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1.	 Exposure Data

1.1	 Identification of the agent

1.1.1	 Nomenclature

Chem. Abstr. Serv. Reg. No.: 98-00-0
Chem. Abstr. Serv. name: Furanmethanol
EC name: Furfuryl alcohol
IUPAC systematic name: 2-Furylmethanol
Synonyms: 2-Furanmethanol, furfurol, 
2-(hydroxymethyl)furan, 2-furylcarbinol; 2- 
furancarbinol; α-furylcarbinol; furfuralcohol
From NTP (1999); European Commission 
(2011)

1.1.2	 Structural and molecular formulae, and 
relative molecular mass

O
OH

Molecular formula: C5H6O2

Relative molecular mass: 98.10 (NTP, 1999)

1.1.3	 Chemical and physical properties

Description: Furfuryl alcohol is a colour-
less or pale yellow liquid with characteristic 
“burning” odour and bitter taste; it turns red 
or brown on exposure to light and air
Boiling point: 170 °C
Melting point: –15 °C
Density: 1.1296 g/cm3 at 20 °C
Solubility: Very soluble in ethanol and ethyl 
ether, soluble in ketone and chloroform; it 
dissolves cellulose nitrate, some dyes and 
synthetic resins (Ellis, 1972); it is miscible 
with water, forming an azeotrope at atmos-
pheric pressure (water, 80 wt%; boiling point, 
98.5 °C).
Volatility: Vapour pressure, 53 kPa at 20 °C
Flash point: 65 °C (tag closed cup)
Explosive limits: 1.8–16.3 vol% in air
Stability: Pure furfuryl alcohol decomposes 
upon standing for extended periods; it should 
be stored in a dark bottle in a refrigerator at 
0 °C (NIOSH, 1994)
Relative vapour density: 3.4 (air = 1)
Octanol/water partition coefficient (P): log 
Kow, 0.28
Odour threshold: About 28 mg/m3 in humans; 
50% response at 8 ppm
Conversion factor: 1  ppm  =  4.01  mg/m3 at 
normal temperature (25  °C) and pressure 
(103.5 kPa)

FURFURYL ALCOHOL
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Impurities: No data on impurities were avail-
able; overall purity is usually > 98% (NTP, 
1999; Hoydonckx, 2007).
From NTP (1999); Lide (2005); Hoydonckx 
(2007); European Commission (2011).

1.2	 Production and use

1.2.1	 Production process

Furfuryl alcohol is produced industrially by 
the hydrogenation of furfural. Vapour-phase 
reaction or liquid-phase reaction are both used, 
although the vapour-phase reaction at atmos-
pheric pressure is currently the most widely 
employed, except in China (Chen et al., 2002; 
Hoydonckx, 2007; ITC, 2012).

Furfural contains two kinds of reactive group 
– a carbonyl group and carbon–carbon double 
bonds; hydrogenation of the former gives furfuryl 
alcohol, and hydrogenation of the latter results in 
tetrahydrofurfural. The catalytic hydrogenation 
of the furfural carbonyl group requires the pres-
ence of heterogeneous or homogeneous catalysts. 
The heterogeneous copper chromite catalyst has 
been used at an industrial scale for more than 
six decades (Villaverde et al., 2013); however, 
the toxicity and carcinogenic potential asso-
ciated with chromite (IARC, 1990; Chen et al., 
2002), and environmental problems associated 
with deactivated copper chromite catalyst have 
prompted the development of other catalysts 
based on copper (Vargas-Hernández et al., 2014; 
Jiménez-Gómez et al., 2016), nickel (Baijun et al., 
1998; Li et al., 2003; Kotbagi et al., 2016), ruthe-
nium (Tukacs et al., 2017), platinum, and palla-
dium (O’Driscoll et al., 2017), among others.

Production of furfuryl alcohol from xylose 
over a dual heterogeneous catalyst system has 
also been described (Perez & Fraga, 2014; Cui 
et al., 2016).

The potential of microbial conversion of 
furfural for the production of furfuryl alcohol 

has been explored as an alternative; however, it 
is still relatively understudied and not widely 
applied (Mandalika et al., 2014).

1.2.2	 Production volume

Global production of furfuryl alcohol was 
estimated at about 300 000 tonnes in 2015 (Grand 
View Research, 2015). Furfuryl alcohol is listed 
by the Organisation for Economic Co-operation 
and Development (OECD) (OECD, 2018) and the 
United States Environmental Protection Agency 
(EPA) as a chemical with a high production 
volume, with more than 1 million pounds [more 
than 453  tonnes] produced annually (Franko 
et al., 2012). China is the main global manufac-
turer and user of furfuryl alcohol, with 80–85% of 
global capacity and production, and about 60% of 
global consumption in 2015 (IHS Markit, 2016). 
Between 10 000 and 100 000 tonnes are manu-
factured and/or imported into the European 
Economic Area each year (ECHA, 2018a). A 
single industrial plant in Belgium produced 
around 40 000 tonnes per year (IFC, 2016). The 
database ChemSources-Online lists 31 manufac-
turing companies worldwide (Chemical Sources 
International, 2017).

1.2.3	 Use

It has been estimated that the production 
of furan resins for foundry sand binders in the 
metal casting industry accounted for about 
85–90% of furfuryl alcohol used worldwide (IHS 
Markit, 2016). Furfuryl alcohol is also used as a 
wetting agent and as a solvent for dyes and as 
corrosion inhibitor in fibre-reinforced plastics, 
in cements and mortars, and in wood protec-
tion. Applications also include use in flavours 
and fragrances. Moreover, furfuryl alcohol is 
used as a laboratory reagent and as a chemical 
building block for drug synthesis (Sriram & 
Yogeeswari, 2010; European Commission, 2011; 
IHS Markit, 2016). In addition, the product of 
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the hydrogenation of furfuryl alcohol, tetrahy-
drofurfuryl alcohol, is used in plant protection 
products (ECHA, 2018b).

1.3	 Analytical methods

Representative methods for the analysis of 
furfuryl alcohol in environmental and food 
matrices are summarized in Table 1.1. In general, 
gas chromatography with mass spectrometry 
(GC-MS) is preferred due to its higher sensitivity.

Thermal desorption combined with GC-MS 
or with gas chromatography-ultraviolet spec-
trometry (GC-UV) has been used to analyse 
furfuryl alcohol adsorbed to indoor dust parti-
cles (Nilsson et al., 2005).

Extraction of furfuryl alcohol from food 
matrices (before chromatographic analysis) 
can be performed by different methods, namely 
solvent extraction, solid-phase extraction, simul-
taneous distillation extraction, and solid-phase 
microextraction (Yang & Peppard, 1994; Cocito 
et al., 1995; Spillman et al., 1998; Gómez Plaza 
et al., 1999; Jerković et al., 2007).

Headspace-solid phase microextraction 
methods are advantageous for the analysis of 

volatile compounds like furfuryl alcohol (Carrillo 
et al., 2006; Pérez-Palacios et al., 2012; 2013; 2014; 
Petisca et al., 2013a, 2013b, 2014). The first reports 
on analysis indicated headspace incubation and 
extraction temperatures of 80 °C for at least 30 
minutes (EFSA, 2004), but temperature was later 
reduced to 60  °C (FDA, 2005), and even lower 
(Pérez-Palacios et al., 2012), to avoid formation 
of additional amounts of furanic compounds 
during analysis.

1.4	 Occurrence and exposure

1.4.1	 Occurrence

Due to its high production volume and large 
number of industrial and consumer uses, furfu- 
ryl alcohol is ubiquitous in the environment.

Should furfuryl alcohol be released to the 
soil, it is expected to have very high mobility 
based upon an estimated soil adsorption coeffi-
cient, Koc, of 34. If released into water, furfuryl 
alcohol is not expected to adsorb to suspended 
solids and sediment, based upon an observed 
degradation of 75–79% in 2 weeks. If released to 
air, furfuryl alcohol will exist solely as a vapour 

Table 1.1 Representative methods for the analysis of furfuryl alcohol

Sample matrix Assay procedure Limit of detection Reference

Air of workplace TDS-GC-FID 2.25 mg/m3 (LOQ) Tschickardt (2012) 
ISO (2000, 2001); NIOSH (1994)TDS-GC-FID NR

Dust particles GC-UV ≤ 0.4 μg/g Nilsson et al. (2005)
Foundry resins GC-FID 173 μg/L Oliva-Teles et al. (2005)

LC-UV 5.2 mg/L
Fruit juices LC-UV 3 mg/L Yuan & Chen (1999)
Environmental water GC-MS 0.02 μg/L Kawata et al. (2001)
Roasted coffee SPME-GC-MS NR Yang & Peppard (1994)
Wine SPME-GC-MS 7 µg/L Carrillo et al. (2006)
Coffee HS-SPME-GC-MS 0.59 mg/L Petisca et al. (2013a)
Coffee NMR 3.2 mg/L Okaru & Lachenmeier (2017)
Deep-fried products HS-SPME-GC-MS 1.5 mg/kg Pérez-Palacios et al. (2012)
GC-FID, gas chromatography-flame ionization detector; GC-MS, gas chromatography-mass spectrometry; GC-UV, gas chromatography-
ultraviolet spectrometry; HS, headspace; LC-UV, liquid chromatography-ultraviolet spectrometry; LOQ, limit of quantification; NMR, nuclear 
magnetic resonance; NR, not reported; SPME, solid-phase microextraction; TDS, thermal desorption system
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in the atmosphere (on the basis of its vapour 
pressure), and will be degraded by reaction with 
photochemically produced hydroxyl radicals. 
The half-life for this reaction is estimated to be 
3.7 hours. Furfuryl alcohol may also be suscep-
tible to direct photolysis by sunlight, on the basis 
of its absorption of ultraviolet light at wavelengths 
> 290 nm (National Library of Medicine, 2018).

