories, then the adjustment must use age as a 
categorical variable with categories at least as narrow as 5 years.

 Example 3.1. Self-matching to control for confounding

A case-only study (Maclure, 1998) was conducted of mobile phone use and glioma (Larjavaara et al., 2011). 
The location of the actual tumour site (i.e. the case site) was compared with a control site, defined as the 
mirror image site obtained across the midpoint of the axial and coronal planes of the patient’s brain (i.e. 
within the same person). The control sites were effectively matched to the case sites on each pair being 
within the same patient’s brain. The case and control sites were then compared with respect to estimated 
mobile phone exposure, to determine whether the phone was used on the side of the brain where the tumour 
occurred. In this design, participants with cancer each served as their own control; therefore, confounding 
by personal characteristics (such as age, sex, income, or diet) was judged to be unlikely in these analyses.
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confounders that are cancer-pre-
ventive factors (see Section  6.3.1 
for more examples). For a study of 
a given cancer outcome, a reviewer 
can readily refer to such lists of known 
or suspected causes of that cancer 
to inform consideration of potential 
confounders. Note that because 
confounder–outcome associations 
are rarely homogeneous from one 
cancer site to another, the list of 
potential confounders of concern will 
also vary by cancer site. As noted in 
Chapter  1, the evaluation of human 
evidence regarding carcinogenicity 
is also specific to each cancer site; 
therefore, concern about a potential 
confounding factor (e.g. smoking) 
might be reasonably excluded for 

certain cancer types (e.g. melanoma) 
but not others (e.g. lung cancer).

In addition to the confounder–
outcome association, it is also nec- 
essary to consider the confounder–
exposure association. An important 
consideration is whether potential 
confounders precede the exposure 
of interest. Therefore, reviewers may 
often rely on information on the distri-
bution and determinants of exposure. 
A reviewer may encounter situations 
in which adjustment was made for a 
covariate that was measured after 
the exposure of interest occurred. In 
such situations, careful consideration 
should be given to whether exposure 
influenced that covariate; however, 
there are settings for which an investi-
gator may reasonably assume that the 

measured value of such a covariate 
is a good approximation of its pre-ex-
posure value and is unaffected by the 
exposure of interest (e.g. educational 
attainment, assessed after exposure, 
in a study of the effect of an expo-
sure in a population of middle-aged 
adult patients). The factors that influ-
ence exposure to an agent may vary 
over time and between populations 
and may depend on economic and 
social factors, laws and regulations, 
and social and behavioural factors. 
Consequently, in assessment of con- 
founding, information should be ob- 
tained and used on how the associa-
tion of a potential confounding factor 
with the exposure and the disease 
may vary across different study 
populations.

Side Box 3.2. Some approaches to control for confounding (continued)

Other approaches to study design that are sometimes used in cancer research to address potential confounding 
involve leveraging situations in which exposure was determined by factors beyond the control of the investigator 
but that arguably mimic random exposure assignment. Such studies are sometimes called natural experiments or 
quasi-experimental designs, as explained in Example 3.2. 

In a natural experiment, the assignment mechanism is a form of instrumental variable (IV), because it influences 
exposure but only influences the outcome through its effect on the exposure. Quasi-experimental designs have 
been used in evaluations of interventions on tobacco, air pollutants, and petrochemical exposures. One version of IV 
analysis that is sometimes encountered in epidemiological studies of cancer outcomes is Mendelian randomization, 
in which the IV is the random inheritance of genetic variants that are known to predict exposure, under the classic 
assumption that genetic factors are inherited independently of each other (note that this assumption may not 
hold for genetic variants that are located near one another on the same chromosome). Genetic variants are 
usually not subject to confounding by lifestyle and environmental factors (Smith and Ebrahim, 2003). In Mendelian 
randomization analyses, populations are grouped according to the presence of genetic variants (alleles) that are 
associated with the exposure of interest. Comparison of cancer risk between genetic groups that are associated 
with the exposure can provide an unconfounded estimate of the effect of the exposure on cancer (Yarmolinsky 
et al., 2018). (text continues on page 68)

 Example 3.2. An example of a natural experiment to control for confounding: a military conscription lottery

A situation that has been used in a natural experiment is a military conscription lottery (where one compares 
those drafted with those not drafted for cancer outcomes, such as in studies that have examined effects of 
service in the Viet Nam era on cancer occurrence).
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A reviewer of a published article 
will consider whether any important 
potential confounders were not ac- 
counted for (e.g. not controlling for 
smoking in a study of a given exposure 
in relation to lung cancer). However, 
the fact that a variable that a reviewer 
posited as a potential confounder 
was not adjusted for in a published 
study does not necessarily mean 
that it was a strong confounder (or 
even a confounder at all). Often the 
authors of a publication will describe 
the rationale for exclusion of a vari-
able from the adjustment set and 
may report results that were obtained 
with different sets of adjustments for 
covariates. As shown in Example 3.3, 
a factor could be an established cause 
of cancer but might not confound the 
association of interest in the popula-
tion under study.

Another consideration in a review 
of a published article is whether any 
of the variables adjusted for in the 
published analysis were not poten-
tial confounders but rather could 
induce or exacerbate confounding 
through inappropriate control. The 
term overadjustment is sometimes 

used to refer to bias induced by 
adjustment for intermediate variables 
or variables downstream from expo-
sure – to use the language described 
in Chapter 2, to disrupt a chain from 
exposure to outcome. Adjusting 
for a variable that is on the causal 
pathway is an example of overad-
justment (Schisterman et al., 2009). 
Overadjustment can also sometimes 
refer to a different problem: the bias 
(or loss of precision) that can occur in 
an analysis that controls for a strong 
predictor of exposure that is not asso-
ciated with the outcome. In some 
settings, adjustment for a strong 
predictor of the outcome that is not 
associated with exposure also can 
induce a form of overadjustment bias, 
because such adjustment may push 
an estimate of the log odds ratio away 
from the null (Greenland et al., 2016). 
To help fully understand and discuss 
potential confounders, a diagram, 
such as a DAG, showing presumed 
causal relations among variables 
(and their measurements) can repre-
sent the assumed underlying causal 
associations and any confounding 

pathways implied (see Chapter 2), as 
shown in Example 3.4.

