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HEPATITIS C VIRUS
The hepatitis C virus was considered by a previous IARC Working Group in 1993 (IARC, 
1994). Since that time, new data have become available, these have been incorporated in 
the Monograph, and taken into consideration in the present evaluation.

1. Exposure Data

1.1 Taxonomy, structure, and biology

1.1.1 Taxonomy

In the 1970s and 1980s, serological tests 
developed for hepatitis A and B viruses (HAV, 
HBV) indicated that most transfusion-associ-
ated hepatitis was not caused by either HAV or 
HBV, and were therefore named non-A, non-B 
hepatitis (NANBH). After detection of the first 
NANBH-specific clone, the entire viral genome 
of the now termed hepatitis C virus (HCV) was 
sequenced, and based on its structural and func-
tional organization, HCV was classified into the 
family of the Flaviviridae, where it forms its own 
genus ‘hepacivirus’ (Choo et al., 1989; Kuo et al., 
1989).

At least six major viral genotypes (1 to 6) 
have been identified (Simmonds et al., 2005). 
Viral genotypes have specific geographic distri-
bution. The determination of the viral genotype 
is important for transmission studies, and has 
major therapeutic implications. Patients infected 
with genotype 1 have a significantly lower rate of 
response to antiviral therapy compared to other 
genotypes (Manns et al., 2007).

Genotypes display differences in nucleotide 
sequences below 30–35%, and within a genotype 
genomes are allocated into different subtypes 
if their sequences differ by over 20–25%. 
Furthermore, viral isolate(s) present in an 
infected individual can mutate into quasi-species 
(Simmonds et al., 2005; Xu et al., 2008).

1.1.2 Structure of the virion

In line with other members of the Flaviviridae, 
HCV consists of an enveloped nucleocapsid that 
assembles intracellularly in close conjunction 
with membranes derived from the endoplasmic 
reticulum (Moradpour et al., 2007). Released 
HCV particles are about 40–70 nm in diameter, 
but the morphology of particles detected in the 
serum of patients may be heterogeneous due to 
the association with immunoglobulins or very 
low density lipoproteins (vLDL) (André et al., 
2005).

1.1.3 Structure of the viral genome

The HCV genome is a single-stranded, positive 
sense RNA of approximately 9.6 kb, and is repre-
sented in Fig. 1.1. It contains short non-coding 
regions (NCRs) at each end that encompass the 
coding sequence of a polyprotein. The 5′ NCR, 
a well conserved 341nt sequence element which 
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forms into a complex secondary structure, is 
needed for efficient RNA replication and drives 
cap-independent translation of a single large 
open reading frame (ORF) that encodes approxi-
mately 3000 residues (Moradpour et al., 2007). 
The HCV 3′ NCR consists of a short variable 
domain of about 40nt and a polyuridine/polypy-
rimidine tract, followed by a highly conserved 
domain of 98nt that is essential for RNA replica-
tion (Tanaka et al., 1995). The N-terminal region 
of the polyprotein encodes the structural proteins 
including the nucleocapsid protein (core) and 
two envelope glycoproteins (E1 and E2) that 
form the viral particle, followed by several non-
structural proteins, designated as NS2 to NS5B 
(Fig.  1.1). The C-terminal regions of the core 
and envelope proteins contain signal sequences, 
and are cleaved in the endoplasmic reticulum by 
host signal peptidase and signal peptide pepti-
dase (Yasui et al., 1998; McLauchlan et al., 2002; 
Okamoto et al., 2004). Alternative cleavage sites 
at the C-terminal of E2 yield the viroporin p7. 
The NS2/NS3 junction is cleaved in cis by metal-
loproteinase activity. The remaining cleavages 
are carried out by the NS3 serine protease, which 
requires NS4A as a cofactor. Besides partici-
pating in polyprotein processing, NS2 plays 
important roles in viral assembly (Moradpour 
et al., 2007; Jirasko et al., 2008). The non-struc-
tural genes NS3, NS4A, NS4B, NS5A and NS5B 
have diverse functions (see Section 4), and are 
all required for RNA replication (Lindenbach 
et al., 2007; Moradpour et al., 2007). NS5B, the 
viral replicase, lacks proofreading activity. This 
lack of proofreading in the context of a very 
high viral production rate, which has been esti-
mated to be as much as 1012 virions per day in 
infected patients, is thought to be responsible for 
the high genetic variability of HCV (Moradpour 
et al., 2007). Thus, HCV has been classified 
into six genotypes and several subtypes based 
on sequence similarities. In addition, the HCV 
genome is prone to acquiring mutations that 

lead to the presence of quasi-species in infected 
patients (Xu et al., 2008).

1.1.4 Host range

HCV is hepatotropic, and only man and 
higher primates such as chimpanzees have been, 
until recently, receptive to HCV infection and 
disease. Later, it was shown that the marmoset 
as well as tupaias, which are members of the 
tree shrew genus, are also susceptible to HCV 
infection (Shimizu et al., 1998; Sung et al., 2003; 
Pachiadakis et al., 2005).

1.1.5 Tissue target

While HCV RNA has been unequivocally 
detected in the hepatocytes of liver biopsies of 
chronically infected patients and chimpan-
zees, the HCV genome has also been suggested 
to replicate in cells of lymphoid origin and 
dendritic cells (Shimizu et al., 1998; Sung et al., 
2003; Pachiadakis et al., 2005), but this observa-
tion remains to be substantiated. Whether the 
tropism of HCV is limited to hepatocytes at the 
level of cell entry and/or replication via the asso-
ciation of HCV with lipoproteins and/or by other 
factors remains unclear. Expression patterns of 
all cell entry factors isolated to date are either 
ubiquitous or not unique to hepatocytes. This 
includes the lipoprotein receptors scavenger 
receptor B1 (SR-B1), and the low-density lipopro-
tein receptor (LDLr), which may mediate indirect 
uptake of HCV via HCV-associated lipoproteins 
(Moradpour et al., 2007). The replication of HCV 
seems mostly restricted to hepatocytes, and even 
though HCV replicons have been shown to 
amplify in cell lines of non-hepatic origin, the 
levels of replication reported are significantly 
lower than those observed in cell lines of hepatic 
origin (Zhu et al., 2003; Ali et al., 2004; Chang 
et al., 2006).
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1.1.6 Life cycle, replication, and regulation of 
gene expression

Virus-binding to the cell surface and cell 
entry may involve the LDLr, glycosaminoglycans, 
SR-B1, the tetraspanin CD81, and the tight junc-
tion factors Claudin-1 and Occludin (Evans et al., 
2007; Lindenbach et al., 2007; Moradpour et al., 
2007; Ploss et al., 2009;). The tight junction factors 
are thought to act at late stages of cell entry, and 
their involvement in HCV cell entry suggests that 
the state of polarization of hepatocytes is likely 
to be important for the cell entry process (Evans 
et al., 2007). Internalization occurs via clathrin-
coated vesicles, and their acidification induces 
the fusion machinery of the HCV glycoproteins. 
Little is known about the uncoating process and 
the initial events that allow the assembly of repli-
cation complexes, IRES-mediated replication, 

polyprotein processing, and virion assembly. 
RNA replication occurs in membrane-like webs 
that are formed at the endoplasmic reticulum. 
The assembly and secretion process is thought 
to occur in tight relation with the vLDL biosyn-
thesis machinery, which may explain the possible 
association of secreted HCV particles with vLDL 
(André et al., 2005; Nielsen et al., 2006; Miyanari 
et al., 2007).

1.1.7 Diagnosis of HCV infection

The diagnosis of HCV infection relies on 
laboratory tests which include: 1) anti-HCV anti-
body detection assays relying on third-gener-
ation enzyme-linked immunosorbent assays 
(ELISAs) whose sensitivity and specificity have 
been demonstrated; 2) viral genome detection 
assays mainly relying on real time Polymerase 
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Fig. 1.1 The HCV genome structure, viral polyprotein expression and processing into viral proteins

 

Reprinted by permission from Macmillan Publishers Ltd: Nature Review Microbiology, Moradpour et al. (2007), Copyright (2007). http://www.
nature.com/nrmicro/index.html
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Chain Reaction (PCR) technologies allowing the 
quantification of the viral genome; 3) genotyping 
assays to determine viral genotypes that allow 
the prediction of treatment outcome, and the 
determination of treatment duration (Zoulim, 
2006).

The detection of anti-HCV antibodies in 
plasma or serum is based on the use of third-
generation enzyme immunoassays (EIAs) that 
detect antibodies directed against various HCV 
epitopes. Recombinant antigens are used to 
capture circulating anti-HCV antibodies onto 
the wells of microtitre plates, microbeads, or 
specific holders adapted to closed automated 
devices. The specificity of third-generation EIAs 
for anti-HCV is greater than 99% and has been 
improved by the addition of viral epitopes that 
are recognized by antibodies present in the 
serum of infected patients (Colin et al., 2001). 
Their sensitivity is more difficult to determine, 
given the lack of a gold standard method, but it 
is excellent in HCV-infected immunocompetent 
patients. EIAs can be fully automated, and are 
well adapted to large volume testing. Immunoblot 
tests are nowadays clinically obsolete given the 
good performance of third-generation anti-HCV 
EIAs (Colin et al., 2001).

1.2 Epidemiology of infection

1.2.1 Prevalence and geographic distribution

The estimated prevalence of HCV infection 
worldwide is 2.2%. Region-specific estimates 
range from < 1.0% in northern Europe to > 3% 
in northern Africa (Fig.  1.2; Alter, 2007). High 
prevalences of HCV (≥ 10%) were found in some 
areas of Italy and Japan and, most notably, in 
Egypt (15–20%) following mass injection treat-
ment for schistosomiasis. More recently, high 
HCV prevalences have been reported in some 
Asian areas, notably in Pakistan (Ahmad, 2004), 
and the People’s Republic of China (Zhang et al., 
2005). Within Europe, the highest prevalence 

rate of HCV infection was reported in southern 
Italy where 7.5% of the general population and 
up to 23.2% of those aged 65 years old or older 
who were randomly selected were HCV-infected 
(Fusco et al., 2008). The lowest prevalence (0.01–
0.1%) was reported for the United Kingdom and 
Scandinavia.