Furfuryl alcohol has been identified as a side 
product in Maillard reactions (Schirle-Keller & 
Reineccius, 1992; Chen & Ho, 1999). Its forma-
tion from glucose in aqueous systems has been 
described. The mechanism involves the oxidation 
of glucose to gluconic acid, which is decarboxy-
lated to a pentitol and followed by dehydration 
and cyclization to furfuryl alcohol (Wnorowski 
& Yaylayan, 2000; Yaylayan & Keyhani, 2000). 
Likewise, sugar degradation, or hydrolysis and 
heating of polysaccharides containing hexoses or 
pentoses, can result in the formation of furfuryl 
alcohol. Glucose or fructose can undergo isomer-
ization reactions at high temperatures. The inter-
mediate compounds formed will react further by 
cyclization and aromatization, forming furfuryl 
alcohol (Brands & van Boekel, 2001; Murkovic & 
Swasti, 2013).

Furfuryl alcohol occurs naturally in some 
types of fruit, and in tea, coffee, and cocoa 
(European Commission, 2011), and in many 
foods, mainly due to food processing, storage 
or ageing, or its addition in flavouring agents. 
These flavouring agents have low taste thresh-
olds and deliver a characteristic cocoa, butter, or 
fruity odour. Thermal processing (e.g. roasting, 
baking, or deep-frying) to obtain a desirable 
flavour increases the formation of furfuryl 
alcohol (Pérez-Palacios et al., 2012, 2013, 2014; 
Petisca et al., 2013a, b). Dried (Giannetti et al., 
2014; Pasqualone et al., 2014), cured or smoked 
(Yu et al., 2008), fermented, stored, or aged prod-
ucts (Spillman et al., 1998; Karagül-Yüceer et al., 
2002; Qian & Reineccius, 2002; Morales et al., 
2004; Vanderhaegen et al., 2004; Giri et al., 2010; 
Lidums, et al., 2015, Liang et al., 2016, Harada 

et al., 2017; Pico et al., 2017) also contain furfuryl 
alcohol.

Among the many heterocyclic compounds 
reported to be present in roasted coffee, furans 
were found to be abundant (Flament & Bessiere-
Thomas, 2002; Petisca et al., 2013a). The forma-
tion of furanic compounds in roasted coffee has 
been attributed to Maillard reactions; however, 
degradation of less volatile coffee constituents, 
such as quinic, caffeic, and chlorogenic acids can 
also result in the formation of furfuryl alcohol 
(Moon & Shibamoto, 2010).

During wine ageing, furfuryl alcohol is 
formed by microbiological reduction of the 
furfuryl aldehydes (Spillman et al., 1998). The 
concentration of furfuryl alcohol in wine in 
all of the sampled oak barrels was reported to 
be low during the first 180 days of maturation, 
but increased rapidly from day 180 to day 270, 
coinciding with spring and summer, when high 
temperature favours microfloral growth and 
enzyme activity (Pérez-Prieto et al., 2003).

Furfuryl alcohol is also found in beer. In pale 
beers, the concentration of furfuryl alcohol is 
essentially determined by the “thermal load” on 
wort (from heating and boiling) during brewing 
operations, while in dark beers a considerable 
fraction of furfuryl alcohol may come from the 
dark malts used (Vanderhaegen et al., 2004).

Products that are prepared using processes 
involving a short, rapid cooking method at quite 
high temperatures are associated with a relatively 
high content of furfuryl alcohol, as in the case 
of rice cakes and deep-fried products (Buttery 
et al., 1999; Pérez-Palacios et al., 2014). The influ-
ence of cooking and handling conditions on the 
quantity of furfuryl alcohol and other furanic 
compounds in deep-fried breaded fish products 
has been studied (Pérez-Palacios et al., 2013). The 
content of furanic compounds in these products 
was lower after oven-baking or reheating in a 
microwave oven than after deep-frying. The 
content of furfuryl alcohol (and generation of 
furanic compounds) decreased with decreasing 
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temperature and duration of deep-frying, and 
also when there was a delay after deep-frying and 
before sampling. Adjusting the cooking method 
and conditions by using an electric oven, deep-
frying in sunflower oil at 160 °C for 4 minutes, 
or waiting 10 minutes after cooking are strate-
gies that could be applied to reduce the furfuryl 
alcohol content of breaded fish products (Pérez-
Palacios et al., 2013).

1.4.2	 Exposure in the general population

The general population is exposed to furfuryl 
alcohol mainly in food and beverages, but expo-
sure can also occur via inhalation and the dermal 
route (NIOSH, 2015; IFA, 2017). [The Working 
Group noted that there may be potential inhal-
ation exposure from cigarette smoke or electronic 
cigarette aerosols, but no studies were available.]

Most reported individual foods contained 
low or trace amounts of furfuryl alcohol, but the 
cumulative amount ingested could contribute 
significantly to exposure. The major source of 
furfuryl alcohol in foods is thermal processing 
and ageing of alcoholic beverages (Okaru & 
Lachenmeier, 2017). The concentrations of 
furfuryl alcohol in certain items can reach 
several thousands of micrograms per litre or per 
kilogram, as summarized in Table  1.2. Coffee, 
bread, baked goods, deep-fried fish, and some 
spirits may contain furfuryl alcohol at high levels; 
however, there is great variability according to 
the degree of roasting or the preparation proce-
dure used.

Since furfuryl alcohol is an approved food 
flavouring additive, exposure will increase with 
the consumption of foods that contain added 
furfuryl alcohol. Daily intake of flavouring 
substances was evaluated by two different 
methods: maximized survey-derived daily intake 
(MSDI) estimated from annual production data 
for flavours, and possible average daily intake 
(PADI). The latter calculates an exaggerated 
intake, since it makes the assumption that the 

flavouring agent is used at the average use level in 
all foods within a category of foods in which the 
flavour was anticipated to be used by industry. As 
expected, the two methods give different results, 
because PADI provides a substantial overestima-
tion of the actual intake. However, this higher 
estimation of intake is useful to determine 
whether margins of safety are still adequate in 
a worst-case scenario (Munro & Danielewska-
Nikiel, 2006). The estimated furfuryl alcohol 
intake was 4 μg/kg bw per day when calculated 
by MSDI, and 130 μg/kg bw per day by PADI 
(Munro & Danielewska-Nikiel, 2006).

[The Working Group estimated that, based 
on a furfuryl alcohol concentration of 70 mg/L, 
one cup of 30 mL of expresso coffee represents 
an intake of 2 mg of furfuryl alcohol, or about 
0.03  mg/kg bw (body weight, 70 kg). Based 
on a consumption of 4 kg of roasted coffee for 
European Union inhabitants per year and average 
content of 250 mg/kg in roasted coffee, per capita 
intake would be 3 mg/day, assuming the worst-
case scenario of complete extraction of furfuryl 
alcohol into the liquid.]

[The Working Group noted that current 
exposure estimates (MSDI and PADI) that are 
based only on added flavouring agents under-
estimate total intake because of the additional 
contribution from foods and beverages that 
contain furfuryl alcohol as a result of cooking or 
preparation processes (e.g. coffee).]

1.4.3	 Occupational exposure

See Table 1.3
Workplace exposure to furfuryl alcohol can 

occur in the chemical industry when furfuryl 
alcohol is used in the manufacture of other prod-
ucts, and in a variety of end-user situations when 
furfuryl alcohol is emitted as a process-generated 
substance.

Furfuryl alcohol is used in polymers, labo-
ratory chemicals, and coating products, and 
in the manufacture of chemicals and plastic 
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products. Chemical manufacturing is carried 
out in enclosed process systems, which minimize 
potential workplace exposure. NIOSH (1979) 
described measurements made in the 1970s at 
two plants manufacturing furfuryl alcohol in the 
USA; these were mostly < 0.4 mg/m3. No recent 
published exposure measurements for the use of 
furfuryl alcohol in manufacturing industry were 
available to the Working Group. Occupational 
exposure may occur by inhalation and skin 
contact.