3.2.4 How confounders were 
measured and modelled

Consideration of how the confounders 
included in an adjustment set were 
measured and modelled is impor-
tant because it relates to concerns 
about residual confounding by the 
factor after adjustment. Imperfect 
measurement of a confounding vari-
able will usually lead to incomplete 
control of confounding (i.e. residual 
confounding) that is proportional to 
the amount of confounding originally 
present (Greenland, 1980; Greenland 
and Robins, 1985; Savitz and Barón, 
1989; Ogburn and VanderWeele, 
2012). For example, smoking may be 
imperfectly controlled in an analysis 
that classifies whether a person has 
ever smoked but does not account 
for whether the person is a current 
smoker or a former smoker or for the 
amount and duration of smoking. If 
the amount of original confounding 
was substantial, then – regardless of 
the fraction that was controlled – the 
amount that was not controlled may 
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 Example 3.3. Adjustment for body mass index in studies on red meat consumption and colorectal cancer

In a meta-analysis (IARC, 2018), it was noted that many studies did not adjust for body mass index (BMI) because 
estimates of the association between red meat consumption and colorectal cancer (CRC) did not change after 
adjustment for BMI, although it is considered a potential confounder in the literature (Chan et al., 2011). Some may 
consider BMI to be a mediator on the pathway between red meat consumption and CRC (e.g. Example 2.1a), but in 
much of the literature BMI is considered to be a confounder that can affect both red meat consumption (those with 
higher BMI are likely to eat more red meat) and risk of colorectal cancer. For the Working Group’s deliberations 
regarding the association between red meat consumption and colon cancer, the observation that inclusion of BMI 
in a regression model does not change the estimate of the association between red meat consumption and colon 
cancer suggests that BMI is neither an important mediator nor a confounder. (text continues above)
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still be important in absolute terms. 
Conversely, if a covariate is a weak 
confounder, residual confounding will 
have only a minor influence on the 
estimate of association. For example, 
smoking might be imperfectly con- 
trolled through next-of-kin reporting 
about whether a patient with breast 
cancer had ever smoked, but the 
residual confounding might be minor, 
given the weak smoking–breast can- 
cer associations. Theoretically, in the 
extreme case of a very poorly mea- 
sured confounder that suffers from 
systematic misclassification, adjust-
ment for such an error-prone vari-
able can make confounding worse 
(Ogburn and VanderWeele, 2012); 
however, such a scenario is typically 
implausible, and in most applications 

adjustment for an error-prone mea- 
sure of a confounder will not make 
confounding worse (Greenland, 
2012).

Importantly, some types of con- 
founding are more difficult to control 
for than others. For example, specific 
exposures, such as tobacco smoking, 
lend themselves to careful measure-
ment, whereas other factors that might 
confound an association of interest, 
such as socioeconomic conditions or 
health behavioural factors that influ-
ence exposure and cancer detec-
tion, are often almost impossible to 
measure well and fully control for in 
an analysis. If there are major differ-
ences at the outset (e.g. in a between-
country comparison of breast cancer 
incidence rates), an investigator may 

have adjusted for a large set of covar-
iates, yet the reviewers may remain 
sceptical that important confounding 
factors were adequately controlled. 
Another example of confounding 
that may be difficult to control arises 
in occupational studies when co-ex-
posure occurs in the workplace to 
multiple correlated agents that could 
be carcinogenic (see Example 3.5).

(a) Time-varying confounders 
and time-varying confounders 
affected by prior exposure

So far, the discussion has been 
limited to confounding at one point 
in time, implying that study authors 
are interested in estimating the effect 
of an exposure that occurred at one 
time point on cancer. Many cohort 
studies involve the analysis of data 

 Example 3.4. Overadjustment as a concern in studies on shift work and cancer

In the IARC Monographs evaluation of the literature on night shift work in relation to breast cancer, the reviewers 
considered confounding and adjustment for other covariates (IARC, 2020). These considerations were particularly 
important because day workers are usually taken as the reference group and there may be many important 
differences between day workers and night workers with respect to risk factors for breast cancer. The Working 
Group consulted the literature to determine the degree to which lifestyle factors of day workers and night workers 
differ, to help in deciding whether a particular covariate was a potential confounder. For example, the reviewers 
noted that reproductive factors (parity, age at first birth, and menopause) are considered risk factors for breast 
cancer. They then cited studies that found differences between day workers and night workers with regard to 
reproductive factors; however, they noted that these associations were not strong. One could conclude that 
reproductive factors are potential confounders for the association between night shift work and breast cancer, but 
they are not likely to be strong confounders. Thus, a study that did not include reproductive factors may not suffer 
from much confounding bias. The reviewers also cited references indicating that several risk factors for breast 
cancer may be affected by night shift work, including disrupted sleep, physical activity, eating behaviours, and 
consumption of alcohol. Note that the total effect of night shift work on breast cancer includes the effect mediated 
by other factors. For example, perhaps night shift work increases the risk of breast cancer because people who 
work at night experience work-induced changes to exercise and diet that, in turn, lead to breast cancer. This does 
not imply that one would need to adjust for diet or exercise to obtain an unbiased result. In fact, the opposite is true: 
to obtain an unbiased result for the total effect of night work on breast cancer, one should not disrupt the causal 
chain by adjusting for behavioural factors that are affected by night work. (text continues on page 71)
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on exposure at multiple different time 
points, and authors are frequently 
interested in the effect of lifetime or 
cumulative exposure (or possibly a 
lagged metric of cumulative expo-
sure) on cancer. When exposures 
vary over time, so can confounding 
in an analysis that allows for time-de-
pendent exposures. In the most 
straightforward scenario, a predictor 
of the outcome might also predict 
exposure at each time point. For 
example, in studies of occupational 
exposure on cancer, age could be 
a time-dependent confounder. In 
this situation, time-varying con- 
founders can usually be treated in 
a standard manner; for example, in 
a regression model, a term for the 
confounder might be included at each 
time point.