1.2.2 Transmission and risk factors for 
infection

HCV can be transmitted by transfusion of 
blood and blood products, transplantation of 
solid organs from infected donors, injection drug 
abuse, unsafe therapeutic injections, and occupa-
tional exposure to blood (primarily contaminated 
needles) (Alter, 2007). Transfusion-associated 
HCV infection was an important source of 
infection before HCV testing of blood donors 
was introduced in the early 1990s. Since then, 
transfusion-associated HCV infection has been 
virtually eliminated in those countries where 
routine HCV-testing has been implemented 
(Safe Injection Global Network (SIGN), 2001). 
Iatrogenic HCV transmission through unsafe 
(therapeutic) injections has sustained substantial 
epidemics of the infection in Japan, Italy in the 
1940s and Egypt in the 1950s, and it is currently 
very frequent in low-resource countries (Ahmad, 
2004; Raza et al., 2007) where disposable needles 
tend to be re-used, and injections tend to be 
preferred to the oral route for the administration 
of common treatments. It has been estimated 
that approximately 2 million HCV infections are 
caused annually by contaminated health-care-
related injections. Injection drug use accounts 
for most of the newly acquired infections in 
developed countries. The incidence rate among 
new drug injectors has been observed to range 
from 9 to 30% per 100 person–years (Des Jarlais 
et al., 2003).

HCV is less efficiently transmitted by occupa-
tional, perinatal and high-risk sexual exposures 
compared to those involving large or repeated 
percutaneous exposures to blood (Alter, 2007). 
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The rate of transmission after an accidental 
needle-stick injury involving HCV-positive 
blood ranges from 0–10% (Hernandez et al., 
1992; Mitsui et al., 1992). The rate of perinatal 
HCV transmission is 4–7% and occurs only 
when HCV RNA is detectable in the maternal 
serum at delivery. There has been no difference 
in the rate of HCV transmission between vaginal 
delivery, caesarian section or breastfeeding. 
However, co-infection with HIV increases the 
rate of transmission 4–5-fold. The extent to 
which HCV is transmitted by sexual activity is 
very controversial (Alter, 2007). Although case–
control studies of acute hepatitis C have identi-
fied sex with an infected partner or with multiple 
partners as independent risk factors for acquiring 
the disease, in long-term monogamous relation-
ships with a partner with chronic HCV infection, 
there was little evidence for sexual transmission 
of HCV (Clarke & Kulasegaram, 2006).

Currently the data are too scant to determine 
whether cosmetic procedures (e.g. tattooing, 
body piercing) or intranasal illicit drug use 
significantly contribute to the overall HCV 
transmission (Alter, 2002; Hwang et al., 2006).

1.2.3 Persistence, latency, and natural history 
of infection

Persistence of HCV infection occurs in the 
majority of HCV-infected individuals. HCV 
infection is often asymptomatic. Indeed, acute 
HCV infection, whether symptomatic or not, 
resolves spontaneously only in 10–40% of cases 
(Poynard et al., 2003; Afdhal, 2004). Persistent 
HCV infection is characterized by the persistence 
of elevated aminotransferase levels and HCV 
RNA in serum. Serological distinction of chronic 
carriers is difficult. Chronically HCV-infected 
patients are in general asymptomatic, and some 
report nonspecific symptoms such as fatigue or 
abdominal discomfort. Approximately 15–27% 
of chronically infected patients are estimated 
to develop cirrhosis. The time to progression to 

severe liver disease is highly variable. Factors 
that accelerate clinical progression include being 
of masculin gender, older at the age of infection, 
alcohol intake, and co-infection with HIV and/
or HBV (Lauer & Walker, 2001; Perz et al., 2006; 
Alter, 2007).

1.2.4 Vaccination and viral treatment
To date, an active or passive vaccination 

against HCV is not yet available. The main factor 
that hampers the development of an efficient 
vaccine is the considerable genetic heterogeneity 
of this positively-stranded RNA virus. However, 
better understanding of the natural immunity 
to HCV and the proof of vaccine efficacy in the 
chimpanzee challenge model allows some opti-
mism about the development of an at least partly 
effective vaccine against this heterogeneous 
pathogen (Houghton & Abrignani, 2005).

In view of the fact that the natural course 
of chronic HCV infection is variable and that 
the currently established antiviral combination 
therapy with a pegylated interferon (PEG-IFN) 
and ribavirin (RBV) has numerous side-effects, 
the decision to treat or not to treat must be deter-
mined on an individual basis (Poynard et al., 
2003; Afdhal, 2004; Deutsch & Hadziyannis, 
2008). The main goal of antiviral therapy is a 
sustained virological response, defined as unde-
tectable HCV RNA in serum 24 weeks after the 
end of treatment, determined with the most 
sensitive PCR technique. Treatment, regimens, 
and responsiveness vary depending of the HCV 
genotypes.

In patients infected with genotype 1 or 4, 
HCV eradication rates range between 45–52%. In 
contrast, in patients infected with HCV genotype 
2 or 3, antiviral therapy results in HCV eradica-
tion in 75–90% of cases. Currently, several novel 
antiviral agents are being evaluated in indi-
vidual studies, e.g. NS3–4A protease inhibitors, 
RNA-dependent RNA polymerase inhibitors, 
and different immune therapies (Manns et al., 
2007).
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2. Cancer in Humans

This section focuses on cohort and case–
control studies published since the last IARC 
Monograph (IARC, 1994). Only those studies 
that used second- or third-generation assays to 
determine HCV antibody status are examined. If 
a measure of relative risk (RR) was not provided 
by the authors, the Working Group calculated a 
crude relative risk and 95% confidence intervals 
(CI). Only those studies in which a relative risk 
could be specifically estimated were included. 
Studies that focused specifically on the effect 
of the interaction of HCV and another factor 
(e.g. HBV) on the occurrence of hepatocellular 
carcinoma (HCC) are addressed in the relevant 
subsection.

2.1 Hepatocellular carcinoma

In the previous IARC Monograph (IARC, 
1994), data on the relationship between infec-
tion with HCV, as indicated by the presence of 
antibodies to HCV (anti-HCV), were examined 
in three cohort studies and over 20 case–control 
studies. Seropositivity for HCV antibodies was 
measured by either first- or second-generation 
tests. An increased risk for HCC was apparent in 
all three cohort studies. Among the case–control 
studies, odds ratio (OR) estimates ranging from 
1.3–134 were observed in 17 studies in which 
first-generation tests were used, and were statis-
tically significant in 15 of the studies. In six case–
control studies that used second-generation 
assays, the estimated odds ratios ranged from 
1.1–52, and were significant in three studies. In 
the few case–control studies in which the anal-
ysis took into account possible confounding of 
the effects of HCV by other risk factors for HCC, 
such as smoking and alcohol consumption, the 
association with HCV was not materially altered.

2.1.1 Cohort studies

Table 2.1 (available at http://monographs.
iarc.fr/ENG/Monographs/vol100B/100B-03-
Table2.1.pdf) provides a detailed summary of 
the cohort studies that investigated the associa-
tion of HCV with the development of HCC, by 
geographic area. Cohort studies of patients with 
chronic liver disease/cirrhosis were excluded, 
due to the difficulties in interpreting the findings 
from such studies; this exclusion is analogous to 
that for case–control studies involving control 
groups comprising chronic liver disease patients.

Of the eight cohort studies considered, six 
were conducted in Asia and one each in the 
Americas and Australia. Of note, the cohort 
study conducted in Australia (Amin et al., 
2006) involved persons included in the New 
South Wales Notifiable Diseases Database. An 
association between HCV seropositivity and 
HCC was observed in each of the eight cohort 
studies, with relative risks ranging from 2.5–88. 
The effect estimate was statistically significant 
in all but one study (Yuan et al., 1995). Potential 
confounding by risk factors for HCC, particu-
larly infection with HBV, was not addressed in 
four of the studies (Yuan et al., 1995; Boschi-
Pinto et al., 2000; Mori et al., 2000; Guiltinan 
et al., 2008). The wide range in the relative risks 
reported most likely reflects variations across the 
study populations in the underlying prevalence 
of HCV, as well as in the duration of HCV infec-
tion. Only the study by Mori et al. (2000) exam-
ined the effect of anti-HCV titre and reported a 
stronger association for a high anti-HCV titre 
(RR, 40.4) than for a low antibody titre (RR, 3.4).

2.1.2 Case–control studies

Details of the 18 case–control studies 
summarized can be found in Table 2.2 (available 
at http://monographs.iarc.fr/ENG/Monographs/
vol100B/100B-03-Table2.2.pdf). A few studies 
were excluded based on the following criteria: less 
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than 20 HCC cases were included in the study; 
the control group was comprised of patients with 
chronic liver disease; or, information related to 
the comparability of case and control subjects 
with respect to age and sex was not provided.

Most of the case–control studies were 
performed either in Europe (n = 7) or Asia (n = 6). 
The results from all 18 studies, both hospital-
based and population-based, support a carcino-
genic role of HCV in the development of HCC. 
The adjusted odds ratios for anti-HCV seroposi-
tivity ranged from 2.8–170; eight studies reported 
a more than 20-fold increased risk of HCC (Park 
et al., 1995; Shin et al., 1996; Tanaka et al., 1996; 
Tsai et al., 1996; De Vita et al., 1998; Tagger 
et al., 1999; Kuper et al., 2000; Yuan et al., 2004). 
Potential confounding by risk factors for HCC, 
particularly infection with HBV, was addressed 
in half of these studies (see Table  2.2 on-line). 
As with the cohort studies, the wide range in 
the observed odds ratios across the case–control 
studies is likely to be related to the underlying 
prevalence of HCV, and duration of infection. In 
those case–control studies in which the presence 
of anti-HCV and HCV RNA was determined, the 
observed association was stronger for positivity 
to both markers than for anti-HCV alone (Kew 
et al., 1997; Tagger et al., 1999; Gelatti et al., 2005; 
Franceschi et al., 2006a).