Around 85–90% of furfuryl alcohol is used 
to produce furan resins for use in the foundry 
industry (IHS Markit, 2016), and the available 
exposure data for this substance were mostly 
from foundry operations. These resins have 
been increasingly used in foundry operations 
since the 1960s. Furan binders are copolymers 
of furfuryl alcohol in urea–formaldehyde and 
phenol–formaldehyde resins (Kim et al., 1998). 
Unhardened resin contains free furfuryl alcohol, 
small amounts of free formaldehyde, and other 

Table 1.2 Occurrence of furfuryl alcohol in food and beverages

Food item Furfuryl alcohol content Reference

Liquids    
Turkish coffee 14 691 µg/L Amanpour & Selli (2016)
French press coffee 13 799 µg/L Amanpour & Selli (2016)
Espresso coffee 31 000–70 000 µg/L Petisca et al. (2014)
Aged wines 350–850 µg/L Pérez-Prieto et al. (2003)
Aged wines 3500–9600 µg/L Spillman et al. (1998)
Beer 1800–4000 µg/L Vanderhaegen et al. (2004)
Wine vinegar ND–594 µg/L Tesfaye et al. (2004)
Cereal vinegar 35–40 µg/L Liang et al. (2016)
Solids    
Instant coffee 267 000 µg/kg Golubkova (2011)
Filter coffee 1 430 000 µg/kg Golubkova (2011)
Roasted coffee 158 000–1 340 000 µg/kg Golubkova (2011)
Roasted coffee 251 000 µg/kg Okaru & Lachenmeier (2017)
Baked goods 110 000 µg/kg Okaru & Lachenmeier (2017)
Bread 187 000 µg/kg Okaru & Lachenmeier (2017)
Deep-fried coated fish 4580–22 280 µg/kg Pérez-Palacios et al. (2012, 2013, 2014)
Toasted almonds 4400–8880 µg/kg Vázquez-Araújo et al. (2008)
Fish miso 612–40 761 µg/kg Giri et al. (2010)
Soy miso 4366 µg/kg Giri et al. (2010)
Rice miso 1290 µg/kg Giri et al. (2010)
Non-fat dried milk (stored 3 months) 14 500 µg/kg Karagül-Yüceer et al. (2002)
Rice cake 2000–2300 µg/kg Buttery et al. (1999)
Corn tortilla chips 540 µg/kg Buttery & Ling (1998)
Popcorn 38.2–82.1 µg/kg Park & Maga (2006)
Sweet potatoes 14 µg/kg Wang & Kays (2000)
Honey 1550 µg/kg Vazquez et al. (2007)
Citrus honeys 44–61 µg/kg Escriche et al. (2011)
Citrus honeys 5.5–23.5 µg/kg Castro-Vázquez et al. (2007)
Roasted cocoa powder 0–69 µg/kg Bonvehí (2005)
Wheat bread 0.187–0.613 µg/kg Jensen et al. (2011)
ND, not detected
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Table 1.3 Occupational exposure to furfuryl alcohol

Reference Location, 
collection 
date

Description of 
occupation or 
work task

Sampling 
matrix; 
approach; 
N; duration

Agent, 
exposure 
levela

Exposure range Comments

Low & Mitchell 
(1985)

Australia, 
around 1984

Foundry 
Furan mould 
process: mixing 
machine

Air; 
personal; 
N = NR; 
NR

Furfuryl 
alcohol 
NR

3–8 ppm 
[12–32 mg/m3]

 

Low & Mitchell 
(1985)

Australia, 
around 1984

Foundry 
Furan mould 
process: general 
foundry

Air; 
personal; 
N = NR; 
NR

Furfuryl 
alcohol 
NR

10–50 ppm 
[40–200 mg/m3]

 

Virtamo & 
Tossavainen 
(1976)

Finland, 
around 1976

Foundry 
Furan mould 
process

Air; 
personal; 
N = 36; 
1–2 h

Furfuryl 
alcohol 
4.6 ppm 
[18.4 mg/m3]

0.2–40 ppm 
[0.8–160 mg/m3]

Measurements made in the core-making areas of 10 
iron and steel foundries; 22% of results exceeded 5 ppm 
[20 mg/m3] (the TLV)

Pfaffli et al. 
(1985)

Finland, 
around 1984

Foundry Urine; 
biological; 
N = 6; 
NR

Furoic acid in 
urine 
NR

20–1300 µmol/
mmol creatinine

Data extracted from Fig. 4 of Pfaffli et al. (1985)

Landberg et al. 
(2015)

Sweden, 
around 2015

Foundry 
Core-making

Air; 
personal; 
N = 3; 
2 h

Furfuryl 
alcohol 
40 mg/m3

30–54 mg/m3 In core-making, a core of about 0.3–1 m3 was made 
by pouring sand mixed with furfuryl alcohol into a 
mould. This scenario was carried out for about 2 h per 
day, every day of the week. There were no other sources. 
No control measures or personal protection were used, 
and the work was performed in a large work room with 
general ventilation

Ahman et al. 
(1991)

Sweden, 
around 1991

Foundry 
Furan mould 
and core-
makers

Air; 
personal; 
N = 40; 
8 h

Furfuryl 
alcohol 
7 mg/m3

< 1–15 mg/m3 Over short periods of time (sampling time in general, 
15–30 min), the mean concentrations in six subjects 
exceeded the present short-term exposure limit 
recommended in Sweden (STEL, 40 mg/m3). During 
manual filling and packing of big moulding boxes, 
occasional peak concentrations of up to 100 mg/m3 were 
recorded on a direct-reading instrument 
In general, exposure concentrations of furfuryl alcohol 
observed in the moulding group were higher than those 
measured in the core-making group
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Reference Location, 
collection 
date

Description of 
occupation or 
work task

Sampling 
matrix; 
approach; 
N; duration

Agent, 
exposure 
levela

Exposure range Comments

Westberg et al. 
(2001)

Sweden, 
1992–1995

Foundry 
Furan 
moulds in an 
aluminium 
foundry

Air; 
personal; 
N = 3; 
8 h

Furfuryl 
alcohol 
2.4 mg/m3 
Geometric 
mean

0.8–23 mg/m3  

NIOSH (1979) USA, 
1976

All 
Furfuryl 
alcohol 
manufacture

Air; 
personal; 
N = 24; 
NR

Furfuryl 
alcohol 
< 0.1 ppm 
[< 0.4 mg/m3]

< 0.1–0.2 ppm 
[< 0.4–0.8 mg/m3]

 

NIOSH (1979) USA, 
1978

All 
Furfuryl 
alcohol 
manufacture

Air; 
personal; 
N = 4; 
NR

Furfuryl 
alcohol 
0.3 ppm 
[1.2 mg/m3]

0.2–0.4 ppm 
[0.8–1.6 mg/m3]

 

NIOSH (1972) USA, 
1972

Foundry 
Core-maker, 
assistant and 
apprentice

Air; 
personal; 
N = 3; 
8 h

Furfuryl 
alcohol 
< 20 mg/m3 
Median

< 20–25 mg/m3  

NIOSH (1973) USA, 
1973

Foundry 
Core-making

Air; 
environmental; 
N = 1; 
8 h

Furfuryl 
alcohol 
2.2 ppm 
[8.8 mg/m3]

NA Furfuryl alcohol was measured at: 2.2 ppm [8.8 mg/m3] 
during normal conditions that day and collected over a 
complete core production cycle (1 h); 8.6 ppm [34.4 mg/
m3] under normal conditions and during the core 
preparation time only (15 min); 10.8 ppm [43.2 mg/m3] 
during the core preparation when the sand was heated 
to a warm condition (15 min); and 15.8 ppm [63.2 mg/
m3] during the core preparation when the sand was hot 
(15 min)

OSHA (2018) USA, 
1984–2013

Various Air; 
personal; 
N = 204; 
Various

Furfuryl 
alcohol 
0.26 mg/m3 
Median

ND–20 mg/m3  

INRS (2018) France, 
1987–2017

Various Air; 
personal; 
N = 123; 
61–149 min

Furfuryl 
alcohol 
2.0 mg/m3 
Median

< 0.01–176 mg/m3 Data from industrial manufacturing; measurement 
duration, > 60 min

a	  Arithmetic mean unless otherwise reported
min, minute; NA, not applicable; ND, not detected; STEL, short-term exposure limit; TLV, threshold limit value

Table 1.3   (continued)
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volatile agents. In foundries, furfuryl alcohol is 
emitted during sand mixing, moulding or core 
making, mould assembly, casting, knockout, 
shot-blasting and manual welding (HSE, 2017). 
Exposure levels vary according to the specific 
tasks being carried out. Early measurement data 
sets (1970s and 1980s) from foundries in Australia 
(Low & Mitchell, 1985) and Finland (Virtamo & 
Tossavainen, 1976) showed that workers could 
be exposed to peak concentrations of furfuryl 
alcohol of between 100 and 200  mg/m3, with 
a mean exposure of 17.2  mg/m3 reported by 
Virtamo & Tossavainen (1976). Average expo-
sure levels were generally below 18 mg/m3. There 
may be coexposure to low air concentrations 
of formaldehyde and other volatile organic 
substances for core makers, with higher concen-
trations of these substances possibly occurring in 
general foundry operations. In a foundry, there 
could be more than one core-making process 
being used, and so coexposure to other volatile 
agents is possible.

In the United States Occupational Safety 
and Health Administration (OSHA) database of 
compliance exposure measurements, 204 meas-
urements of exposure to furfuryl alcohol were 
collected between 1984 and 2014 from a variety 
of industries; 45% of the data were below the 
limit of detection and more than 95% were less 
than 20 mg/m3. The highest measurements were 
from iron foundries (OSHA, 2018). Similar data 
were available from France, and showed a similar 
pattern of general low exposure in the indus-
trial manufacturing sector (123 measurements 
of more than 60 minutes duration, with 95% of 
the measured values being less than 35  mg/m3 
(INRS, 2018).

The Finnish Institute of Occupational Health 
exposure database contained 16 measurements 
for inhalation exposure to furfuryl alcohol 
collected between 2012 and 2016. The measure-
ments ranged from < 0.1 to 27 mg/m3, with the 
eight highest results from workers involved in 

manufacturing paper and paperboard (arith-
metic mean, 13 mg/m3) (FIOH, 2018).