However, some time-varying con- 
founders can be affected by prior ex- 
posure. Reviewers of papers can eval-
uate the plausibility of confounders at 
a given point in time being influenced 
by prior exposure. Consideration of 
whether time-varying confounders are 
affected by prior exposure is impor-
tant because in such situations stan- 

dard outcome modelling of the asso-
ciations is not guaranteed to yield 
unbiased results, as shown in 
Example 3.6 (Cook et al., 2002; Her- 
nán and Robins, 2023).

3.3 Tools for assessing bias 
due to confounding

Control for confounding is rarely, 
if ever, sufficient to remove bias 
entirely. Rather, control is a matter 
of degree and often warrants a 
critical assessment of whether the 
control achieved in a published 
paper may be adequate to make a 
reasonable judgement regarding the 
effect of the exposure on cancer. 
After having reviewed the control for 
confounding in a study, a reviewer 
might suspect that the published 
analysis suffers from substantial con- 
founding by uncontrolled covariates 
or suffers from residual confounding 
due to inadequately controlled covar-
iates (e.g. confounders that were 
poorly measured, inadequately mod- 
elled, or poorly specified).

Given concern about possible 
confounding of an exposure–cancer 

association that was reported in an 
individual study, the next step is to 
assess the direction and magnitude 
of the confounding bias. This can help 
to understand the impact of uncon-
trolled confounding on the evidence 
under review.

Various approaches (tools for 
assessing confounding, numbered 
C-# below) are available to inform 
evaluations of confounding by un- 
measured variables of an observed 
association between cancer and 
exposure to an agent under evalua-
tion in an IARC review. Investigators 
should consider the following, which 
will be developed further in subse-
quent subsections (Fig. 3.2):

•	 Tool C-1: DAGs and signed DAGs 
(i.e. causal relations between 
variables based on substantive 
knowledge);

•	 Tool C-2: negative control out- 
comes (or exposures) and 
proxies (evidence of confounding 
within a study);

•	 Tool C-3: triangulation (evidence 
of confounding between studies 
that differ meaningfully); and
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 Example 3.5. Examining confounding by co-exposures in the workplace

In the IARC Monographs evaluation of the literature on night shift work in relation to breast cancer, the reviewers 
considered the association between occupational circadian rhythm disruption and breast cancer incidence among 
female flight attendants (IARC, 2020). Metrics of circadian rhythm disruption included employment duration, hours 
flying in the standard sleep interval, and number of time zones crossed. A potential confounder of concern was 
occupational exposure to cosmic radiation, which was highly correlated with employment duration. In the context 
of the IARC review, the concern was primarily with respect to positive confounding of the association between 
circadian rhythm disruption and breast cancer incidence; given the lack of observed association between circadian 
rhythm disruption and breast cancer incidence among female flight attendants (Pinkerton et al., 2016), the concern 
was not substantiated. However, in many situations when the primary exposure of interest is highly correlated with 
a potential confounder, reviewers may express concern about the ability to estimate the effect of the exposure of 
interest with adequate control for the confounding factor. (text continues on page 72)
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 Example 3.6. Healthy worker survivor bias

In occupational studies of carcinogens, a common concern is a form of confounding that is often referred to as 
healthy worker survivor bias, whereby workers who are less susceptible to the health effects of the exposure 
survive longer in the workplace and therefore may accrue more cumulative exposure. In this instance, leaving 
work is a time-varying confounder that is affected by prior exposure because (i) leaving work may predict cancer 
diagnosis (e.g. if a person left work for cancer-related reasons), (ii) leaving work will affect accrual of occupational 
exposure, and (iii) prior exposure to hazardous material may affect a worker’s current employment status. Such 
a bias may occur if people who work nights quit when they cannot tolerate the lifestyle anymore. If years of night 
work have already taken a health toll on the worker in ways that are on the pathway to cancer, there may be 
time-varying confounding affected by prior exposure. Including time-varying explanatory variables in an outcome 
regression model for factors such as whether individuals are currently employed or the duration of each person’s 
employment will not remove the bias. Special methods, known collectively as g-methods (generalized methods), 
are needed to address this issue and produce unbiased estimates (Robins, 1986; Hernán and Robins, 2006, 2023; 
Buckley et al., 2015). These g-methods enable researchers to model long-term exposure in a different way from 
ordinary outcome regression modelling. For example, rather than estimating risk from cumulative exposure over 
many years, g-computation, one type of g-method, estimates the risk of cancer from exposure in each year and 
then sums up the risks of cancer over time. This approach allows the researcher to adjust only for confounders 
that precede exposure in each year, thus addressing the bias from the healthy worker survivor effect. Unless 
g-methods are used, estimates of occupational exposure–cancer associations from studies that are affected by 
healthy worker survivor bias will typically be attenuated (i.e. biased downwards). (text continues on page 73)

Fig. 3.2. Tools to consider when evaluating the impact of probable confounding. Each of the approaches proposed 
requires substantive expertise, which may include expert judgement, information derived from internal substudies,  
or findings from external studies.
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•	 Tool C-4: quantitative bias anal- 
yses.

For simplicity, the focus in this 
chapter is on assessment of the 
impact of a single primary confounder 
of concern. Often, for clarity in 
a review, it is useful to focus on 
assessment of the impact of one key 
potential confounder of concern at 
a time. Section  6.4 discusses some 
approaches for multiple-bias analysis, 
where more than one confounder (or 
other source of bias) is of concern.