2.1.3 Meta-analyses

Two meta-analyses have examined the inter-
active effect of HBV and HCV infections on the 
occurrence of HCC (see the Monograph on HBV 
in this volume) based on case–control studies 
(including case–control studies nested within 
cohorts). In both analyses, estimates of the 
overall association between HCV and HCC were 
also provided. Donato et al. (1998) calculated a 
summary odds ratio for 21 studies, published 
between 1992–97, using second-generation anti-
HCV or HCV RNA assays. The overall odds ratio 
for HCV was 8.2 (95%CI: 6.7–9.9). The estimate 

was higher for studies in areas where HBV infec-
tion is at low-to-intermediate endemicity and 
where HCV infection is predominant among 
HCC cases (Japan and Mediterranean countries; 
OR, 16.8; 95%CI: 11.9–24.1) than for studies in 
areas where HBV infection is highly endemic 
(subSaharan and southern Africa, Taiwan 
(China), China, Republic of Korea, Viet Nam; 
OR, 6.2; 95%CI: 4.9–7.8). The summary odds ratio 
was also slightly higher for studies with commu-
nity controls (OR, 9.0; 95%CI: 7.0–11.6) than for 
those with hospital controls (OR, 6.8; 95%CI: 
5.1–9.1). In a similar analysis of 32 case–control 
studies published in the Chinese literature, Shi et 
al. (2005) reported a summary odds ratio of 4.6 
(95%CI: 3.6–5.9) for anti-HCV/HCV RNA posi-
tivity and HCC. The calculated odds ratio was 
somewhat larger in higher HCC incidence areas 
(OR, 5.3; 95%CI: 3.8–7.4) than in lower incidence 
areas (OR, 3.8; 95%CI: 2.8–5.2). There was little 
difference in the estimates based on studies with 
community controls or with hospital controls 
(OR, 4.7; 95%CI: 3.6–6.1 and OR, 4.4; 95%CI: 
2.9–6.6, respectively).

2.1.4 HCV genotype

Table 2.3 (available at http://monographs.
iarc.fr/ENG/Monographs/vol100B/100B-03-
Table2.3.pdf) summarizes the results from four 
case–control studies and one community-based 
cohort study in which the effect of HCV geno-
type on HCC was examined. Two case–control 
studies in Japan reported significant increased 
odds ratios for HCV genotype 1b, compared to 
other genotypes, among persons infected with 
HCV (Tanaka et al., 1996, 1998a). A weaker crude 
association between Group 1 (1a, 1b) infection 
and HCC incidence was obtained from the nested 
case–control study of HCC conducted within the 
community-based Town C HCV Study (Suruki 
et al., 2006). The Brescia HCC study examined 
the HCV genotype in the HCV RNA-positive 
HCC cases and non-cancer patient controls 
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(Tagger et al., 1999), and reported a larger effect 
size for genotype 1b infection (OR, 34.2) than 
for genotype 2 infection (OR, 14.4), relative to 
anti-HCV seronegatives. A comparison of HCV 
genotypes 1b to 2 yielded an adjusted odds ratio 
of 2.9 (95%CI: 0.9–10) (Donato et al., 1997). In 
contrast, an additional hospital-based study in 
Italy observed increased risks (27-fold) of HCC 
for both genotype 1 and genotype 2 infections, 
compared to anti-HCV seronegatives (Franceschi 
et al., 2006a).

Seven cohort studies (Bruno et al., 1997, 
2007; Naoumov et al., 1997; Niederau et al., 1998; 
Tanaka et al., 1998b; Ikeda et al., 2002; Imazeki 
et al., 2003a; Obika et al., 2008) and two case–
control studies (Hatzakis et al., 1996; Silini et al., 
1996) have examined the association between 
HCV genotype and HCC among patients with 
HCV-related liver disease. However, uncertainty 
about HCV treatment in these patients as well as 
potential bias related to their identification and 
inclusion as study subjects make the interpreta-
tion of the findings from such studies difficult.

2.1.5 Cofactors modifying the risk of HCV-
associated HCC

A brief summary of the findings from studies 
that examined potential modifiers of the effect 
of HCV on the development of HCC is provided 
below and in Table 2.4 (available at http://mono-
graphs.iarc.fr/ENG/Monographs/vol100B/100B-
03-Table2.4.pdf). Those studies that evaluated 
the interaction of the factor with a combined 
HCV and/or HBV infection status were not 
considered.

(a) Heavy alcohol consumption

Alcohol consumption has been classified 
by IARC as a human carcinogen, with a role in 
the etiology of liver cancer (IARC, 1988, 2010). 
A positive interaction, on the additive scale, 
between HCV and habitual alcohol drinking was 
observed in a community-based cohort study 

in Japan (Mori et al., 2000); of note, only crude 
relative risks could be calculated for this study. 
Sun et al. (2003) also investigated the potential 
synergy of HCV infection with habitual alcohol 
drinking in their cohort study in Taiwan, China 
(Sun et al., 2003; Wang et al., 2003), and no inter-
action was observed in this low (20% prevalence) 
alcohol consumption population. The synergy 
index obtained suggested that the combined 
effect of HCV and habitual alcohol drinking was 
not more than the additive effect of either factor 
alone. A positive, more than additive, interaction 
between HCV and heavy alcohol consumption 
was reported in the hospital-based Brescia HCC 
case–control study in Italy (Donato et al., 2002). 
However, because alcohol-induced cirrhosis may 
alter alcohol consumption before the develop-
ment of HCC, the evaluation of alcohol in case–
control studies can be problematic.

(b) Smoking

IARC has also identified tobacco smoking as 
a liver carcinogen (IARC, 2004). In the cohort 
studies in Japan (Mori et al., 2000) and Taiwan, 
China (Sun et al., 2003), a more than additive 
effect of anti-HCV seropositivity and cigarette 
smoking on HCC incidence was suggested; as 
noted in the alcohol subsection above, no adjust-
ment for potential confounders was performed 
in the Japanese study.

(c) Diabetes mellitus

A meta-analysis of 26 studies (13 case–
control studies and 13 cohort studies) published 
through February 2005 indicated that diabetes 
mellitus appears to be an independent risk factor 
for HCC (El-Serag et al., 2006). However, no 
clear evidence with respect to a possible interac-
tion between diabetes and HCV infection on the 
risk of HCC was found based on a Surveillance, 
Epidemiology and End Results(SEER)-Medicare 
database case–control study of HCC in the 
United States of America (Davila et al., 2005), 
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and a community-based cohort study in Taiwan, 
China (Lai et al., 2006).

(d) Betel quid chewing

Two studies in Taiwan, China, examined 
the interaction between HCV and habitual 
betel quid chewing (Sun et al., 2003; Tsai et al., 
2001). The study by Sun et al. (2003) resulted in 
a synergy index of 4.2, suggestive of a greater 
than additive increased risk of HCC related to 
the combined effect of HCV infection and betel 
quid chewing than of either factor alone. The 
interaction appeared to be weaker in the study 
by Tsai et al. (2001), with a synergy index of 1.66; 
the reported odds ratios were not adjusted for 
potential confounders.

(e) Human T-lymphotropic virus type 1 infection

A more than additive effect of human 
T-lymphotropic virus type 1 (HTLV-1) co-infec-
tion on the association of HCV with liver cancer 
death was observed (RR, 21.9 for HCV-positive/
HTLV-1-positive) in the Miyazaki Cohort Study 
of an HTLV-1 endemic population in Japan 
(Boschi-Pinto et al., 2000).

(f) Radiation exposure

The Radiation Effects Research Foundation 
Life Span Study by Sharp et al. (2003) reported 
a greater than multiplicative interaction for the 
combined effect of HCV infection and radiation 
exposure in both the second (OR, 55.1) and third 
(OR, 28.7) tertiles.

(g) Schistosoma infection

A case–control study conducted at the 
National Cancer Institute in Egypt investigated 
the interaction between infection with HCV 
and infection with Schistosoma mansoni among 
the subjects negative for HBsAg (Hassan et al., 
2001); however, no meaningful interaction was 
observed.

(h) Helicobacter pylori infection

It has been hypothesized that Helicobacter 
species could play a role in the development 
of HCC (Pellicano et al., 2008). Several cross-
sectional studies have detected the presence 
of Helicobacter in HCV-infected HCC cases 
(Ponzetto et al., 2000; Pellicano et al., 2004; 
Rocha et al., 2005).

2.1.6 Co-infection HCV/HBV

See the Monograph on HBV in this volume.

2.2 Cancers other than hepatocellular 
carcinoma

2.2.1 Biliary tract/gallbladder

(a) Cohort studies

The cohort study in Australia (Amin et al., 
2006), included in Table 2.1 (on-line), also inves-
tigated the effect of monoinfection with HCV on 
the incidence of gallbladder cancer; however, no 
increased rate of the malignancy was observed 
(standardized incidence ratio [SIR], 0.5; 95%CI: 
0.1–2.0; based on 2 newly reported cases).

(b) Case–control studies

Table 2.5 (available at http://monographs.
iarc.fr/ENG/Monographs/vol100B/100B-03-
Table2.5.pdf) summarizes the seven case–control 
studies that have examined the association of 
HCV with cholangiocarcinoma and biliary tract 
cancers, five of which were performed in Asian 
countries (Republic of Korea, Japan, and China).