1.5	 Regulations and guidelines

For chemical use, the ECHA (2018a) requires 
the following warning: “Danger!”. According 
to the harmonized classification and labelling 
(ATP01) approved by the European Union, this 
substance is toxic if inhaled, harmful if swal-
lowed, harmful in contact with skin, causes 
serious eye irritation, is suspected of causing 
cancer, may cause damage to organs through 
prolonged or repeated exposure, and may cause 
respiratory irritation.

Furfuryl alcohol is included in the most 
recent register of approved flavouring substances 
in Europe according to Regulation (EU) No 
872/2012 (European Commission, 2012). 
However, if furfuryl alcohol is formed as a 
contaminant due to food processing, food legis-
lation in Europe (Council Regulation 315/93) 
would demand that its content be reduced to as 
low as reasonably achievable (ALARA principle) 
(Okaru & Lachenmeier, 2017).

According to the regulations of the United 
States Food and Drug Administration (FDA), 
furfuryl alcohol is an “indirect food additive” for 
use only as a component of adhesives in pack-
aging, transporting, or holding food in accord-
ance with prescribed conditions (FDA, 2017). 
[According to the FDA, indirect food additives 
are substances that may come into contact with 
food as part of packaging or processing equip-
ment, but are not intended to be added directly 
to food.]

In 1996, the Joint FAO/WHO Expert 
Committee on Food Additives (JECFA) began 
a programme to evaluate the safety of food 
flavouring agents. To perform these evaluations, 
flavouring substances are first compiled into 
groups of structurally related materials, which 
are expected to present similar routes of metabo-
lism and toxicity. JECFA has established a group 
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acceptable daily intake (ADI) of 0.5  mg/kg bw 
for furfuryl alcohol, furfural, furfuryl acetate, 
and methyl 2-furoate. For all animal species, 
the European Food Safety Authority (EFSA) 
has established a maximum proposed use level 
of furfuryl alcohol in complete feed of 5 mg/kg 
(EFSA, 2016).

The exposure limits for furfuryl alcohol as an 
air contaminant are summarized in Table 1.4. In 
the USA, the National Institute for Occupational 
Safety and Health (NIOSH) has recommended 
a time-weighted average threshold limit value 

(TLV–TWA) of 10 ppm (40 mg/m3) and a short-
term exposure limit (TLV–STEL) of 15  ppm 
(60 mg/m3) for occupational exposure to furfuryl 
alcohol, to minimize the potential for eye and 
respiratory passageways irritation (NIOSH, 
2016). In Germany in a 1992 reassessment, a 
“MAK” (TLV–TWA) value of 40 mg/m3 (10 mL/m3) 
was established because of data showing irrita-
tion of the respiratory tract (MAK Commission, 
2008). However, in 2007, furfuryl alcohol was 
classified as “Carcinogen Category 3B”. In addi-
tion, workplace experience showed that irritation 

Table 1.4 Occupational exposure limits values for furfuryl alcohol as an air contaminant

Country or region Limit value –  
8 hours

Limit value – 
short-term

Comments

ppm mg/m3 ppm mg/m3

Australia 10 40 15 60  
Austria 5 20      
Belgium 10 41 15 61  
Canada (Ontario) 10 [40] 15 [60]  
Canada (Quebec) 10 40 15 60  
China   40   60* *15 min average value
Denmark 5 20 10 40  
Finland 2 8.1 10* 41* *15 min average value
France 10 40      
Hungary   40   40  
Ireland 5 20 15* 60* *15 min reference period
Japan – JSOH 5 20      
New Zealand 10 40 15 60  
Poland   30   60  
Republic of Korea 10 40 15 60  
Singapore 10 40 15 60  
Spain 5 20 15 61 Skin
Sweden 5 20 10* 40* *15 min average value
Switzerland 10 40 10 40  
United Kingdom (5) (20) (15) (61) The United Kingdom Advisory Committee on Toxic Substances has 

expressed concern that, for the OELs shown in parentheses, health 
may not be adequately protected because of doubts that the limit 
was not soundly based. These OELs were included in the published 
United Kingdom 2002 list and its 2003 supplement, but are omitted 
from the published 2005 list

USA – NIOSH 10 40 15* 60* *15 min average value
USA – OSHA 50 200      
From GESTIS international limit values (IFA, 2017)
JSOH, Japanese Society for Occupational Health; NIOSH, National Institute for Occupational Safety and Health; OEL, occupational exposure 
level; OSHA, Occupational Safety and Health Administration
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of the respiratory tract and eyes occurred after 
exposure to furfuryl alcohol at concentrations 
of 1.75 mL/m3 and above, with peak concentra-
tions of more than 10 mL/m3. Consequently, the 
previous MAK value of 10 mL/m3 was withdrawn 
(MAK, 2016).

2.	 Cancer in Humans

No data were available to the Working Group.

3.	 Cancer in Experimental Animals

See Table 3.1

3.1	 Mouse

3.1.1	 Inhalation

Groups of 50 male and 50 female B6C3F1 
mice (age, 6 weeks) were exposed to test atmos-
pheres of furfuryl alcohol at 0 (control), 2, 8, or 
32 ppm (purity, > 98%, impurities not character-
ized) by whole-body inhalation for 6 hours plus 
T90 (12 minutes) per day, 5 days per week, for 105 
weeks (NTP, 1999). Survival of exposed male and 
female mice was similar to that of the controls. 
Mean body weights of exposed male mice were 
similar to those of controls throughout the study. 
Mean body weights of exposed female mice were 
7–14% lower than those of controls beginning 
at week 39 for mice at the highest dose and at 
week 59 for mice at the lowest and interme-
diate dose. Furfuryl alcohol was irritating and 
toxic to the nasal cavity in males and females. 
Nephropathy was observed in all groups of 
males and females. The severity of nephropathy 
increased with increasing exposure concentra-
tion in male mice. In male mice at the highest 
dose, there was an increase in the incidence 
of renal tubule adenoma (single section: 0/50, 
0/49, 0/49, 2/50 (4%)), renal tubule carcinoma 

(single section: 0/50, 0/49, 0/49, 2/50 (4%)), and 
renal tubule adenoma or carcinoma (combined) 
(single section: 0/50, 0/49, 0/49, 4/50 (8%)) that 
all exceeded historical control ranges for inhal-
ation studies; there was a significant positive 
trend (P = 0.002, poly-3 test) in the incidence of 
renal tubule adenoma or carcinoma (combined). 
[Renal tubule neoplasms are uncommon in male 
B6C3F1 mice.] In 2-year inhalation studies with 
untreated chamber controls carried out by the 
National Toxicology program (NTP), historical 
incidence (mean  ±  standard deviation) was: 
renal tubule adenoma (single section), 3/1093 
(0.3% ± 0.6%); range, 0–2%; renal tubule carci-
noma (single section), 1/1093 (0.1%  ±  0.4%); 
range, 0–2%; and renal tubule adenoma or 
carcinoma (combined) (single section), 4/1093 
(0.4% ± 1.0%); range, 0–4%. Additional analyses 
performed by step sectioning of the kidneys 
revealed an additional adenoma in males at the 
highest dose; the revised incidence for each group 
was thus 0/50 (P = 0.009, trend by poly-3 test), 0/49, 
0/49, and 3/50 (6%). The incidence of renal tubule 
adenoma or carcinoma (combined) – standard 
(single section) evaluation and extended eval-
uation (step sections) combined – became 0/50 
(P  <  0.001, trend), 0/49, 0/49, 5/50 (10%), with 
the incidence in the group at the highest dose 
being significantly greater (P = 0.036, poly-3 test) 
than in the control group. There was no signif-
icant increase in the incidence of any tumours 
including those of the kidney in treated female 
mice. [The Working Group noted that this was 
a well-conducted study that complied with good 
laboratory practice (GLP), and was carried out in 
males and females.]

3.2	 Rat

3.2.1	 Inhalation

Groups of 50 male and 50 female F344/N rats 
(age, 6 weeks) were exposed to furfuryl alcohol 
at test atmospheres of 0 (control), 2, 8, or 32 ppm 
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Table 3.1 Studies of carcinogenicity in rodents treated with furfuryl alcohol by inhalation (whole-body exposure)

Species, 
strain (sex) 
Age at 
start 
Duration 
Reference

Purity 
Dose(s) 
No. of animals at 
start 
No. of surviving 
animals

Tumour incidence Significance Comments

Mouse, 
B6C3F1 (M) 
6 wk 
105 wk 
NTP (1999)

Purity, > 98% 
0, 2, 8, 32 ppm 
6 h plus T90 (12 min) 
per d, 5 d/wk, for 
105 wk 
50, 50, 50, 50 
34, 36, 30, 38

Kidney, standard (single section) evaluation Principal strengths: GLP study; study in males and females
Renal tubule adenoma:    
0/50, 0/49, 0/49, 2/50a NS aExceeded historical control ranges for inhalation studies 

Historical incidence: 3/1093 (0.3% ± 0.6%); range, 0–2%
Renal tubule carcinoma    
0/50, 0/49, 0/49, 2/50b NS bExceeded historical control ranges for inhalation studies  

Historical incidence: 1/1093 (0.1% ± 0.4%); range, 0–2%
Renal tubule adenoma or 
carcinoma (combined):

   

0/50*, 0/49, 0/49, 4/50c *P = 0.002 (poly-3 trend test) cExceeded historical control ranges for inhalation studies 
Historical incidence: 4/1093 (0.4% ± 1.0%); range, 0–4%