Most of the approaches described 
here are premised on the ability to 
explicitly name a factor of concern 
as a confounder. This requires hy- 
pothesizing why that factor is asso-
ciated with both the exposure and 
the outcome. Like substantive 
hypotheses, hypotheses about why 
a confounding factor is associated 
with exposure, and with disease, 
should be specific, should describe 
substantively important associations, 
and should make quantitative predic-
tions of the confounding effect (Hertz-
Picciotto, 2000). Given well-specified 
hypotheses about confounding of 
observed associations, a reviewer 
may be able to assess the degree to 
which results from observed data are 
likely to be substantially affected by the 
hypothesized confounding. A review 
is strengthened by explaining which 
factors were considered as potential 
confounders and why, as well as their 
likely effects (see Example 3.7).

For known confounders that have 
not been measured, it may be feasible 
to perform a bias analysis to suggest 
the possible effect of the unmeasured 
confounder. Of course, it might be the 
case that a reviewer does not wish to 
posit (or name) a specific confounder 
but rather wishes only to express a 
general concern that an observed 
association between exposure and 
disease might be confounded by 
a factor as yet unknown (at least to 
the investigator). A general concern 
about uncontrolled confounding 
might arise if a reviewer were to 
conclude that the important risk 
factors for a given cancer outcome 
have simply not yet been identified. In 
general, vague statements regarding 
entirely unknown confounders are 
less amenable to evaluation using 
most of the approaches described 
here. The less that is understood 
about disease etiology or exposure 
assignment, the greater the potential 
for unknown factors to be important 
confounders. The latter threat to 
validity can be minimized by focusing 
a hazard identification on a well-de-
fined exposure (e.g. benzene) rather 
than a vague exposure or contextual 
factors (e.g. green space) (Hernán, 
2016). Again, a Working Group’s 
discussion of the role of confounding 
when evaluating evidence regarding 
the carcinogenicity of an agent will 
be most informative when the con- 
founding factor is explicitly named, 

and when hypotheses regarding why 
that factor is associated with exposure 
and disease can be discussed and 
evaluated. Quantitative bias analysis 
can be used to assess whether the 
study results are sufficiently robust 
to render uncontrolled confounding 
unlikely (see Section 3.3.4).

3.3.1 Tool C-1: DAGs

As noted in Chapter 2, a simple DAG 
can serve as a starting point for the 
analysis of uncontrolled confounding. 
The drawing of a DAG requires sub- 
stantive knowledge about covariates 
and their causal relations to the expo-
sure and outcome of interest. Without 
such substantive knowledge, a DAG 
is largely speculative. Although a 
DAG is not an oracle that can provide 
infallible identification of confounding 
in a particular study, given substantive 
expertise (which often exists in expert 
Working Groups), it can be useful for 
reasoning about systematic bias and 
making the causal assumptions of 
Working Group members involved 
in an IARC Monographs evaluation 
explicit and clear.

A signed DAG (i.e. one in which 
the direction of the effect of a con- 
founder is specified) can aid Working 
Group members in assessing the 
probable direction of bias due to 
confounding (see Section 2.6). Also, 
DAGs can inform the assessment 
of time-varying confounders. For 
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Example 3.7. Relative importance of confounders

In its examination of the carcinogenicity of red meat (IARC, 2018), the Working Group specified which confounders 
were thought to be important (physical activity, BMI, caloric intake) and gave more weight to studies that controlled 
for these confounders (or that demonstrated that adjustment for the covariate of concern did not have meaningful 
impact on the estimate of interest). (text continues above)
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example, in an occupational cohort 
mortality study to investigate a sus- 
pected carcinogen, healthy worker 
survivor bias is a common concern. 
A signed DAG can help to judge 
whether this form of confounding 
is likely to be present; relevant 
considerations include the need for 
associations between (i)  prior expo-
sure and employment status and 
(ii)  employment status and mortality 
(Naimi et al., 2013). A DAG can help 
to answer these questions and guide 
a reviewer’s assessment of the likeli-
hood of such bias.

3.3.2 Tool C-2: negative control 
outcomes (or exposures) and 
proxies

Sometimes a reviewer is able to in- 
directly assess confounding by an 
unmeasured factor using evidence 
available from within the published 
study, based on approaches that 
involve negative controls and proxies. 
These methods all share similar 
assumed causal structures between 
variables (Fig.  3.3). However, as 
discussed next (Sections  3.3.2(a) to 
3.3.2(c)), Working Group members 
may find useful conceptual distinc-
tions between negative control out- 
comes, negative control exposures, 
and proxies for an unmeasured con- 
founder.

(a) Negative control outcomes

Suppose that a reviewer is concerned 
about potential confounding in a co- 
hort study of the association be- 
tween a suspected carcinogen and 
a site-specific cancer, but that the 
potential confounder was unmea- 
sured in the study under review. A 
negative control outcome approach 
proceeds by examining the associa-
tion between the suspected carcin-
ogen and another outcome that 
(i)  is caused by the hypothesized 
confounding factor and (ii)  is not 
caused by the suspected carcinogen 
of interest.

Fig.  3.3 illustrates the causal as- 
sociations described: E denotes the 
exposure of interest, D the outcome, 
U the unmeasured confounder, and 
N the negative control outcome. Note 
that U has a causal effect on N but E 
does not.

Under these conditions, an ob- 
served association between E and N 
would be entirely due to confounding 
by U. Therefore, the absence of an 
association between E and N would 
argue against the hypothesis that the 
E–D association is confounded by U 
(Example 3.8).

This approach is well suited to the 
evaluation of cohort studies where 
information on many outcomes 
(e.g. cause-specific mortality) has 
been collected; this may enable 

an investigator to examine not only 
the association between the expo-
sure of interest and the outcome of 
primary interest but also the associ-
ation between that exposure and an 
outcome that a reviewer posits as 
a useful negative control outcome. 
Absence of evidence of an associ-
ation between E and N would help 
to nullify claims of confounding 
by U. This can be thought of as an 
example of internal (i.e. within-study) 
triangulation of evidence, where the 
examination of associations between 
exposure and outcomes with different 
presumed causal structures can be 
compared to indirectly assess bias 
(Pearce et al., 1986).