In the Republic of Korea, a hospital-based 
study of 203 HCC cases (summarized in Table 2.2 
on-line) also included 41 cases of cholangiocarci-
noma, without distinction of site, and observed 
a positive association (OR, 3.9; 95%CI:0.9–17.1) 
of anti-HCV seropositivity with that malignancy 
(Shin et al., 1996). Five case–control studies 
provided results with respect to the association 
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between anti-HCV seropositivity and intrahe-
patic cholangiocarcinoma. Statistically signifi-
cant odds ratios were observed in three of those 
studies (Donato et al., 2001; Yamamoto et al., 
2004; Shaib et al., 2007), with a more than 5-fold 
increased risk of intrahepatic cholangiocar-
cinoma related to HCV. The largest study (Lee 
et al., 2008), which included 622 cases in the 
Republic of Korea, did not find any association 
between anti-HCV positivity and intrahepatic 
cholangiocarcinoma (OR, 1.0; 95%CI: 0.5–1.9); 
of note, the reported odds ratio was not adjusted 
for any potential confounders. One study also 
included cases of extrahepatic cholangiocar-
cinoma (Shaib et al., 2007), but the association 
between anti-HCV and this subtype was weaker, 
and not statistically significant. Not presented 
in Table  2.5 (on-line) is a case–control study 
based on the SEER cancer registry and Medicare 
claims data, which determined HCV infection 
status and case status using ICD-9 diagnostic 
codes (Welzel et al., 2007). In that study as well, 
the effect was more pronounced for intrahepatic 
cholangiocarcinoma (adjusted OR, 4.4; 95%CI: 
1.4–14.0; n  =  535 cases) than for extrahepatic 
cholangiocarcinoma (adjusted OR, 1.5; 95%CI: 
0.2–11.0; n = 549 cases).

Hsing et al. (2008) conducted a case–control 
study of incident biliary tract cancers in Shanghai. 
An age-adjusted increased risk associated with 
anti-HCV seropositivity was not observed for 
cancer of either the gallbladder, the extrahepatic 
bile ducts, or the ampulla of Vater.

2.2.2 Lymphoid malignancies

(a) Cohort studies

Table 2.6 (available at: http://monographs.
iarc.fr/ENG/Monographs/vol100B/100B-03-
Table2.6.pdf) includes detailed descriptions of 
seven cohort studies that examined the effect of 
HCV infection on the occurrence of lymphoid 
malignancies, by the HIV status of the subjects. 
In the five studies of HIV-negative subjects, 

three found an approximately 2-fold excess risk 
of either non-Hodgkin lymphoma generally or 
B-cell non-Hodgkin lymphoma, specifically 
among individuals who were infected with HCV 
(Ohsawa et al., 1999; Duberg et al., 2005; Ulcickas 
Yood et al., 2007). Due to the small number of 
cases that occurred in all three cohorts, the asso-
ciation was statistically significant only in the 
Swedish study of B-cell non-Hodgkin lymphoma 
(Duberg et al., 2005). The Swedish study also 
observed a similar, but statistically non-signifi-
cant, effect of HCV infection on the development 
of the chronic lymphocytic leukaemia subtype as 
well as multiple myeloma. A nested case–control 
study within a cohort of parents and offspring in 
the USA did not detect HCV in any of the B-cell 
non-Hodgkin lymphoma, multiple myeloma, or 
Hodgkin disease cases or the matched controls 
(Rabkin et al., 2002). A cohort study in Australia 
also reported no association of HCV with non-
Hodgkin lymphoma, nor with subtypes such 
as follicular lymphoma, diffuse non-Hodgkin 
lymphoma, and T-cell non-Hodgkin lymphoma 
(Amin et al., 2006); in addition, an increased 
risk was not found for either multiple myeloma 
or Hodgkin disease. Not included in Table  2.6 
is a cohort study from the USA, which used 
the Department of Veterans Affairs admin-
istrative patient databases with HCV status, 
and the occurrence of lymphoid malignancies 
based on ICD-9 CM diagnostic codes (Giordano 
et al., 2007). The adjusted relative risks were 1.28 
(95%CI: 1.12–1.45) for non-Hodgkin lymphoma 
(n  =  1359 cases), 0.89 (95%CI: 0.68–1.15) for 
chronic lymphocytic leukaemia (n = 412 cases), 
0.95 (95%CI: 0.76–1.19) for multiple myeloma 
(n = 526 cases), and 0.97 (95%CI: 0.74–1.27) for 
Hodgkin disease (n = 360 cases).

For both cohort studies of HIV-positive 
subjects, a null association was observed between 
anti-HCV seropositivity and non-Hodgkin 
lymphoma (Waters et al., 2005; Franceschi et al., 
2006b).
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(b) Case–control studies

This section summarizes the case–control 
studies included in the meta-analyses by Matsuo 
et al. (2004) and Dal Maso & Franceschi (2006). 
Other case–control studies were considered if: at 
least 20 cases of lymphoma were investigated in 
the study; the control group was not comprised 
of patients with other haematological malignan-
cies and/or lymphoproliferative diseases; and, 
information related to the comparability of case 
and control subjects with respect to age and sex 
was provided.

Results related to a particular non-Hodgkin 
lymphoma subtype are included when data 
were provided for ≥  20 cases. In addition to 
B-cell non-Hodgkin lymphoma, the subtypes 
evaluated were T-cell non-Hodgkin lymphoma, 
diffuse large B-cell lymphoma (DLBCL), folli-
cular lymphoma, marginal zone lymphoma, and 
chronic lymphocytic leukaemia/small lympho-
cytic lymphoma (CLL/SLL).

A large number of case–control studies have 
examined the association between HCV infec-
tion and non-Hodgkin lymphoma. The detailed 
description of these studies and their findings, 
by geographic area, are provided in Table  2.7 
(available at http://monographs.iarc.fr/ENG/
Monographs/vol100B/100B-03-Table2.7.pdf). 
Most studies were conducted in Europe 
(n = 20), followed by the Americas (n = 8), and 
Asia (n  =  7); one study each was performed 
in Africa and Australia. B-cell non-Hodgkin 
lymphoma specifically and/or non-Hodgkin 
lymphoma generally was the primary malig-
nancy of interest in all 37 case–control studies. 
Approximately 80% of the studies reported at 
least a 2-fold increased risk of non-Hodgkin 
lymphoma or a B-cell non-Hodgkin lymphoma 
with HCV seropositivity. The association was 
evident in case–control studies conducted across 
all geographic areas (except for the study in 
Australia), and using different sources of control 
groups (i.e. hospital-based, population-based, 

or blood donors). Odds ratios greater than 5.0 
were observed in 13 studies: nine studies were 
from Europe (Ferri et al., 1994; Mazzaro et al., 
1996; Musto et al., 1996; De Rosa et al., 1997; De 
Vita et al., 1998; Paydas et al., 1999; Vallisa et al., 
1999; Zucca et al., 2000; Yenice et al., 2003), and 
four studies were from elsewhere (Zuckerman 
et al., 1997; Harakati et al., 2000; Kuniyoshi etal., 
2001; Chindamo et al., 2002). An additional 16 
case–control studies reported a 2–4-fold excess 
risk of either non-Hodgkin lymphoma or B-cell 
non-Hodgkin lymphoma associated with HCV 
infection; the effect was statistically significant 
in more than half (Silvestri et al., 1996; Mizorogi 
et al., 2000; Montella et al., 2001b; Imai et al., 
2002; Mele et al., 2003; Cowgill et al., 2004; 
Engels et al., 2004; Iwata et al., 2004; Talamini 
et al., 2004; Schöllkopf et al., 2008; Spinelli et al., 
2008). The remaining eight case–control studies 
with odds ratios less than 2 did not demon-
strate a statistically significant effect of HCV 
on the occurrence of non-Hodgkin lymphoma 
or B-cell non-Hodgkin lymphoma (Kaya et al., 
2002; Avilés et al., 2003; Morgensztern et al., 
2004; de Sanjosé et al., 2004; Sève et al., 2004; 
Vajdic et al., 2006; Sonmez et al., 2007; Park et al., 
2008). Not included in Table 2.7 is the SMAHRT 
(SEER-Medicare Assessment of Hepatopoietic 
Malignancy Risk Traits) study, a case–control 
study of haematopoietic malignancies based on 
the use of the SEER-Medicare data in the USA 
(Anderson et al., 2008). Cancer diagnosis as well 
as HCV status was obtained from the ICD codes 
included in the two databases. The adjusted 
odds ratio for the association of HCV with non-
Hodgkin lymphoma overall (n  =  33940 cases) 
was 1.35 (95%CI: 1.1–1.7).

The findings of two pooled analyses are also 
included in Table 2.7. One pooled study reported 
an overall odds ratio of 1.5 (95%CI: 0.95–2.2) for 
B-cell lymphoma, based on 1465 cases from five 
European countries (Nieters et al., 2006). The 
other pooled study found a similar association 
(OR, 1.8; 95%CI: 1.4–2.3) for all non-Hodgkin 
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lymphoma, using 4784 cases from seven studies 
involving centres in the USA, Canada, Australia, 
and Europe (de Sanjosé et al., 2008). The latter 
analysis included the results from five previously 
published studies (Engels et al., 2004; Morton 
et al., 2004; Talamini et al., 2004; Nieters et al., 
2006; Vajdic et al., 2006).

In two case–control studies of non-Hodgkin 
lymphoma, a slightly stronger association 
was found for low-grade B-cell non-Hodgkin 
lymphoma, in contrast to intermediate/high-
grade disease (Engels et al., 2004; Talamini et al., 
2004). Based on an a priori hypothesis that HCV 
would be related to non-Hodgkin lymphoma at 
the potential target organ of infection, an early 
study in Italy examined the effect of HCV on 
liver/salivary gland non-Hodgkin lymphoma, 
and reported a marked elevation in risk (OR, 
51.5) (De Vita et al., 1998).