Kidney, standard (single section) evaluation and extended 
evaluation (step sections) (combined)

 

Renal tubule adenoma:    
0/50*, 0/49, 0/49, 3/50 *P = 0.009 (poly-3 trend test)  
Renal tubule carcinoma:    
0/50, 0/49, 0/49, 2/50 NS  
Renal tubule adenoma or 
carcinoma (combined):

   

0/50*, 0/49, 0/49, 5/50** *P < 0.001 (poly-3 trend test) 
**Significantly greater 
(P = 0.036) than the control 
group; poly-3 test

 

Mouse, 
B6C3F1 (F) 
6 wk 
105 wk 
NTP (1999)

Purity, > 98% 
0, 2, 8, 32 ppm 
6 h plus T90 (12 min) 
per d, 5 d/wk, for 
105 wk 
50, 50, 50, 50 
34, 33, 32, 40

Any tumour type: no significant increase Principal strengths: GLP study; study in males and females
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Species, 
strain (sex) 
Age at 
start 
Duration 
Reference

Purity 
Dose(s) 
No. of animals at 
start 
No. of surviving 
animals

Tumour incidence Significance Comments

Rat, 
F344/N 
(M) 
6 wk 
105 wk 
NTP (1999)

Purity, > 98% 
0, 2, 8, 32 ppm 
6 h plus T90 (12 min) 
per d, 5 d/wk, for 
105 wk  
50, 50, 50, 50 
8, 5, 9, 0

Nose   Principal strengths: GLP study; study in males and females
Lateral wall adenoma:    
0/50, 1/50, 0/50, 0/50 NS  
Respiratory epithelium adenoma:    

0/50, 0/50, 1/50a, 0/50 NS aHistorical control incidence for inhalation studies: 1/897 
(0.1% ± 0.5%); range, 0–2%

Respiratory epithelium 
carcinoma:

   

0/50, 0/50, 0/50, 1/50b NS bExceeded historical control incidence for inhalation 
studies: 0/897

Respiratory epithelium, 
squamous cell carcinoma:

   

0/50*, 0/50, 0/50, 3/50b *P = 0.006 (trend, poly-3 test)  
Respiratory epithelium adenoma, 
carcinoma, or squamous cell 
carcinoma (combined):

   

0/50*, 1/50, 1/50, 4/50** *P = 0.013 (trend) **P = 0.044 
(poly-3 test)

 

    Kidney, standard (single section) evaluation  
    Renal tubule adenoma:    
    1/50, 1/50, 2/50c, 0/50 NS cHistorical control incidence for inhalation studies: 9/902 

(1.0% ± 1.2%); range, 0–4%

Table 3.1   (continued)
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Species, 
strain (sex) 
Age at 
start 
Duration 
Reference

Purity 
Dose(s) 
No. of animals at 
start 
No. of surviving 
animals

Tumour incidence Significance Comments

Rat, 
F344/N (F) 
6 wk 
105 wk 
NTP (1999)

Purity, > 98% 
0, 2, 8, 32 ppm 
6 h plus T90 (12 min) 
per d, 5 d/wk, for 
105 wk 
50, 50, 50, 50 
26, 26, 22, 16

Kidney, standard (single section) evaluation Principal strengths: GLP study; study in males and females
Renal tubule adenoma:    
0/50, 0/49, 0/49, 2/50a NS aExceeded historical control incidence for inhalation 

studies 
Historical incidence: 1/898 (0.1% ± 0.5%); range, 0–2%

Renal tubule carcinoma:    
0/50, 1/49b, 0/49, 0/50 NS bHistorical control incidence for inhalation studies: 4/898 

(0.5% ± 0.9%); range, 0–2%
Renal tubule adenoma or 
carcinoma (combined):

   
 

0/50, 1/49, 0/49, 2/50c NS cHistorical control incidence for inhalation studies: 5/898 
(0.6% ± 0.9%); range, 0–2%

Nose  
Lateral wall adenoma:    
0/49, 0/50, 1/48, 0/49 NS  
Respiratory epithelium adenoma:  
0/49, 0/50, 0/48, 1/49d NS  dHistorical control incidence for inhalation studies: 1/892 

(0.1 ± 0.5%); range, 0–2%
Adenoma (lateral wall or 
respiratory epithelium, 
combined):

   

0/49, 0/50, 1/48, 1/49 NS  
d, day; F, female; GLP, good laboratory practice; M, male; NS, not significant; T90, time to achieve 90% of the target concentration after the beginning of vapour generation; wk, week 

Table 3.1   (continued)
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(purity, >  98%, impurities not characterized) 
by whole-body inhalation for 6  hours plus T90  
(12 minutes) per day, 5  days per week, for 105 
weeks (NTP, 1999). All male rats exposed at 
32  ppm died by week 99. Survival of all other 
exposed groups of male and female rats was 
similar to that of the control groups. Mean body 
weights of males at 32 ppm were less than those 
of the controls beginning week 19; mean body 
weights of males at 2 and 8 ppm, and of all exposed 
females were similar to those of the control groups 
throughout the study. Furfuryl alcohol was irri-
tating and toxic to the nasal cavity in males and 
females. All groups of exposed males and females 
had significantly increased incidences of non-ne-
oplastic lesions in the nose. In the nose, one (2%) 
lateral wall adenoma was observed in a male at 
2 ppm, and one (2%) in a female at 8 ppm; one 
(2%) adenoma of the respiratory epithelium was 
observed in a male at 8  ppm (historical inci-
dence, 1/897; range, 0–2%) and one (2%) female 
at 32  ppm (historical incidence, 1/892; range, 
0–2%); one male at 32  ppm (2%) developed a 
carcinoma of the respiratory epithelium, and 
three other males at 32 ppm (6%) developed squa-
mous cell carcinomas of the respiratory epithe-
lium. Individually, the incidence per group was 
not significantly greater than that in the control 
groups. However, in males there was a signifi-
cant positive trend in the incidence of squamous 
cell carcinoma of the respiratory epithelium 
(P  =  0.006, poly-3 test), and the incidence of 
adenoma, carcinoma or squamous cell carci-
noma (combined) of the respiratory epithelium 
was significantly increased in the group at the 
highest dose (4/50, 8%; P = 0.044 by poly-3 test) 
with a significant positive trend (P = 0.013, poly-3 
test). Carcinomas and squamous cell carcinomas 
of the respiratory epithelium were not observed 
in males in historical controls (0/897) in previous 
NTP inhalation studies.

The incidence of renal tubule hyperplasia 
(single section) in exposed male and female 
rats was not significantly different from that of 

controls. Renal tubule adenomas (single section) 
were observed in one (2%) male in the control 
group, one male (2%) at 2 ppm, two males (4%) at 
8 ppm, and two females (4%) at 32 ppm (histor-
ical incidence (single section) in females: 1/898 
(range, 0–2%); and one female (2%) at 2  ppm 
had a renal tubule carcinoma. The incidence 
was within the historical control range for male 
rats, but exceeded the historical control range for 
female rats. Additional analyses were performed 
by step sectioning of the kidneys, which revealed 
one additional renal tubule adenoma in each 
group of males for the controls, at 2 ppm, and at 
8 ppm, and four additional adenomas in males at 
32 ppm. The incidence of renal tubule adenoma 
or carcinoma (combined) – standard (single 
section) and extended evaluation (step sections) 
– in males became 2/50 (4%), 2/50 (4%), 3/50 (6%), 
4/50 (8%). After step sectioning, two renal tubule 
adenomas were observed in females at 8 ppm and 
one in a female at 32 ppm, and a carcinoma was 
observed in a female at 2 ppm. The incidence of 
renal tubule adenoma or carcinoma (combined) 
– standard (single section) and extended evalua-
tion (step sections) – in females became 0/50, 2/50 
(4%), 2/50 (4%), 3/50 (6%); [the Working Group 
noted that incidence was incorrectly reported 
(typing error) in Table 10 of NTP (1999)]. [The 
Working Group noted this was a well-conducted 
GLP study in males and females.]

3.3	 Transgenic animals

3.3.1	 Skin application

Spalding et al. (2000) tested the tumorigenic 
activity of furfuryl alcohol using the Tg.AC trans-
genic mouse model (Tennant et al., 1996). Groups 
of 15–20 hemizygous female Tg.AC transgenic 
mice (age, 14 weeks) were treated with furfuryl 
alcohol (purity, > 98%) at a dose of 0, 0.25, 0.75, or 
1.5 mg per mouse in 200 mL of acetone, by skin 
application, five times per week for 20  weeks. 
12-O-Tetradecanoylphorbol-13-acetate (TPA) 



IARC MONOGRAPHS – 119

98

(1.25  µg, three times per week) was used as a 
positive control. At 20  weeks, survival of the 
mice at the highest dose (90%) was lower than 
in the other treated groups and negative controls 
(100% in all groups). No information on body 
weights was provided. At 26 weeks, full histopa-
thology was performed. No significant increase 
in the incidence of skin tumours (papillomas) 
was observed in mice exposed to furfuryl 
alcohol. Only one mouse at the intermediate 
dose developed a skin papilloma, while all mice 
treated with TPA had skin papillomas (100%). 
[The Working Group noted that this was a short-
term, gene-specific assay in transgenic mice, and 
did not provide critical information that can be 
obtained in longer-term bioassays (e.g. effects on 
multiple target organs, interactions of time and 
age) (Pritchard et al., 2003).]