Fig.  3.3. Diagram for analyses in- 
volving a negative control or proxy, N. 
E, exposure; D, outcome; U, con- 
founder.

Fig. 3.3

U

N

E D

 Example 3.8. Negative control outcomes

In an investigation of the effect of red meat consumption (E) on cancer (D), where tobacco smoking (U) 
is not measured but is considered a potential confounder, an investigator might posit emphysema as a valid 
negative control outcome (N). If that assumption were correct, the absence of an association between red meat 
consumption and emphysema would be evidence that tobacco is not a confounder of a red meat consumption–
cancer association. (text continues above)
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A related approach is some-
times used in the interpretation of 
standardized mortality ratio (SMR) 
analyses to, as it were, correct SMRs 
for bias. The SMR for an outcome 
that is presumed to be susceptible 
to the same confounding factors as 
the outcome of primary interest, but 
is presumed not to be strongly asso-
ciated with the exposures of interest, 
serves as a measure of the bias due 
to confounding. This approach has 
been used both qualitatively, to indi-
rectly assess confounding when inter-
preting cause-specific SMRs, and 
quantitatively, to derive an adjusted 
SMR for the outcome of interest 
(and associated confidence interval) 
by taking a ratio of the measures.

As shown in Example 3.9, expert 
groups can quantitatively evaluate 
uncontrolled confounding by calcu- 

lating an adjusted SMR using pub- 
lished results if appropriate negative 
control outcomes can be identified 
(Side Box 3.3) and are reported.

(b) Negative control exposures

Suppose that a reviewer is con- 
cerned about potential confounding of 
the association between a suspected 
carcinogen and a site-specific cancer, 
but that the potential confounder 
was unmeasured in the study under 
review. A negative control exposure 
approach proceeds by examining the 
association of the site-specific cancer 
outcome of interest with another expo-
sure variable that (i) is associated with 
the hypothesized confounding factor 
and (ii) is not a cause of the site-spe-
cific cancer outcome of interest.

Fig.  3.3 can also illustrate the 
causal associations required for a 
valid negative control exposure if N 
is now taken to denote the negative 
control exposure: N shares common 
cause U with E, but N does not cause D.

Under these conditions, an ob- 
served association between N and D, 
adjusted for E (or within a stratum of E), 
would be entirely due to confounding 
by U, whereas the absence of such an 
association between N and D would be 
evidence against confounding of the 
E–D association by U (Example 3.10 
and Side Box 3.4).

(c) Proxies for a confounder

Proxies are indirect measures of un- 
available variables of interest; this 
chapter focuses on proxies that are 
used as surrogates for potential 
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Example 3.9. Indirect adjustment of SMRs to reduce healthy worker biases in aluminium smelting work

In a study of bladder cancer among workers in an aluminium smelting plant, confounding through healthy worker 
biases was a concern (McClure et al., 2020). The investigators quantitatively evaluated healthy worker effects 
through negative control outcomes and derived an adjusted SMR. They did this by selecting a group of diseases 
(e.g. non-malignant blood disorders, diabetes, psychological disorders) that satisfied the conditions of a negative 
control outcome because they were thought to be unaffected by smelting work exposure but would be affected by 
healthy worker effects in a fashion similar to bladder cancer. The unadjusted SMR for bladder cancer was 2.27, 
and the unadjusted SMR for the negative control group was 0.65. The adjusted SMR, derived by taking the ratio 
of the two SMRs, was 3.47; this indicated that the confounding from healthy worker effects downwardly biased the 
SMR for bladder cancer. (text continues above)

Side Box 3.3. Information needed to facilitate use of negative control outcomes to evaluate confounding

Several elements are required to use negative control outcomes to evaluate confounding. The first requirement 
is for a suitable negative control outcome, i.e. an outcome that is related to the confounder but is not caused 
by exposure to the agent under evaluation. Notably, the negative control outcome may be identified by the 
expert reviewer but not by the original researchers. Required results include the association between the agent 
of interest and the negative control outcome, as well as the primary association between the agent and the 
outcome of interest. (text continues above)
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confounders. Here, a proxy is taken 
to be a variable associated with an 
uncontrolled confounder U that would 
be irrelevant for confounding adjust-
ment had U been measured and 
controlled for (Example 3.11).

A valid proxy for a confounding 
variable should (i)  be associated 
with the hypothesized confounding 
factor U after controlling for expo-
sure and (ii)  not be associated with 
the outcome of interest except via U. 
Fig.  3.3 illustrates an example of 
causal associations required for a 
valid proxy, where N is now the proxy 
for U (Lipsitch et al., 2010).

Sometimes results are reported 
with stratification or restriction on 
a proxy variable in the form of 
subgroup analyses, in which strata 
were defined by a measured proxy 
variable. In other situations, results 
are reported with regression model 

adjustment for a proxy variable 
(sometimes results are reported with 
and without adjustment for a covariate 
that is a proxy for the confounder).

Example  3.12 illustrates the point 
that an analysis restricted to one level 
of a valid proxy variable (e.g. in which 
there is presumed to be little variation 
in the confounder U) might be viewed 
as less susceptible to confounding 
by U. However, as noted previously 
regarding residual confounding, the 
degree to which the proxy variable is 
a good surrogate for the unmeasured 
confounder will affect the degree by 
which confounding by U is minimized 
(Ogburn and VanderWeele, 2012; 
Ogburn et al., 2021). Moreover, the 
degree of residual bias that remains 
is typically proportional to the amount 
of confounding originally present 
(Greenland and Robins, 1985; Savitz 
and Barón, 1989).