With respect to other subtypes of non-
Hodgkin lymphoma, an effect of HCV infection 
has less consistently been observed. Moreover, 
when an association is suggested, the effect esti-
mate usually is highly unstable, due to the small 
number of cases involved. From the results of the 
studies included in Table 2.7 (on-line), an associa-
tion with HCV seems more evident for the DLBCL 
and CLL/SLL subtypes. For DLBCL, results were 
available from 14 case–control studies; 13 studies 
observed an association consistent with an effect 
of HCV seropositivity on DLBCL, which was 
significant for about half (Silvestri et al., 1996; 
Vallisa et al., 1999; Zucca et al., 2000; Chindamo 
et al., 2002; Mele et al., 2003; Talamini et al., 2004; 
Spinelli et al., 2008). Eight of the 12 studies that 
examined CLL/SLL reported an odds ratio of at 
least 2, with the association being statistically 
significant in three case–control studies (Musto 
et al., 1996; De Rosa et al., 1997; Paydas et al., 
1999). For the fewer number of studies (n = 10) 
that included separate odds ratios for follicular 
lymphoma and marginal zone lymphoma, 
slightly more than half reported an odds ratio 
greater than 2 for HCV seropositivity (Silvestri 

et al., 1996; Vallisa et al., 1999; Zucca et al., 2000; 
Mele et al., 2003; Engels et al., 2004; Spinelli et al., 
2008). In contrast, the findings from almost all 
studies did not support a notable effect of HCV on 
T-cell non-Hodgkin lymphoma. The SMAHRT 
study reported the following odds ratios for 
non-Hodgkin lymphoma subtypes: 1.5 (95%CI: 
1.05–2.2) for DLBCL (n  =  10144 cases); 2.2 
(95%CI: 1.2–3.95) for marginal zone lymphoma 
(n = 1908 cases); 1.9 (95%CI: 1.2–3.0) for follicular 
lymphoma (n = 4491 cases); 1.1 (95%CI: 0.70–1.7) 
for chronic lymphocytic lymphoma (n  =  10170 
cases); and 0.42 (95%CI: 0.10–1.7) for T-cell non-
Hodgkin lymphoma (n = 1870 cases) (Anderson 
et al., 2008). In a pooled analysis (de Sanjosé 
et al., 2008), a statistically significant association 
was found for DLBCL (OR, 2.2; 95%CI: 1.7–3.0) 
and marginal zone lymphoma (OR, 2.5; 95%CI: 
1.4–4.2). The other pooled study (Nieters et al., 
2006) also reported a significant association for 
DLBCL (OR, 2.2; 95%CI: 1.2–3.9), but no associa-
tion was reported for marginal zone lymphoma. 
The effect of HCV was weaker and not statisti-
cally significant for CLL/SLL and not apparent 
for follicular lymphoma or T-cell lymphoma in 
both pooled studies.

Of eight case–control studies that examined 
multiple myeloma (Table 2.7 on-line), four studies 
observed a statistically significant association 
between HCV seropositivity and the malignancy 
(Musto et al., 1996; De Rosa et al., 1997; Paydas 
et al., 1999; Montella et al., 2001a, b). The pooled 
analysis by the EPILYMPH group (Nieters et al., 
2006) did not report a notable association for 
multiple myeloma (OR, 1.4; 95%CI: 0.61–3.2).

More than ten of the case–control studies 
included in Table 2.7 (on-line) conducted sepa-
rate analyses of the effect of HCV on the occur-
rence of Hodgkin disease. An increased risk was 
observed in eight case–control studies, although 
it was significant only in one study (Paydas et al., 
1999). The US record-based study by Anderson 
et al. (2008) found an odds ratio of 1.2 (95%CI: 
0.38–3.7) based on 1155 Hodgkin disease cases. 
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In the pooled analysis by Nieters et al. (2006), 
no effect of HCV on Hodgkin disease was found 
(OR, 0.97; 95%CI: 0.27–3.5).

(c) Meta-analyses

Several meta-analyses of the relation-
ship between HCV and lymphoma have been 
published (Gisbert et al., 2003; Matsuo et al., 
2004; Negri et al., 2004; Dal Maso & Franceschi, 
2006). Matsuo et al. (2004) performed a meta-
analysis of 23 case–control studies (including 
nested case–control studies) published between 
January 1990 and August 2003. Studies were 
included if an odds ratio or a relative risk was 
calculated “by comparing the HCV-positive 
category to the negative category”, and non-
cancer controls and a second- or third-generation 
HCV antibody test were used. A summary odds 
ratio of 5.7 (95%CI: 4.1–8.0) for non-Hodgkin 
lymphoma was obtained; the association was 
somewhat stronger for B-cell non-Hodgkin 
lymphoma (OR, 5.0; 95%CI: 3.6–7.1) than for 
T-cell non-Hodgkin lymphoma (OR, 2.5; 95%CI: 
1.4–4.6). The variation was related to the use of 
blood donor controls (OR: 8.4 versus OR: 4.65 
for non-blood donor controls), and to the year 
of publication (i.e. lower OR for the more recent 
publications). [The Working Group noted that 
the relative risks obtained in this meta-analysis 
might be inflated by underadjustment, particu-
larly by age group.]

In their meta-analysis, Dal Maso & Franceschi 
(2006) examined 15 case–control studies and 
three cohort studies published up to July 2006. 
Studies were eligible for inclusion based on the 
following criteria: if the control group did not 
include patients with other lymphoproliferative 
diseases, if cases and controls were comparable 
with respect to age and sex or age and sex were 
taken into account in the analysis, if second- or 
third-generation anti-HCV assays were used, 
and if HIV-positive subjects were excluded. 
Only case–control studies with ≥ 100 cases were 
included in the overall analyses of non-Hodgkin 

lymphoma; findings regarding specific non-
Hodgkin lymphoma subtypes and other 
lymphoid malignancies were shown when there 
were ≥ 20 cases for that subtype. The sex- and age-
adjusted meta-relative risk for all non-Hodgkin 
lymphoma was 2.5 (95%CI: 2.1–3.0), and was 
similar for case–control (RR, 2.5; 95%CI: 2.1–3.1) 
and cohort (RR, 2.0; 95%CI: 1.8–2.2) studies. The 
effect of HCV on non-Hodgkin lymphoma was 
estimated to be higher in those studies with a 
higher HCV prevalence (≥  5%) among control 
subjects (RR, 3.0; 95%CI: 2.4–3.75) than those 
studies with a lower prevalence (RR, 1.9; 95%CI: 
1.8–2.05). The results were relatively consistent 
by geographic area (RR, 2.7 in southern Europe; 
RR, 2.6 in the USA; RR, 2.1 in the Republic of 
Korea/Japan; RR, 2.3 in other areas) and year 
of publication (RR, 2.9 before 2003; RR, 2.2 
during 2003 and after). However, the association 
appeared to be somewhat weaker in studies using 
population-based control subjects (RR, 1.9) than 
in those using hospital-based controls (RR, 
2.7). With respect to non-Hodgkin lymphoma 
subtypes, the relative risks obtained were: 2.65 
(95%CI: 1.9–3.7) for DLBCL; 2.7 (95%CI: 2.2–3.4) 
for follicular lymphoma; 3.4 (95%CI: 2.4–4.9) for 
marginal zone; 1.65 (95%CI: 1.35–2.0) for CLL/
SLL; and 1.5 (95%CI: 1.13–2.05) for T-cell non-
Hodgkin lymphoma. In addition, a summary 
relative risk was estimated for multiple myeloma 
(RR, 1.6; 95%CI: 0.69–3.6) as well as for Hodgkin 
disease (RR, 1.5; 95%CI: 1.0–2.1). Of note, the 
meta-analysis did not include the results from 
two recently conducted, large case–control 
studies of lymphoid malignancies: the nation-
wide study of the Danish and Swedish popula-
tions by Schöllkopf et al. (2008), and the pooled 
InterLymph study by de Sanjosé et al. (2008).

(d) Treatment of HCV infection in patients with 
lymphoma

In a striking finding, Hermine et al. (2002) 
reported remission in seven of nine patients with 
splenic lymphoma with villous lymphocytes who 
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were infected with HCV after they were treated 
with interferon α; two more patients without 
a substantial antiviral response experienced 
remission after the addition of ribavirin to inter-
feron α. None of six HCV-negative patients with 
splenic lymphoma with villous lymphocytes 
responded to interferon treatment. A system-
atic review by Gisbert et al. (2005) reported on 
the findings of 16 case reports and case series in 
which a total of 65 HCV-infected patients with 
lymphoproliferative disorders were treated with 
interferon α (with and without ribavirin). Of the 
65 patients in those studies, complete remission 
of the disorder was achieved in 75% (95%CI: 
64–84) of the cases. [The Working Group noted 
that one case series contributed almost a third of 
the patients analysed (n = 20); however, the refer-
ence was to an abstract, for which a full paper has 
not been published.]

2.2.3 Other cancers

(a) Leukaemias

In the large cohort study of US veterans who 
were infected with HCV, a diagnosis of HCV was 
not related to an increased rate of acute lympho-
cytic leukaemia (RR, 0.75), chronic myeloid 
leukaemia (RR, 0.84), or acute non-lymphocytic 
leukaemia (RR, 1.04) (Giordano et al., 2007).

Table 2.8 (available at http://monographs.
iarc.fr/ENG/Monographs/vol100B/100B-03-
Table2.8.pdf) summarizes the four case–control 
studies that investigated the effect of HCV infec-
tion on the development of leukaemia. No study 
reported statistically significant associations 
between anti-HCV seropositivity and acute 
myeloid leukaemia, acute lymphocytic leukaemia, 
or chronic myeloid leukaemia. However, Bianco 
et al. (2004) suggested that HCV infection might 
be associated with both acute myeloid leukaemia 
and chronic myeloid leukaemia in the Italian 
study. In Japan, Murashige et al. (2005) reported 
no association of anti-HCV seropositivity with 
the risk of myeloid malignancy.

(b) Cancer of the thyroid

The three cohort studies in Sweden (Duberg 
et al., 2005), Australia (Amin et al., 2006), and the 
USA (Giordano et al., 2007) examined the inci-
dence of thyroid cancers among people who were 
infected with HCV. A non-significant increased 
risk was found based on five thyroid cancer cases 
in the Swedish cohort (SIR, 1.55; 95%CI: 0.50–
3.6); whereas a significant decreased risk was 
reported based on nine cases in the Australian 
cohort (SIR, 0.3; 95%CI: 0.2–0.7), and 46 cases 
in the US cohort (HR, 0.72; 95%CI: 0.52–0.99). 
A case–control study of a group of cancers in 
Italy (Montella et al., 2001a) observed a signifi-
cant association between HCV infection and this 
malignancy (OR, 2.8; 95%CI: 1.2–6.3).