4.	 Mechanistic and Other 
Relevant Data

4.1	 Absorption, distribution, 
metabolism, and excretion

The absorption, distribution, metabolism, 
and excretion of furfuryl alcohol and some 
related compounds were discussed in WHO 
Food Additive Series No. 46 (WHO, 2001). These 
chemicals were also briefly addressed in WHO 
Technical Report Series No. 974 (WHO, 2012).

4.1.1	 Absorption, distribution, and excretion

(a)	 Humans

No data in humans exposed to furfuryl 
alcohol were available to the Working Group.

In humans exposed by inhalation to furfural 
(the primary oxidation product of furfuryl 
alcohol) (see Fig. 4.1), absorption was rapid and 
extensive. In male volunteers exposed by inhal-
ation to furfural at vapour concentrations of 

7–30 mg/m3 for 7.5 hours over an 8-hour period, 
pulmonary retention averaged ~78% regardless 
of vapour level or duration, and furfural quickly 
disappeared from the subjects’ expired air after 
exposure (Flek & Sedivec, 1978). Flek & Sedivec 
(1978) also reported substantial percutaneous 
absorption of furfural vapour by male volunteers, 
particularly under warm and humid conditions.

(b)	 Experimental systems

Few data were available on the absorption, 
distribution, metabolism, and excretion of 
furfuryl alcohol in rodents.

Furfuryl alcohol and furfural are rapidly and 
extensively absorbed from the gastrointestinal 
tract in rodents. Furfural is converted to furfuryl 
alcohol by enteric bacteria under both aerobic 
and anaerobic conditions (Boopathy et al., 1993). 
In male rats treated by gavage with radiolabelled 
furfuryl alcohol (0.275, 2.75, or 27.5 mg/kg bw) 
or furfural (0.127, 1.15, or 12.5  mg/kg bw) in 
corn oil, an average of 86–89% of the admin-
istered dose of each compound was absorbed 
systemically (Nomeir et al., 1992). The liver and 
kidneys contained the highest levels of radiolabel 
at 72 hours after exposure. Both furfuryl alcohol 
and furfural were extensively metabolized, with 
83–88% of the administered doses excreted in the 
urine within 72 hours. Furoylglycine, the glycine 
conjugate of furoic acid, was the major urinary 
metabolite (73–80% of the administered dose). In 
male and female F344 rats and CD-1 mice given a 
single oral dose of 14C-labelled furfural at a wide 
range of dose levels, the chemical was extensively 
absorbed and metabolized to furoylglycine and 
furanacryloyl-glycine, which were primarily 
excreted in the urine (Parkash & Caldwell, 1994). 
There were only minor metabolic differences 
according to dosage, species, and sex.
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Fig. 4.1 Metabolism of furfuryl alcohol in humans and experimental animals
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The predominant flux, based on recovery of urinary metabolites, is through the action of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) with conjugation to glycine 
to form furoylglycine. Small amounts of furfuryl alcohol can undergo sulfate conjugation with spontaneous removal of the sulfate moiety to generate a reactive and unstable intermediate 
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Adapted from Sachse et al. (2014). The effect of knockout of sulfotransferases 1a1 and 1d1 and of transgenic human sulfotransferases 1A1/1A2 on the formation of DNA adducts from 
furfuryl alcohol in mouse models, Carcinogenesis, 2014, volume 35, issue 10, p. 2339-2345, with permission of Oxford University Press
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4.1.2	 Metabolism

(a)	 Humans

Furfuryl alcohol appears to be rapidly and 
extensively metabolized by humans. The major 
metabolite detected in male volunteers who were 
treated by inhalation with furfural, as in mice 
and rats, was furoylglycine. A secondary urinary 
metabolite in humans and rodents was 2-furana-
crylic acid (Flek & Sedivec, 1978). An alternate 
metabolic pathway involved formation of a 
mutagenic metabolite via sulfate conjugation. 
Human sulfotransferase 1A1 (SULT1A1) was 
efficient in catalysing the formation of 2-sulfox-
ymethylfuran, a reactive intermediate (Sachse 
et al., 2016a). SULT1A1 is found at high levels 
in many human tissues, including liver, lung, 
gastrointestinal tract, brain, and kidney (Glatt & 
Meinl, 2004).

(b)	 Experimental systems

Furfuryl alcohol is metabolized by mice and 
rats in much the same way as in humans. The 
major metabolic pathway involves the oxidation 
of furfuryl alcohol by alcohol dehydrogenase to 
furfural, which is subsequently oxidized to furoic 
acid. Furoic acid is excreted in the urine of mice 
and rats, as is its glycine conjugate (Parkash & 
Caldwell, 1994). Sulfate conjugation of furfuryl 
alcohol appears to be a minor pathway, quan-
titatively. In FVB/N mice given drinking-water 
containing furfuryl alcohol (~390  mg/kg bw) 
for 28 days, renal, pulmonary, and hepatic DNA 
adducts were detected by ultra-performance 
liquid chromatography-tandem mass spec-
trometry (UPLC-MSMS) (Monien et al., 2011). 
Nucleoside adducts were also found in porcine 
liver DNA incubated with 2-sulfoxymethylfuran 
and also in DNA from furfuryl alcohol-exposed 
Salmonella typhimurium expressing the human 
sulfotransferase isoform SULT1A1 (Monien 
et al., 2011). In Sult1a1 null mice given a single 
dose of furfuryl alcohol, levels of DNA adducts in 
the liver, kidney, lung, colon, and small intestine 

were substantially lower than in wildtype mice 
(Sachse et al., 2014) (see Section 4.2.1). Sachse 
et al. (2016a) assessed the catalytic efficien-
cies of 30 sulfotransferase isoforms from mice 
and rats in metabolically activating furfuryl 
alcohol. Human SULT1A1 and mouse Sult1a1 
were considerably more efficient than the other 
isoforms in mediating formation of 2-sulfoxym-
ethylfuran, a reactive DNA electrophile (Sachse 
et al., 2016a).

4.2	 Mechanisms of carcinogenesis

4.2.1	 Genetic and related effects

Furfuryl alcohol has been studied in a variety 
of assays for genetic and related effects. Table 4.1, 
Table  4.2, Table  4.3, Table  4.4, and Table  4.5 
summarize the results of studies carried out in 
exposed humans, in human cells in vitro, in 
non-human mammals, in non-human mamma-
lian cells in vitro, and in non-mammalian 
systems, respectively.

(a)	 Humans

(i)	 Exposed humans
See Table 4.1
Furfuryl alcohol–DNA adducts were detected 

in non-tumour lung tissue of patients with cancer 
of the lung (Monien et al., 2015).

No effect on sister-chromatid exchange was 
observed in workers occupationally exposed to 
furfuryl alcohol and furfural. Exposure levels 
were not described, but duration of employ-
ment, age, and possible confounding factors such 
as smoking, X-ray during the 2  months before 
blood sampling, and recent viral infections were 
reported (Gomez-Arroyo & Souza, 1985).

(ii)	 Human cells in vitro
See Table 4.2
No induction of sister-chromatid exchange 

was observed in cultured human lymphocytes 
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treated with furfuryl alcohol (Gomez-Arroyo & 
Souza, 1985; Jansson et al., 1986).

(b)	 Experimental systems

(i)	 Non-human mammals
See Table 4.3
Furfuryl alcohol–DNA adducts were detected 

in wildtype FVB/N mice and transgenic mice 
expressing human sulfotransferases SULT1A1 
or SULT1A2 (Monien et al., 2011; Sachse et al., 
2014, 2016b; Høie et al., 2015). Transgenic mice 
expressing human SULTs had a higher level of 
DNA adduct N2-((furan-2-yl)methyl)-2′-deoxy-
guanosine (N2-MFdG) compared with wildtype 
FVB/N mice (Sachse et al., 2014, 2016b).

Levels of DNA adducts were lower in FVB/N 
mice lacking functional mouse sulfotransferase 

(mSult1a1 null) than in wildtype mice (Sachse 
et al., 2014). The oral administration of ethanol 
or of 4-methylpyrazole (a competitive substrate 
and an inhibitor of alcohol dehydrogenase, 
respectively) before exposure to furfuryl alcohol 
increased the levels of furfuryl alcohol–DNA 
adducts in all tissues. Clear sex-specific differ-
ences were observed, with adduct levels in 
female mice being up to fivefold those in male 
mice (Sachse et al., 2016b). Negative results were 
reported in tests for the induction of sister-chro-
matid exchange, chromosomal aberrations, and 
micronucleus formation in bone marrow of 
B6C3F1 mice treated with furfuryl alcohol (NTP, 
1999).