3.3.3 Tool C-3: triangulation 
across studies

As described in Chapter 1, an IARC 
Monographs evaluation of an agent 
typically involves comparing findings 
across studies; this permits consid-
eration of results across a set of 
studies that may differ in control for 
a confounder of concern within the 
wider context of the strengths and 
limitations of the available studies. 
The term triangulation is used to 
describe a variety of approaches 
in which analysts use different 
types of evidence from different 
study designs or types that have 
different identifying conditions; these 
approaches leverage variation be- 
tween studies, focusing on settings 
in which biases vary across study 
types. Triangulation involves com- 
paring results for a common effect 
from two or more studies that are 

Example 3.10. Negative control exposures

In studies that assess exposure information by questionnaire, investigators will often include questions about 
exposure to agents that are thought to be unrelated to the outcome of interest; these may serve as negative control 
exposures. (text continues on page 77)

Side Box 3.4. Information needed to facilitate use of negative control exposures to evaluate confounding

Several elements are required to use negative control exposures to evaluate confounding. The first requirement 
is for a suitable negative control exposure, i.e. an exposure that is related to the confounder but is not a cause 
of the disease outcome under evaluation. As with the negative control outcome, the negative control exposure 
may be identified by only the expert reviewers. Required results include the negative control exposure–disease 
association, adjusted for exposure  1 (or negative control exposure–disease association within a stratum of 
exposure 1) between the negative control exposure and the outcome of interest, adjusted for the exposure of 
interest (or the negative control exposure association with the disease of interest within a stratum of the main 
exposure of interest), as well as the primary association between the agent and the outcome of interest. (text 
continues on page 77)
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thought to differ in susceptibility to 
confounding, or where the presumed 
confounder is thought to act in op- 
posing directions; deliberate use 
could be made of studies conducted 
in contexts with differing confounding 
structures (Lawlor et al., 2016). 
Triangulation between covariate-ad-
justed analyses and instrumental 
variable analyses (such as Mendelian 
randomization studies) can offer 
some insight into whether the covar-
iate-adjusted studies are likely to be 
confounded, because of the different 
identifying conditions required for 
covariate-adjusted analyses and 
Mendelian randomization studies 
(Example  3.13). Notably, there are 
also more advanced methods, such 

as multivariable Mendelian random-
ization, that adjust for known con- 
founders to test the independence 
assumption in the Mendelian random-
ization studies (Brookhart et al., 2010; 
Burgess and Thompson, 2015). For 
further discussion of the use of trian-
gulation in evidence synthesis, see 
Chapter 6.

Insight into possible bias can also 
be obtained by comparing results from 
two or more studies that are thought to 
differ in susceptibility to confounding. 
For example, a reviewer may raise 
a concern about a confounder that 
is uncontrolled in one or more 
studies (e.g. no control for smoking 
in studies among workers exposed 

to diesel fumes where lung cancer is 
the outcome) but observe that other 
studies of the same association 
reported similar results after adjust-
ment for smoking (e.g. Bhatia et al., 
1998). This offers another possible 
method to assess confounding; 
however, such simple comparisons 
across studies may not be valid. 
Rather, it would be surprising if the 
bias in one study applied perfectly to 
other studies (or even to other study 
samples drawn from the same source 
population). Confounding is seldom, if 
ever, the only bias of concern. When 
multiple biases are present, compar-
ison between studies becomes more 
difficult (see Section  6.3 for further 
discussion and examples).

C
H

A
P

T
E

R
 3

Example 3.11. Using a proxy variable to evaluate confounding in a cohort of Seventh Day Adventist adherents

A Working Group can evaluate concern about confounding by smoking if the reported results include analyses 
restricted to one level of a variable that is a proxy for smoking (the unmeasured potential confounder). An example 
is the study of chronic disease in the Adventist Health Study cohort, in which recruitment is restricted to a religious 
group who mostly do not smoke, to serve as a proxy for not smoking (Butler et al., 2008). (text continues on page 
78)

Example 3.12. Restriction to one level of a proxy variable to examine residual confounding

Sheikh et al. (2020) examined the association between opium use (E) and oesophageal cancer (D) in the Islamic 
Republic of Iran; the Working Group discussed concerns about potential residual confounding by tobacco use 
(U). Sex was a measured variable in the study; it is presumed to be associated with tobacco smoking, because 
tobacco use is very rare among women in this population. A Working Group could consider sex as a proxy variable 
to indirectly assess residual confounding of the association between opium use and oesophageal cancer by 
smoking. In an analysis restricted to women, a positive association between opium use and oesophageal cancer 
was observed, and the association observed among women was similar in magnitude to that observed among 
men. Results conditioned on sex, if sex is considered a valid proxy for smoking, should be less susceptible to 
confounding by smoking. In this example, results suggested that the (sex- and smoking-adjusted) association 
between opium use and oesophageal cancer was unlikely to be substantially biased by residual confounding by 
tobacco smoking. (text continues on page 78)
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3.3.4 Tool C-4: bias adjustment

Investigators may be concerned 
about confounding by an unmea- 
sured variable (the total or residual 
confounding) or the confounding 
produced by specific unmeasured 
variables. In the latter case, sup- 
pose that a reviewer has drawn a 
simple signed DAG for posited con- 
founder–exposure and confounder–
disease associations, implying poten-
tial bias in the study under review.

It is then necessary to assess how 
large this bias is likely to be, relative 
to the observed exposure–disease 
association. In assessing the poten-
tial impact of an unmeasured or 
incompletely adjusted confounder, 
reviewers may be able to estimate 
the size of the bias induced and 
decide whether it is indeed relevant. 
A variety of methods are available 
to quantitatively assess confounding 
under specified scenarios (or to iden-
tify bounds on bias due to an unmea- 
sured confounder). Not all proposed 
methods are reviewed here; only a 
few approaches that are well suited 
to the IARC Monographs process are 
highlighted. Although subject matter 
knowledge is necessary, it need not 
be certain or complete; a range of 

values can be examined to assess 
plausible scenarios.