3. Cancer in Experimental Animals

In this Volume, the Working Group decided 
not to include a separate section on “Cancer in 
Experimental Animals” in the Monographs on 
viruses but rather to include description of such 
studies under Section 4 (below). The reasoning 
for this decision is explained in the General 
Remarks.

4. Other Relevant Data

The sharp increase of HCC cases over the 
last several decades in industrialized countries 
(western Europe, North America, and Japan) has 
been attributed to an expansion of chronic HCV 
infections, and is frequently linked with liver 
cirrhosis. Most cohort studies and clinical expe-
rience have shown that liver fibrosis resulting 
from long-lasting chronic inflammation is likely 
to be an important predisposing factor of HCC 
development. The same clinical observations also 
suggest that ongoing liver regeneration resulting 
from chronic immune mediated hepatocyte 

149

http://monographs.iarc.fr/ENG/Monographs/vol100B/100B-03-Table2.8.pdf
http://monographs.iarc.fr/ENG/Monographs/vol100B/100B-03-Table2.8.pdf
http://monographs.iarc.fr/ENG/Monographs/vol100B/100B-03-Table2.8.pdf


IARC MONOGRAPHS – 100B

death is a likely factor contributing to the devel-
opment of HCC (Liang & Heller, 2004). This 
aspect has been developed in the Monograph on 
HBV in this volume.

But the mechanisms underlying the progres-
sion of HCV infection to liver cancer, which 
often takes many decades, remain ill-defined. 
Transcriptomics and proteomics have helped to 
identify many genetic and epigenetic alterations 
associated with HCC clusters. However, the iden-
tified changes to gene expression patterns are 
very heterogeneous in tumour cells, raising the 
question as to whether yet unidentified, specific 
changes at early, preneoplastic stages trigger 
the transformation process, and what cell type 
could be at the origin of HCC (Sell & Leffert, 
2008). HCV has an exclusively cytoplasmic 
life cycle (Lindenbach et al., 2007; Moradpour 
et al., 2007), and therefore, HCV replication and 
potentially pro-oncogenic events are restricted 
to the cytoplasm. While HCV infection leads 
to chronic inflammation, steatosis, fibrosis and 
oxidative chromosomal DNA damage, several 
HCV proteins have been shown to have direct 
oncogenic effects, and to upregulate mitogenic 
processes (Koike, 2007; McGivern & Lemon, 
2009). The accumulation of DNA damage within 
a setting of restricted cell-cycle checkpoint 
controls is thought to compromise gene and 
chromosome stability, and to form the genomic 
basis for the malignant phenotype.

One of the major challenges with the study 
of the carcinogenic role of HCV is the difficulty 
to localize the HCV genome and viral proteins 
in both the liver of infected patients and liver 
tumours.

4.1 Biochemical properties of HCV 
proteins 

See Table 4.1.

4.1.1 The structural proteins

(a) Core protein

The core protein is the most conserved 
among the structural proteins. It is highly basic, 
rich in proline, and multimerizes. Interaction 
of the mature core with the 5′ and 3′ NCRs can, 
respectively, inhibit IRES function, and mediate 
genome dimerization (Shimoike et al., 1999; 
Cristofari et al., 2004). The core protein is targeted 
to the cytoplasmic surface of the endoplasmic 
reticulum and lipid droplets (Moradpour et al., 
1996; Barba et al., 1997). Its interaction with lipid 
droplets may be related to the increased inci-
dence of liver steatosis in patients with HCV, and 
in certain transgenic mice that overexpress HCV 
core (Moriya et al., 1997a; Barbaro et al., 1999). 
It has also been shown that core can localize to 
mitochondrial outer membranes (Schwer et al., 
2004).

(b) HCV glycoproteins

The HCV glycoproteins, E1 (30 kDa) and E2 
(70 kDa), are type I transmembrane glycopro-
teins that associate into non-covalently attached 
heterodimers, and mediate HCV cell entry and 
membrane fusion (Bartosch & Cosset, 2006; 
Lavillette et al., 2006; Lindenbach et al., 2007).

4.1.2 The non-structural proteins

(a) p7

p7 is a small 7 kDa hydrophobic protein 
predicted to span the membrane twice, with 
endoplasmic-reticulum-lumenal N- and 
C-terminals and a short, positively charged cyto-
plasmic loop. The localization of p7 is not yet 
clear, but overexpression of an epitope-tagged p7 
has been localized to the endoplasmic reticulum 
and mitochondria (Griffin et al., 2005). The p7 
protein is essential for virus assembly and release 
in vitro (Steinmann et al., 2007), and infectivity 
in vivo (Sakai et al., 2003).
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(b) NS2

NS2 is a 23 kDa membrane-spanning protein 
with a C-terminal cysteine protease activity that 
cleaves the NS2/3 junction (Grakoui et al., 1993; 
Lorenz et al., 2006). NS2 is furthermore required 
for viral assembly. Its N-terminal domain may 
interact with the structural proteins and p7, 
whereas downstream sequences may interact 
with other NS proteins (Lindenbach et al., 2007; 
Jirasko et al., 2008).

(c) NS3

HCV NS3 is a 70 kDa multifunctional protein, 
containing an N-terminal serine protease 
domain and a C-terminal RNA helicase/NTPase 
domain that unwinds double-stranded nucleic 

acids (Lindenbach et al., 2007). Although the 
precise role of the NS3 helicase is not yet known, 
helicase activity has been shown to be essential 
for HCV RNA replication and viral infectivity 
(Lam & Frick, 2006).

(d) NS4A

NS4A is an 8 kDa protein with multiple func-
tions in the virus life cycle. It is a cofactor that 
assists in the correct folding of the serine protease, 
and facilitates recognition of RNA substrates by 
the NS3 protease/helicase (Pang et al., 2002). 
NS4A can physically interact with NS4B and 
NS5A and uncleaved NS4B-5A to promote NS5A 
hyperphosphorylation (Lindenbach et al., 2007; 
and references therein).
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Table 4.1 HCV proteins, their role in the viral life cycle, and putative role in hepatocyte 
transformation

HCV proteins Role in viral life cycle Potential role in cellular transformation (examples)

Core protein Nucleocapsid assembly Insulin resistance/steatosis
Interference (direct or indirect) with p53, p73, pRb
Interference with host cell signalling (NF-κB, Wnt/β-
catenin pathway)
Interference with TGF-β signalling
Transcriptional activation of cellular genes
Apoptosis

E1/E2 glycoprotein Virus morphogenesis Interference with the interferon-inducible protein 
kinase (PKR) activity

Cell entry
p7 Virus assembly, export and infectivity
NS2 Polyprotein processing and Viral assembly Inhibition of apoptosis
NS3 N-terminal domain Serine protease activity Interference with hepatocyte innate response
NS3 C-terminal domain Helicase activity

HCV genome replication
NS4A Co-factor of NS4B and NS5A Induction of ER stress
NS4B Formation of membranous web structures
NS5A Part of the replication complex Inhibition of the interferon-inducible PKR

Oxydative stress
Activation of cell signalling pathways (STAT-3, NF-κB 
etc)
Accumulation of β-catenin by indirect mechanism

NS5B RNA-dependent RNA polymerase
ER, endoplasmic reticulum; PKR, double-stranded RNA-activated protein kinase
Compiled by the Working Group
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(e) NS4B

NS4B is a 27 kDa integral membrane protein 
containing four central transmembrane domains 
with yet unclear topology. Its expression is suffi-
cient to induce the formation of ‘membraneous 
web’ structures that contain the membrane-
bound replication complex (Egger et al., 2002; 
Gosert et al., 2003), and it encodes a GTPase 
activity that seems to be critical for RNA repli-
cation (Einav et al., 2004).

(f) NS5A

NS5A is a 58 kDa phosphoprotein with an 
important yet unclear role in RNA replication 
(Shimakami et al., 2004). It localizes to active 
replication complexes (Gosert et al., 2003; 
Moradpour et al., 2004), interacts with NS5B and 
inhibits its RNA polymerase activity (Shirota 
et al., 2002; Dimitrova et al., 2003).

(g) NS5B

NS5B is a 68 kDa endoplasmic-retic-
ulum-membrane-associated protein with 
RNA-dependent polymerase activity. Mutations 
that interfere with its membrane association 
destroy RNA replication. Intramolecular interac-
tions as well as oligomerization of NS5B stimulate 
RNA synthesis, and the NS3 helicase enhances 
primed RNA synthesis activity in contrast to 
NS4B and NS5A, which inhibit RNA synthesis 
(Lindenbach et al., 2007; and references therein). 
NS5B has been and remains a major target for the 
development of HCV-specific drugs; at the time 
of writing, drug research and development is 
focusing on cellular cofactors of NS5B, the cyclo-
philins. The function of NS5B has been shown to 
be upregulated by cyclophilin B, which in turn is 
regulated, and thus sensitive to the immunosup-
pressant ciclosporin A. Compounds belonging 
to this family are currently investigated for their 
antiviral efficacy (Watashi et al., 2005; Watashi & 
Shimotohno, 2007).

4.2 Biological properties of HCV 
proteins 

See Table 4.1.
[The Working Group noted that besides the 

complex interactions among themselves, the 
viral proteins interact with a significant number 
of host factors and signalling pathways that may 
contribute to the pathological consequences of 
HCV infection. These interactions interfere with 
innate immunity and thus contribute to persis-
tence of infection and inflammation; but they 
have also been described to modulate transcrip-
tion, translation and post-translational events, to 
alter cell signalling, apoptosis, membrane physi-
ology and trafficking. Furthermore, they can 
induce oxidative stress, genomic instability and 
possibly cellular transformation.