Table 4.1 Genetic and related effects of furfuryl alcohol in exposed humans

End-point Tissue or 
cell type

Description of exposed and 
controls

Results Comments Reference

DNA adducts, 
N2-MFdG and 
N6-MFdA, 
UPLC-MS/MS

Lung Non-tumour lung tissue from 10 
(4 female, 6 male) lung cancer 
patients

+ Smoking status not 
reported

Monien et al. 
(2015)

Sister-chromatid 
exchange

Blood 
lymphocytes

Six workers occupationally 
exposed to furfuryl alcohol and 
furfural; six unexposed workers 
were used as control; both smokers 
and non-smokers were included

(–) Exposure levels 
were not reported 
Causative effect of 
furfuryl alcohol 
alone could not be 
demonstrated

Gomez-Arroyo 
& Souza (1985)

a	 +, positive; (–), negative result in a study of limited quality
N6-MFdA, N6-((furan-2-yl)methyl)-2′-deoxyadenosine; N2-MFdG, N2-((furan-2-yl)methyl)-2′-deoxyguanosine; UPLC-MS/MS, ultra-
performance liquid chromatography-tandem mass spectrometry

Table 4.2 Genetic and related effects of furfuryl alcohol in human cells in vitro

End-point Tisue, cell line Resultsa Concentration  
(LEC or HIC)

Comments Reference

Sister-chromatid 
exchange

Cultured 
lymphocytes

– 9.9 mM [971 µg/mL] 4 donors Gomez-Arroyo & Souza 
(1985)

Sister-chromatid 
exchange

Cultured 
lymphocytes

(–) 2.0 mM [196 µg/mL] Number of donors 
not specified

Jansson et al. (1986)

a	  –, negative; (–), negative result in a study of limited quality; the level of significance was set at P < 0.05 in all cases
HIC, highest ineffective concentration; LEC, lowest effective concentration



IA
RC M

O
N

O
G

RA
PH

S – 119

102 Table 4.3 Genetic and related effects of furfuryl alcohol in non-human mammals

End-point Species, strain Tissue Resultsa Dose (LED or 
HID)

Route, duration, 
dosing regimen

Comments Reference

DNA adducts, N2-MFdG 
and N6-MFdA, LC-MS/MS

Mouse, FVB/N Liver, kidney and lung 
(but not colon)

+ 391 (M) or 
393 (F) mg/
kg bw

Oral, 28 d Only one 
dose tested

Monien et al. 
(2011)

DNA adducts, N2-MFdG, 
UPLC-MS/MS

Mouse, FVB/N (wt 
and hSULT1A1/1A2 
transgenic)b

Colon, liver (wt); 
small intestine, colon, 
liver (hSULT1A1/1A2 
transgenic)

+ 250 mg/kg bw Oral, 1×   Høie et al. 
(2015)

DNA adducts, N2-MFdG 
and N6-MFdA, UPLC-MS/
MS

Mouse, FVB/N 
(wt, knockout, 
hSULT1A1/1A2 
transgenic)c

Liver, lung, kidney, small 
intestine and colon

+ 400 mg/kg bw Intraperitoneal, 1× Only one 
dose tested

Sachse et al. 
(2014)

DNA adducts, N2-MFdG 
(all tissues) and N6-MFdA 
(liver only), UPLC-MS/MS

Mouse, FVB/N (wt 
and hSULT1A1/1A2 
transgenic)d

Liver, lung, kidney, small 
intestine and colon

+ 400 mg/kg bw Intraperitoneal, 1× Only one 
dose tested

Sachse et al. 
(2016b)

Sister-chromatid exchange, 
chromosomal aberrations

Mouse, B6C3F1 Bone marrow cells – 300 mg/kg bw Intraperitoneal, 1×   NTP (1999)

Micronucleus formation Mouse, B6C3F1 Bone marrow cells – 125 mg/kg bw Intraperitoneal, 3×   NTP (1999)
a	  –, negative; +, positive; the level of significance was set at P < 0.05 in all cases
b	  Two mouse cell lines: wt, and transgenic expressing human SULT1A1/1A2
c	  Four mouse cell lines: wt, knockout deficient in either Sult1a1 or Sult1d1, and transgenic expressing human SULT1A1/1A2 while also being deficient for mouse Sult1a1/1d1
d	  Two mouse cell lines: wt or transgenic expressing human SULT1A1/1A2 while also being deficient for mouse Sult1a1/1d1
bw, body weight; d, day; F, female; HID, highest ineffective dose; hSULT1A1/1A2, human sulfotransferases 1A1/1A2; LC-MS/MS, liquid chromatography-tandem mass spectrometry; 
LED, lowest effective dose; M, male; N6-MFdA, N6-((furan-2-yl)methyl)-2′-deoxyadenosine; N2-MFdG, N2-((furan-2-yl)methyl)-2′-deoxyguanosine; Sult1a1/1d1, sulfotransferases 
1a1/1d1; UPLC-MS/MS, ultra-performance liquid chromatography tandem mass spectrometry; wt, wildtype
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(ii)	 Non-human mammalian cells in vitro
See Table 4.4
Chromosomal aberrations were induced in 

Chinese hamster ovary (CHO) cells treated with 
furfuryl alcohol in the presence and absence of 
metabolic activation with S9 (Stich et al., 1981). 
[The Working Group noted that the results were 
poorly reported.] In another study, there was 
no induction of chromosomal aberrations in 
cultured CHO cells in the absence of metabolic 
activation; equivocal results were obtained in the 
presence of metabolic activation based on a posi-
tive response in one trial that was not reproduced 
in a second, follow-up trial (NTP, 1999). Furfuryl 
alcohol induced sister-chromatid exchange in 
cultured CHO cells without but not with meta-
bolic activation (NTP, 1999). Furfuryl alcohol 
marginally increased the frequency of DNA 
damage measured by the comet assay (pH > 13) 
in Chinese hamster V79 cells expressing human 
cytochrome P450 2E1 (hCYP2E1) and hSULT1A1, 
but not in the parental V79 cell line (Huffman 
et al., 2016).

(iii)	 Non-mammalian systems
See Table 4.5
In Drosophila melanogaster, no mutagenic 

activity was observed in an assay that measured 
induction of sex-linked recessive lethal muta-
tions in male germ cells or in a test for sex-chro-
mosome loss (Rodriguez-Arnaiz et al., 1989).

Furfuryl alcohol was not mutagenic in 
Salmonella typhimurium strains TA98, TA100, 
TA1535, or TA1537, without or with metabolic 
activation (Florin et al., 1980; NTP, 1999; Monien 
et al., 2011; Glatt et al., 2012). However, furfuryl 
alcohol was mutagenic in several TA100-derived 
strains expressing human and rodent sulfotrans-
ferases (Monien et al., 2011; Glatt et al., 2012). 
DNA adducts were detected in DNA of furfuryl 
alcohol-exposed Salmonella typhimurium TA100 
expressing hSULT1A1, but not in the parental 
strain (TA100) (Monien et al., 2011). In an acel-
lular system, DNA adducts were detected after 
incubation of porcine liver DNA with 2-sulfox-
ymethylfuran (Monien et al., 2011).

Table 4.4 Genetic and related effects of furfuryl alcohol in non-human mammalian cells in vitro

End-point Species, cell line Resultsa Concentration 
(LEC or HIC)

Comments Reference

Without 
metabolic 
activation

With 
metabolic 
activation

DNA strand 
breaks

Chinese hamster, 
V79 cells

– NT 15 mM   Huffman 
et al. (2016)

DNA strand 
breaks

Chinese hamster, 
V79-hCYP2E1-
hSULT1A1 cellsb

(+) NT 15 mM Marginal increase 
(P = 0.04); live cell 
count, 64%

Huffman 
et al. (2016)

Chromosomal 
aberrations

Chinese hamster 
ovary cells

(+) (+) 2.5 mM, +S9; 
20 mM, –S9

Results poorly reported Stich et al. 
(1981)

Chromosomal 
aberrations

Chinese hamster 
ovary cells

– ± 500 µg/mL Aroclor 1254-induced 
rat liver S9

NTP (1999)

Sister-chromatid 
exchange

Chinese hamster 
ovary cells

+ – 500 µg/mL Aroclor 1254-induced 
rat liver S9

NTP (1999)

a	  +, positive; –, negative; ±, equivocal (variable response in several experiments within an adequate study); (+), positive result in a study that 
had limitations in reporting or conduct; the level of significance was set at P < 0.05 in all cases
b	  V79-derived cells co-expressing human cytochrome P450 2E1(hCYP2E1) and human sulfotransferase 1A1 (hSULT1A1) genes
HIC, highest ineffective concentration; LEC, lowest effective concentration; NT, not tested; S9, 9000 × g supernatant
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104 Table 4.5 Genetic and related effects of furfuryl alcohol in non-mammalian systems

End-point Species, strain, tissue Resultsa Agent, concentration 
(LEC or HIC)

Comments Reference

Without 
metabolic 
activation

With 
metabolic 
activation

Sex-linked recessive lethal 
mutations, sex-chromosome 
loss

Drosophila melanogaster, germ-
line cells

– NA 1300 ppm   Rodriguez-
Arnaiz et al. 
(1989)

Reverse mutation Salmonella typhimurium TA98, 
TA100, TA1535, TA1537

(–) (–) 3 µmol/plate Only one 
dose tested

Florin et al. 
(1980)

Reverse mutation Salmonella typhimurium TA98, 
TA100, TA1535, TA1537

– – 10 000 µg/plate   NTP (1999)

Reverse mutation Salmonella typhimurium TA100 – NT 10 µmol/plate   Glatt et al. 
(2012); Monien 
et al. (2011)

Reverse mutation Salmonella typhimurium TA100-
derived strains expressing human 
or rodent sulfotransferases

+ NT 0.1–1 µmol/plate   Glatt et al. (2012)

Reverse mutation Salmonella typhimurium TA100-
derived strains expressing human 
or rodent sulfotransferases

+ NT 25 nmol/plate   Monien et al. 
(2011)

DNA adducts, 
2-methylfuramyl adducts of 
dAMF, dGMF and dCMF, 
LC-MS/MS

DNA isolated from porcine liver + NT 2-sulfoxymethylfuran 
(sodium salt), 5 µmol/mL 
[5 mM]

  Monien et al. 
(2011)

DNA adducts, N2-MFdG and 
N6-MFdA, LC-MS/MS

Salmonella typhimurium TA100 – NT 167 µM   Monien et al. 
(2011)

DNA adducts, N2-MFdG and 
N6-MFdA, LC-MS/MS

Salmonella typhimurium TA100-
derived strains expressing human 
sulfotransferases

+ NT 167 µM   Monien et al. 
(2011)

a	  +, positive; –, negative; (–), negative result in a study of limited quality; the level of significance was set at P < 0.05 in all cases
dA, 2′-deoxyadenosine; dC, 2′-deoxycytidine; dG, 2′-deoxyguanosine; HIC, highest ineffective concentration; LEC, lowest effective concentration; LM-MS/MS, liquid chromatography-
tandem mass spectrometry; N6-MFdA, N6-((furan-2-yl)methyl)-2′-deoxyadenosine; N2-MFdG, N2-((furan-2-yl)methyl)-2′-deoxyguanosine; NA, not applicable; NT, not tested; ppm, 
parts per million
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4.2.2	Other mechanisms

(a)	 Humans

No data were available to the Working Group.