In the following subsections, 
many of the quantitative bias ana- 
lyses are framed to guide judgement 
regarding whether a published esti-
mate of association could plausibly be 
attributed entirely to an unmeasured 
confounder. As noted in Chapter 1, this 
reflects one of the primary questions 
posed to experts involved in an IARC 
Monographs review: can confounding 
reasonably be ruled out as an expla-
nation for all of an observed expo-
sure–cancer association? Simple 
expressions (and spreadsheet calcu-
lators) are also provided to facilitate 
the assessment of a range of bias. 
The focus throughout is on a single 
unmeasured confounder of primary 
concern; in Chapter  6, methods are 
extended to address multiple-bias 
analysis.

(a) Bounding

Concern about potential unmeasured 
confounders is often focused first on 
established cancer risk factors that 
have a strong independent associa- 
tion with the cancer of interest. This is 
because the understanding of strong 
risk factors for cancer outcomes is 

often better than that of the deter-
minants of exposure. For simplicity, 
let us focus on settings where the 
hypothesized confounder increases 
the risk of cancer (i.e. RRU-D  ≥  1), 
where RRU-D denotes the magnitude of 
the confounder–outcome relative risk 
(this magnitude is typically estimated 
from prior information; Fig. 3.4).

If RRU-D is less than RRobs, the 
reported relative risk between 
the exposure and the outcome 
in the study under review, then 
confounding by U cannot entirely 
explain an observed association.

Key message

Example 3.13. Evidence triangulation to evaluate confounding

The IARC Monographs Volume 124 on night shift work found limited evidence that night shift work causes cancer 
in humans, with convincing evidence that it disrupts circadian rhythms (IARC, 2020). In that review, an example 
of triangulation between covariate-adjusted analyses and an instrumental variable analysis was discussed. A 
multivariable regression analysis demonstrated that, when examining chronotype (morning or evening preference) 
as a measure of circadian rhythm, morning preference was inversely associated with breast cancer incidence 
among participants in the UK Biobank study. The investigators identified genetic variants related to chronotype and 
undertook a Mendelian randomization study of chronotype and breast cancer incidence; they found a protective effect 
of morning preference on breast cancer risk (Richmond et al., 2019). This lends indirect support to the hypothesis that 
shift work is related to cancer risk because it disrupts this biological pathway. (text continues on page 79)

Fig.  3.4. Diagram for analyses in- 
volving bounding and correction for 
the effect of a confounder.

Fig. 3.4
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As shown in Example  3.14, if we 
know just the magnitude of the con- 
founder–outcome association, RRU-D, 
then, given a reported association, 

RRobs, it is possible to identify bounds 
(under a worst-case scenario, in which 
all the exposed have the confounder 
but none of the unexposed has the 
confounder) on the association of 
interest after adjustment for U 
(Flanders and Khoury, 1990):

Alternatively, if the magnitude of 
the confounder–exposure relative 
risk (RRU-E) is less than RRobs, then 
confounding by U cannot entirely 
explain an observed association. 
In other words, for confounding to 
entirely explain the observed asso-
ciation, both of the underlying asso-

ciations (RRU-E and RRU-D), not just 
one of them, must be larger than 
the published relative risk estimate, 
RRobs (Cornfield et al., 1959). More 
informative bounds can be obtained 
using these two pieces of informa-
tion (RRU-E and RRU-D) (Flanders and 
Khoury, 1990; VanderWeele and 
Ding, 2017).

(b) Bias adjustment

As shown in Example 3.15, a simple 
bias-adjusted (Bross, 1966; Axelson, 
1978; Schlesselman, 1978) estimate 
of the association can be derived, 
based on posited values for the 
strength of the confounder–outcome 
(RRU-D) association and the preva-
lence of the confounder among the 
unexposed  (p0 = Pr[U = 1 | E = 0]) and 
the exposed (p1 = Pr[U = 1 | E = 1]): 
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RRobs × (1/RRU-D) = lower bound (3.1)

RRobs × 1 = upper bound (3.2)

Either unique values for p0 and p1 
can be posited, along with the con- 
founder–disease association (RRU-D), 
or a range of plausible values for 
each can be posited and a distri-
bution developed of the probable 
effects of bias due to an unmea
sured confounder, using either Monte 
Carlo simulations or Bayesian priors 

(Steenland and Greenland, 2004). If 
the prevalences of the confounder 
among the unexposed and the 
exposed are not known, a Working 
Group member might take the latter 
approach to investigate what preva-
lence of smoking would be needed to 
entirely explain the observed asso-
ciation, and then consider the plau-
sibility of such a pattern in the study 
population. Implementation of such 
calculations in a spreadsheet facili-
tates exploration (Fox et al., 2021).

(c) Unknown uncontrolled 
confounders and E-values

If a concern is expressed about an un- 
known confounder, a reviewer might  
undertake a quantitative bounding 
analysis, following the principles out- 
lined previously in Section  3.3.4(a). 
Such an evaluation could be consid-
ered when doubts remain about 
causality, despite the lack of an 
identified confounder. For example, 
if it is arbitrarily assumed that the 
magnitudes of the associations of 
the confounder with exposure and 
outcome are equal on a risk-ratio 
scale (i.e. RRU-E  =  RRU-D) then, for 
an observed positive exposure–
outcome association to be entirely 
due to a confounder U, RRU-E 

(3.3)

From these expressions, it follows 
that if the association between 
the confounder and outcome is 
small (i.e. RRU-D is close to 1) 
then the amount of uncontrolled 
bias from this confounder is also 
likely to be small.