Many studies of the potential role of viral 
proteins in hepatocyte transformation have been 
performed in experimental models that are based 
on the overexpression of viral proteins after tran-
sient transfection of already transformed hepat-
ocytes (such as HepG2 or Huh7 cells). These 
studies show the interaction of viral proteins 
with cellular partners that may be involved 
in cellular transformation. However, because 
the expression of these viral proteins has been 
difficult to demonstrate in liver tumours, a link 
between these in vitro observations and their in 
vivo relevance in infected humans still needs to 
be established. Because of the lack of relevant 
models for mechanistic studies of HCV-induced 
HCC, the results of the major molecular studies 
have been described below to provide an over-
view of the current hypotheses.]

Of the HCV gene products core, NS3, NS4B 
and NS5A have all been shown to exhibit trans-
formation potential when transiently or stably 
expressed in tissue culture, or in the context of 
transgenic mice carrying the single viral proteins 
or an HCV polyprotein (Sakamuro et al., 1995; 
Ray et al., 1996; Gale et al., 1999; Park et al., 2000). 
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However, many of the data below need to be 
substantiated in the context of a viral infection.

4.2.1 The structural proteins

(a) Core protein

Core has been implied in changes of host cell 
signalling, transcriptional activation, apoptosis, 
lipid metabolism, and transformation. Among 
an impressive list of interactions with cellular 
factors, core has been shown to physically and 
functionally interact with p53 (Ray et al., 1997; 
Lu et al., 1999), and p73 (Alisi et al., 2003), and 
to decrease the expression of pRb (Cho et al., 
2001) tumour-suppressor proteins. For instance, 
it was shown that HCV core co-immunoprecip-
itates with p73 in HepG2 and SAOS-2 cells. This 
interaction results in the nuclear translocation 
of HCV core protein. In addition, the interac-
tion with HCV core protein prevents p73-α-, 
but not p73-β-dependent cell growth arrest in 
a p53-dependent manner. The results suggested 
that HCV core protein may directly influence 
the various p73 functions, thus playing a role in 
HCV pathogenesis (Alisi et al., 2003).

Core also modulates the expression of the 
cyclin-dependent kinase (CDK) inhibitor p21/
Waf in a p53-independent manner (Kwun & 
Jang, 2003). p21, a well known transcriptional 
target of p53, blocks activities of cyclin/CDK 
complexes involved in cell-cycle control and 
tumour formation.

Core induces activation of the Raf1/mitogen-
activated protein kinase (MAPK) pathway (Aoki 
et al., 2000; Hayashi et al., 2000), relieves cells 
from serum starvation and growth arrest, and 
favours cell proliferation.

Conflicting reports have shown both activa-
tion (Ray et al., 2002) and repression (Joo et al., 
2005) of the NF-κB pathways by HCV core.

HCV core has been shown to activate the 
Wnt/β-catenin pathway, which is implicated in 
cell proliferation, DNA synthesis, and cell-cycle 
progression (Fukutomi et al., 2005).

Furthermore, core variants isolated from 
liver tumours, but not those isolated from adja-
cent non-tumourous liver, have been shown 
to interact with Smad3 and inhibit the TGF-β 
pathway (Pavio et al., 2005). TGF-β-signalling 
not only controls cell proliferation, differentiation 
and apoptosis but also stimulates liver regenera-
tion and fibrogenesis through its actions on the 
extracellular matrix. TGF-β levels are frequently 
increased in chronic HCV patients and correlate 
with the degree of fibrosis (Nelson et al., 1997; 
Marcellin et al., 2002).

Finally, HCV core protein associates with 
cellular membranes (Barba et al., 1997; Moriya 
et al., 1997a) and lipid vesicles (Moriya et al., 
1997a), binds to apolipoprotein II, and reduces 
microsomal triglyceride transfer protein (MTP) 
activity (Perlemuter et al., 2002), leading to defects 
in the assembly and secretion of vLDL and stea-
tosis, which in turn induces oxidative stress. The 
in vivo relevance of this interaction is supported 
by the development of steatosis (Moriya et al., 
1997b; Perlemuter et al., 2002) and liver cancer 
(Moriya et al., 2001; Lerat et al., 2002) in trans-
genic mice expressing HCV core.

(b) E2

Overexpression of E2 inhibits eIF2α phos-
phorylation by the dsRNA-activated protein 
kinase (PKR) or the endoplasmic-reticulum-
stress signalling kinase PERK. E2 also physically 
interacts with PKR; the E2/PKR interaction may 
account for the intrinsic interferon’s resistance of 
HCV genotypes 1a and 1b (Taylor et al., 1999; 
Pavio et al., 2003).

4.2.2 The non-structural proteins

(a) NS4A, NS4B or NS4A-4B

Overexpression of NS4A, NS4B, or NS4A-4B 
has been reported to induce an endoplasmic- 
reticulum- stress-mediated unfolded protein 
response, reduce endoplasmic-reticulum-to-
Golgi traffic, inhibit protein synthesis, and to 
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cause cytopathic effects (Lindenbach et al., 2007; 
and references therein).

(b) NS2

NS2 interacts with the cellular proapoptotic 
molecule CIDE-B and inhibits CIDE-B-induced 
apoptosis (Erdtmann et al., 2003). NS2 has also 
been shown to downregulate the transcription 
of several cellular and viral promoters in gene-
reporter assays (Dumoulin et al., 2003).

(c) NS3-4A

NS3-4A serine protease has been reported to 
block the activation of the transcription factors 
IRF-3 and NF-κB, and to antagonize innate anti-
viral defenses by interfering with the cytosolic 
RNA helicases, RIG-1- and MDA5-, and TLR3-
mediated signal transduction (Lindenbach et al., 
2007).

(d) NS5A

NS5A has multiple functions. It has been 
shown to interact with the geranylgeranylated 
cellular protein FBL2 (Wang et al., 2005), an 
F-box-motif-containing protein that is likely 
to be involved in targeting cellular proteins of 
yet unknown identity for ubiquitylation and 
degradation.

Several studies suggest that NS5A is also 
involved in the resistance to interferon treatment 
(Lindenbach et al., 2007; and references therein), 
and one possible mechanism may be its ability 
to induce expression of the type I interferon 
antagonist IL-8 (Polyak et al., 2001). In addition, 
NS5A contains an ‘interferon sensitivity deter-
mining region’ (ISDR) that mediates inhibition 
of PKR, an activator of innate immunity; accu-
mulation of mutations in this region is thought 
to correlate with treatment efficacy (Enomoto 
et al., 1995, 1996).

Overexpression of NS5A has been reported to 
induce several effects in cells, including oxida-
tive stress; activation of signalling pathways, 

including STAT-3, PI3K, and NF-κB (Gong 
et al., 2001; He et al., 2002; Street et al., 2004); 
and degradation of pRB (Munakata et al., 2005).

Other reported NS5A interaction partners 
include apolipoprotein A1, the major protein 
found on High Density Lipoprotein (HDL); 
the tumour suppressor, p53; Grb-2, an adaptor 
protein involved in mitogen signalling; SRCAP, 
an adenosine triphosphatase (ATPase) that acti-
vates cellular transcription; karyopherin β3, a 
protein involved in nuclear trafficking; Cdk1/2, 
cyclin-dependent and Fyn, Hck, Lck, and Lyn, 
Src-family kinases (Lindenbach et al., 2007; and 
references therein).

More recently, it has been reported that NS5A-
expression in the context of HCV polyprotein 
results in the inhibition of the transcription factor 
Forkhead as well as in the phosphorylation and 
inactivation of the GSK-3, leading to the accu-
mulation of β-catenin and to the stimulation of 
β-catenin-dependent transcription (Street et al., 
2005).

[The Working Group noted that, so far, 
the biological functions of the HCV proteins 
have been investigated in vitro or in vivo using 
transgenic mice constitutively expressing HCV 
proteins alone, in combination, or the entire 
polyprotein. Whether the results generated by 
these experimental approaches reflect the patho-
logical consequences of an HCV infection in vivo 
remains to be addressed, and this issue will only 
be resolved with the establishment of immuno-
competent mouse models or other more physi-
ological cellular models that permit chronic and 
productive HCV replication.]
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4.3 Experimental evidence for a role 
of HCV in malignant conversion

4.3.1 Role of HCV chronic infection in HCC 
development

Successful clearance of chronic HCV infec-
tion has been shown to reduce the overall liver-
related mortality and the incidence of HCC 
providing further evidence for a causal role of 
HCV in this cancer (Kasahara et al., 1998; Serfaty 
et al., 1998; Imazeki et al., 2003b).

Although chronic HCV infection is one 
major risk factor for HCC, the mechanisms 
by which HCV induces HCC remain uncer-
tain (Levrero, 2006; McGivern & Lemon, 
2009). Chronic endoplasmic reticulum stress 
and inflammatory responses and the associ-
ated oxidative stress and altered intracellular 
redox state lead to the accumulation of genomic 
damage. These are likely to contribute to and 
predispose infected cells to hepatocarcinogen-
esis, possibly via changes in MAPK signalling, 
that regulates both cell metabolism and growth 
(Tardif et al., 2002; Waris et al., 2007). Markers 
of intracellular oxidative stress have indeed been 
reported to be increased in chronic HCV patients 
(Shimoda et al., 1994; Sumida et al., 2000) as well 
as in HCV core transgenic mice (Moriya et al., 
1998; Moriya et al., 2001). However, in addition, 
direct interactions of the various HCV proteins 
with host factors correlate with changes in 
cellular signalling cascades that are involved in 
the regulation of cell metabolism and division. 
The expression of some HCV proteins seem to be 
sufficient to induce hepatocarcinogenesis, at least 
in some specific transgenic mice lineages such as 
transgenic C57BL/6 mice (Lerat et al., 2002); liver 
tumour development was shown to be associated 
with HCV-induced liver steatosis (Lerat et al., 
2002; Moriya et al., 1998).