(b)	 Experimental systems

One study reported on the immunotoxic 
potential of furfuryl alcohol in mice. Furfuryl 
alcohol was shown to be a sensitizer and an irri-
tant in mice exposed dermally. Enhanced airway 
hyperreactivity, eosinophilic infiltration into the 
lungs, and enhanced cytokine production were 
observed after repeated pulmonary exposure, 
and the responses were augmented on dermal 
pre-exposure to furfuryl alcohol (Franko et al., 
2012).

In 14-day and 13-week studies, lesions indic-
ative of altered cell proliferation, cell death, and 
inflammation were observed in the nose (olfac-
tory epithelium) of F344/N rats and B6C3F1 mice 
treated with furfuryl alcohol at all concentra-
tions tested (16–250 ppm for 14 days; 16–32 ppm 
for 13  weeks) (Irwin et al., 1997; NTP, 1999). 
After long-term exposure, the incidence of nasal 
tumours was significantly increased in male 
F344/N rats only (NTP, 1999; see Section 3).

4.3	 Data relevant to comparisons 
across agents and end-points

For the results of high-throughput screening 
assays of the Toxicity Testing in the 21st Cen- 
tury (Tox21) and Toxicity Forecaster (ToxCast) 
research programmes of the government of 
the USA, see Section 4.3 of the Monograph on 
1-tert-butoxypropan-2-ol in the present volume.

4.4	 Susceptibility to cancer

No data were available to the Working Group.

4.5	 Other adverse effects

No data from exposed humans were available 
to the Working Group.

In a 2-year inhalation study of furfuryl 
alcohol (0, 2, 8, 32 ppm), the severity of nephrop-
athy increased with concentration in male and 
female F344/N rats and in male B6C3F1 mice. 
Furfuryl alcohol was irritating and toxic to the 
nose and induced non-neoplastic lesions of the 
nose in all exposed groups of rats and mice. 
Corneal degeneration occurred in female mice 
at 32 ppm (NTP, 1999).

In a 14-week study, furfuryl alcohol induced 
degeneration and metaplasia of the olfactory 
epithelium in F344/N rats and B6C3F1 mice, and 
hyaline droplets in B6C3F1 mice (Irwin et al., 1997; 
NTP, 1999). In another short-term study in Swiss 
mice, hepatic and renal toxicity were observed 
after inhalation of furfuryl alcohol (2000 and 
4000  ppm, respectively) (Sujatha, 2008). [The 
Working Group noted the high concentrations 
used in this study relative to those tested in the 
cancer bioassays.]

5.	 Summary of Data Reported

5.1	 Exposure data

Furfuryl alcohol has several industrial appli-
cations, including production of furan resins, 
wetting agents, and as a solvent. It is listed as a 
chemical with a high production volume, with 
between 10  000 and 100  000 tonnes manu-
factured and/or imported into the European 
Economic Area each year. China is the main 
global manufacturer and user with around 85% 
of the global capacity.

The general population is exposed to furfuryl 
alcohol mainly in foods and beverages, since it is 
a contaminant that arises during food processing 
(such as roasting, drying, baking and deep-
frying) to obtain a desirable flavour. Coffee, 
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deep-fried breaded products, and toasted foods 
may contain furfuryl alcohol at high levels. 
Furfuryl alcohol was included in the most recent 
register of approved flavouring substances by 
the European Commission, while the United 
States Food and Drug Administration regula-
tions allow use of furfuryl alcohol only as an 
indirect food additive due to its occurrence in 
food contact materials. According to the United 
States Food and Drug Administration, indirect 
food additives are substances that may come 
into contact with food as part of packaging or 
processing equipment, but are not intended to 
be added directly to food. Estimates of intake 
from food additives are well below 0.15  mg/kg 
bw (body weight) per day. Consuming one cup 
of espresso coffee leads to an intake of furfuryl 
alcohol of about 0.03 mg/kg bw. An acceptable 
daily intake of 0.5 mg/kg bw was established for 
furfuryl alcohol.

Occupational exposure may occur by inhal-
ation and skin contact. In general, exposure 
levels registered in the industrial manufacturing 
sector, both in the USA and in France, have been 
below 35 mg/m3.

5.2	 Human carcinogenicity data

There were no data available to the Working 
Group.

5.3	 Animal carcinogenicity data

Furfuryl alcohol was tested for carcinogen-
icity in one well-conducted good laboratory prac-
tice (GLP) inhalation study in male and female 
mice, one well-conducted GLP inhalation study 
in male and female rats, and in a skin application 
study in a female transgenic mouse model.

In male B6C3F1 mice, furfuryl alcohol 
induced a significant positive trend in the inci-
dences of renal tubule adenoma, and renal 
tubule adenoma or carcinoma (combined); and 

a significant increase in the incidence of renal 
tubule adenoma or carcinoma (combined) 
occurred at the highest dose. In addition, the 
incidence of renal tubule adenoma, carcinoma, 
and adenoma or carcinoma (combined) in male 
B6C3F1 mice exposed at the highest dose, in each 
case exceeded historical control ranges for inha-
lation studies. Renal tubule neoplasms are rare 
in male B6C3F1 mice. There was no significant 
increase in the incidence of any neoplasm in 
exposed female B6C3F1 mice.

In male F344/N rats, furfuryl alcohol 
induced a significant positive trend in the inci-
dence of adenoma, carcinoma or squamous cell 
carcinoma (combined) of the nasal respiratory 
epithelium, and of squamous cell carcinoma 
of the nasal respiratory epithelium. Furfuryl 
alcohol also induced a significant increase in the 
incidence of adenoma, carcinoma or squamous 
cell carcinoma (combined) of the nasal respira-
tory epithelium in male rats at the highest dose. 
Carcinomas and squamous cell carcinomas 
of the nasal respiratory epithelium have not 
been observed in male F344/N rats in histor-
ical controls. In addition, the incidence of renal 
tubule adenoma in exposed female F344/N rats 
exceeded the range for historical controls.

No significant increase in the incidence of 
tumours of the skin (papillomas) was observed 
in a study in transgenic female mice treated with 
furfuryl alcohol by skin application.

5.4	 Mechanistic and other relevant 
data

Furfuryl alcohol is well absorbed by humans 
and rodents. Few data were available on distribu-
tion and elimination in rodents, and no data were 
available in humans. Furfuryl alcohol is rapidly 
and extensively metabolized. The predominant 
metabolic route is via alcohol dehydrogenase 
and aldehyde dehydrogenase with conjugation 
to glycine. Furfuryl alcohol can undergo sulfate 
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conjugation to yield the electrophile 2-sulfoxym-
ethylfuran, leading to DNA adduction.

There is strong evidence that furfuryl alcohol 
is metabolically activated to an electrophile. 
There were consistent results for the formation 
of furfuryl alcohol-specific DNA adducts in one 
study of non-tumorous tissue of patients with 
cancer of the lung, in several studies in mice, 
and in an assay in bacteria expressing human 
sulfotransferase.

There is moderate evidence that furfuryl 
alcohol is genotoxic. Only data on DNA adducts, 
discussed above, were available from exposed 
humans. In human cells in vitro, results were 
negative for sister-chromatid exchange. In 
mice, results were negative for sister-chro-
matid exchange, chromosomal aberrations, and 
micronucleus formation. In mammalian cells 
in vitro, results were positive for sister-chro-
matid exchange without (but not with) meta-
bolic activation, but negative for chromosomal 
aberrations. Results were negative for mutations 
in Drosophila melanogaster. Results were posi-
tive for mutation in two studies in Salmonella 
typhimurium transfected with human or rodent 
sulfotransferase, but negative in the standard 
Ames test.

In long-term bioassays in mice and rats, renal, 
nasal and corneal toxicity were reported.

6.	 Evaluation

6.1	 Cancer in humans

There is inadequate evidence in humans for 
the carcinogenicity of furfuryl alcohol.

6.2	 Cancer in experimental animals

There is sufficient evidence in experimental 
animals for the carcinogenicity of furfuryl 
alcohol.

6.3	 Overall evaluation

Furfuryl alcohol is possibly carcinogenic to 
humans (Group 2B).
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