Key message

RRobs × (1/RRU-D) = lower bound (3.1)
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Example 3.14. Use of bounding to examine confounding scenarios

Suppose that, in a study under review, it was reported that the observed association between opium use and 
laryngeal cancer (unadjusted for tobacco use) was RRobs = 2.0. Suppose that confounding by tobacco smoking is 
of concern but had not been assessed in the study. On the basis of prior literature (Bakhshaee et al., 2017; Alizadeh 
et al., 2020), it can be hypothesized that the smoking–laryngeal cancer association in the study population was 
no larger than RRU-D = 5.5. In that situation, bounds on the smoking-adjusted association between opium use 
and laryngeal cancer are [0.36, 2.00]. With these assumptions, a reviewer could conclude that the observed 
association between opium use and laryngeal cancer could be due to confounding by smoking. (text continues 
below)
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and RRU-D must equal, or exceed, 

RRobs  +  sqrt[RRobs  ×  (RRobs  −  1)], a 

quantity that has been termed the 

E-value (VanderWeele and Ding, 

2017). Note that this value is derived 

using just the observed (potentially 

confounded) association between 

agent and outcome, RRobs, without 

specification of the confounder–

outcome or confounder–exposure 

association (other than assuming that 

they are equal). It also unrealistically 

assumes that the prevalence of the 

uncontrolled confounder among the 

exposed is 100% or, equivalently, 

that the prevalence of the exposure 

among those without the confounder 

is 0%, and hence can be mislead-

ingly small compared with what is 

needed for an actual confounder to 

fully explain the magnitude of RRobs 

(MacLehose et al., 2021), as shown 

in Example 3.16.

Bias analyses (Flanders and 

Khoury, 1990; Lash et al., 2009; 

Fox et al., 2021; MacLehose et al., 

2021) allow one to relax the assump-

tions used by the E-value that RRU-E 

equals RRU-D and that the prevalence 

of the confounder is 100% among the 

exposed. 

3.4 Summary

Confounding is typically of concern 
in observational studies. Expert 
reviewers can assess the impact of 
confounding on the observed expo-
sure–cancer association in several 
ways. Some study designs can mini-
mize confounding, for example by 
matching on probable confounders 
ahead of time. In other studies, the 
investigators will have measured 
potential confounders and controlled 
for them in the design or analysis. 

When there is concern about unknown confounders, a quantitative 
bounding analysis, as discussed previously in Section 3.3.4(a), can 
clarify what magnitudes of confounder–disease association, and what 
prevalences of confounder among exposed and unexposed, would be 
needed to entirely explain an observed exposure–disease association 
(see Side Box 3.5).

Key message

Example 3.15. Bias adjustment to evaluate confounding

Consider the possibility of unmeasured smoking as a potential confounder in a study of opium use and lung 
cancer. Suppose that the prevalence of smoking in the unexposed is 20%, the prevalence in the exposed is 30% 
(RRU-E = 1.5), smoking has a hypothesized RRU-D of 10, and the observed relative risk for opium and lung cancer 
is 2.0 (exposed versus unexposed). Let p0 be the proportion of smokers among the unexposed and p1 be the 
proportion of smokers among the exposed. The risk of lung cancer among those unexposed due solely to smoking 
will be a weighted average of the risks of lung cancer in non-smokers and smokers, i.e. RRU-D p0 + (1 − p0), and 
the risk of lung cancer among the exposed, due to smoking alone, is RRU-D p1 +  (1 − p1). The relative risk of 
exposed versus unexposed, due to smoking alone, is [RRU-D p1 + (1 − p1)]/[RRU-D p0 + (1 − p0)], and we can adjust 
the observed relative risk due to opium by this factor to indirectly adjust for the estimated confounding by smoking 
(Flanders and Khoury, 1990). (text continues on page 81)
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For a simple bias adjustment, as given by this equation, one can correct the observed risk ratio for the potential 
confounding; if the observed risk ratio were 2.00, the adjusted risk ratio would be
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In both settings, reviewers will want 
to consider whether the confounder 
was well measured and controlled 
(i.e. whether residual confounding is 
likely to remain). Reviewers may also 
consider whether, based on the liter-
ature, there are likely to be important 
unmeasured confounders.

If potential confounders were 
not measured or were inadequately 

controlled in a study, then reviewers 
need to make informed judgements 
about the direction of residual con- 
founding and its probable magnitude, 
and, in particular, the extent to which 
residual confounding could explain 
the observed exposure–disease as- 
sociation. The reliability of such judge- 
ments will be greatly improved to 
the extent that they make use of 

background information about the 
relations of uncontrolled potential 
confounders to the exposure and dis- 
ease under study, and the results of 
other studies that did control for those 
potential confounders.

C
H

A
P

T
E

R
 3

Example 3.16. The E-value to evaluate confounding

The reported association between opium use and oesophageal cancer (unadjusted for some unknown confounder 
U) was RRobs = 2.0 (Example 3.15). Suppose that confounding by the unknown confounder U is suspected. The 
resultant E-value would take a value of 2 + sqrt[2 × (2 − 1)] = 3.4, meaning that if a reviewer posited that RRU-E and 
RRU-D were positive, equal, and both less than 3.4, it could be concluded that confounding by U could not entirely 
explain the observed positive exposure–disease association.

However, a reviewer might assume the confounder–opium use association, RRU-E, to be larger than 3.4. This 
illustrates one important caution concerning interpretation of the E-value: although it might be tempting to say that 
both associations need to be at least as large as the E-value, that is incorrect. In fact, RRU-D could be less than 
the E-value, while RRU-E could be substantially larger than the E-value, allowing for confounding to completely 
explain the association. Conversely, both RRU-D and RRU-E could be substantially larger than 3.4 and still not 
completely explain the association, for the simple reason that the unknown confounder U could have a prevalence 
substantially less than 100% among opium users. (text continues on page 82)

 Side Box 3.5. Information needed to facilitate use of bias assessment to evaluate confounding

For bounding approaches, the original (or associated) studies should report the value of the probable magnitude 
of association of the confounder with the outcome of interest in the population under study, and the association of 
the confounder with the exposure of interest.

For quantitative bias assessment, the original or associated studies should also report, more specifically, 
the prevalence of the confounder among those unexposed (p0) and exposed (p1) to the agent of interest. (text 
continues on page 82)
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