Overall, because of the lack of an experimental 
model that replicates the viral life cycle and 
natural history of the disease, the current view is 

that synergistic effects between the consequences 
of chronic inflammation and direct virus–host 
cell interactions are most likely. Such synergistic 
effects would also explain the long ‘multistep’ 
transformation process in human HCC, which 
is consistent with the long time lag with which 
cirrhosis and HCC manifest themselves upon 
chronic infection, and would explain the wide 
variety of genetic defects observed in individual 
HCCs (Thorgeirsson & Grisham, 2002; Levrero, 
2006; McGivern & Lemon, 2009).

Prospective and retrospective cohort studies 
of patients with chronic HCV infection have 
demonstrated a role for the long duration of 
the disease in HCC development, and the link 
between HCC development and liver cirrhosis. 
These studies showed the sequential occurrence 
of advanced liver fibrosis followed by the devel-
opment of HCC. The incidence of HCC devel-
opment was estimated to be between 3–5%/year 
in cirrhotic patients (Tsukuma et al., 1993; Tong 
et al., 1995; Fattovich et al., 1997).

4.3.2 Role of HCV-induced steatosis, insulin 
resistance, and oxidative stress in HCC 
development

Pro-carcinogenic cofactors in chronic HCV 
infection are steatosis, oxidative stress and 
insulin resistance, suggesting many parallels 
with non-alcoholic fatty liver disease (NAFLD). 
In NAFLD, chronic excess of nutrients causes 
endoplasmic reticulum stress, and leads to an 
increase of hepatic fat (steatosis) and insulin 
resistance; a complex interplay between these 
factors can lead to chronic liver inflammation, 
apoptosis and fibrogenesis, which are thought 
to form the prelude to liver cirrhosis and cancer 
(Hotamisligil, 2006).

An increased prevalence of steatosis and 
insulin resistance in HCV patients is well estab-
lished and has prognostic implications, as it is 
associated with faster progression of fibrosis and 
a poorer response to treatment. In HCV patients 
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infected with genotypes 1 and 2, steatosis 
presents in general with concomitant obesity or 
other features of the metabolic syndrome, but 
this association is weak in genotype 3 patients. 
Genotype 3 is thought to induce steatosis in a 
direct fashion, as steatosis in these patients corre-
lates with viral load, and reverses with response 
to treatment (Negro, 2006). HCV is thought 
to induce steatosis by impairing secretion and 
degradation, and increasing the neosynthesis 
of lipids. The HCV core protein, which localizes 
to the surface of lipid droplets and mediates the 
viral assembly in close conjunction with cellular 
fatty acid metabolism (Miyanari et al., 2007), and 
also some HCV non-structural proteins, have 
all been shown to interfere with vLDL secretion 
(Wetterau et al., 1997; Domitrovich et al., 2005). 
HCV infection has also been associated with an 
upregulation of the neosynthesis of lipids (Waris 
et al., 2007), inhibition of fatty acid oxidation 
(Dharancy et al., 2005), and increased release of 
fatty acids from fat cells (Negro, 2006). Overall, 
the effects of HCV proteins on lipid synthesis, 
secretion and oxidation seem to be most potent 
in the context of genotype 3, but also occur in the 
context of other genotypes.

The development of severe steatosis and HCC 
was shown in PPARalpha-homozygous mice with 
liver-specific transgenic expression of the core 
protein gene, while tumours were not observed 
in the other transgenic mouse genotypes. This 
result suggested that persistent activation of 
PPARalpha, a central regulator of triglyceride 
homeostasis, is essential for the pathogenesis 
of hepatic steatosis, and HCC induced by HCV 
infection (Tanaka et al., 2008).

Besides changes in the lipid metabolism, core 
and several of the non-structural HCV proteins 
induce systemic oxidative stress and related 
signalling by various mechanisms (Tardif et al., 
2005).

With respect to insulin resistance, all HCV 
genotypes have been shown to interfere with 
glucose homeostasis, often at early stages of 

infection (Negro, 2006), but the underlying 
mechanisms and the degree of insulin resistance 
seem to be again genotype-dependent. HCV has 
been shown to interfere with insulin signalling by 
proteasomal degradation of the insulin receptor 
substrates, (IRS)-1 and −2 (Aytug et al., 2003).

The feedback circle between steatosis, insulin 
resistance and oxidative stress is an important 
denominator for disease progression in NAFLD as 
well as viral hepatitis, and induces tissue damage 
and inflammation and consequently, activation 
of hepatic stellate cells (HSCs). Activated HSCs 
become responsive to both proliferative and 
fibrogenic cytokines, and undergo epithelial-to-
mesenchymal transdifferentiation (EMT) into 
contractile myofibroblast-like cells, that synthe-
size extracellular matrix (ECM) components, 
which accumulate over time to form fibrous 
scars, or ‘fibrosis’. Ultimately, nodules of regener-
ating hepatocytes become enclosed by scar tissue, 
which defines cirrhosis. Activation of HSCs is 
regulated by products and effectors of oxidative 
stress and growth factors, cytokines, adipokines, 
and chemokines. The cytokine TGF-β, a potent 
inhibitor of epithelial cell growth and tumour 
suppressor, can also exert pro-oncogenic func-
tions, and is a key regulator of EMT. Importantly, 
recent findings imply that TGF-β induces EMT 
not only in HSCs but possibly also in hepato-
cytes (Matsuzaki et al., 2007). TGF-β signalling 
is upregulated in fibrotic HCV patients, and 
stimulates ECM deposition and accumulation. 
Insulin resistance may link fibrosis and steatosis, 
as it stimulates HSCs to deposit ECM. Several 
signalling cascades are implicated and modu-
lated during fibrogenesis, including SMADs, 
PI3K-Akt and various MAPK pathways, such 
as p38 and JNK. While SMADS are indispen-
sable for the EMT process, TGF-β signalling 
via SMAD synergizes with other signalling 
pathways to mediate pro-oncogenic EMTs. JNK 
activation by the pro-inflammatory cytokine 
interleukin-1β can shift TGF-β signalling away 
from a tumour-suppressive to a pro-oncogenic 
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profile with augmented fibrogenesis, increased 
cell motility, and transactivation of cell cycle 
regulatory genes (Matsuzaki et al., 2007). 
Thus, in the context of chronic inflammation, 
the interplay between endoplasmic reticulum/
oxidative stress, steatosis and insulin resistance 
induces a pro-oncogenic microenvironment that 
drives fibrogenic processes and genomic insta-
bility; and even though HCV has been reported 
to display direct transforming capacities, the 
liver microenvironment is thought to determine 
significantly the transformation process because 
HCC develops in chronic HCV infection only 
over long periods of time.

So far, it has not been possible to correlate 
hepatocarcinogenesis with a consistent pattern 
of proto-oncogene activation, but several growth 
factor signalling axes are frequently found to be 
dysregulated, including insulin-growth factor 
(IGF), hepatocyte growth factor, Wnt, TGF-α/
EGF and TGF-β signalling (Breuhahn et al., 
2006; Levrero, 2006). The interplay between 
these various pathways and their respective roles 
and contributions to the development of HCC 
remain to be unravelled.

4.3.3 Role of HCV in lymphomas and other 
tumours

The mechanisms by which lymphoma is 
induced by HCV remains the subject of debate. 
Several clinical studies have shown that the HCV 
genome may be detected in peripheral lymphoid 
cells as well as dendritic cells (Bain et al., 2001). 
However, evidence of true viral genome replica-
tion in extrahepatic sites is still lacking.

Some early studies showed that HCV may 
infect cultured peripheral blood mononuclear 
cells in vitro (Shimizu et al., 1998), but these 
observations were not confirmed by other groups.

Few studies showed that the HCV genome 
sequence from extrahepatic isolates may 
cluster differently from liver isolates providing 

indirect evidence for viral replication in these 
cells (Roque-Afonso et al., 2005).

Clinical studies have shown that HCV eradi-
cation by pegylated interferon and ribavirin 
treatment may lead to the cure of cryoglobu-
linemia, a B-cell proliferation disorder, and to the 
regression of HCV-associated splenic lymphoma 
(Hermine et al., 2002).

Several non-exclusive hypotheses have been 
discussed regarding the transforming role of 
HCV in the context of lymphoma: 1) antigen-
driven proliferation induced by continuous 
activation of B cells (Suarez et al., 2006); 2) a 
direct role of HCV replication and expression in 
infected B cells.

Further molecular and cellular biology 
studies are warranted to decipher the mecha-
nisms of HCV-induced lymphomas.

Regarding the role of HCV in the development 
of cholangiocarcinoma, both clinical evidence 
and strong experimental data are lacking.

4.4 Interaction between HCV and 
environmental agents

Regarding interactions between HBV and 
HCV please refer to the Monograph on HBV in 
this volume.

4.5 Animal models for HCV-
associated cancers

Chimpanzees and tree shrews do not, or only 
partially, develop HCV-associated pathologies 
upon infection. And given the long delay with 
which HCC develops in chronic hepatitis, these 
models are unsuitable to study HCV-induced 
HCC in the first place. In the absence of animal 
models that develop HCC in the context of an 
HCV infection, various groups have described 
the use of mouse models. Mice expressing 
HCV replicons, polyproteins or the single HCV 
proteins alone or in combination, using various 
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liver specific promoters, have been described 
by many groups (Levrero, 2006; McGivern & 
Lemon, 2009).

To date, studies using transgenic animals 
expressing HCV cDNA suggest that HCV proteins 
are not directly cytopathic (Kawamura et al., 
1997; Pasquinelli et al., 1997; Wakita et al., 1998). 
Only three different HCV core transgenic lines 
have been shown to develop liver steatosis and 
HCC (Moriya et al., 1998, 2001), and one group 
has been able to demonstrate that upon HCV 
polyprotein expression, the rate of liver cancer in 
transgenic mice increases in the absence of intra-
hepatic inflammation, suggesting a metabolic or 
genetic host susceptibility for HCV-associated 
HCC (Lerat et al., 2002).

NS5A transgenic mice, despite the abundant 
interactions of NS5A with host-cell factors, do 
not have any significant phenotype (Majumder 
et al., 2002, 2003).

4.6 HCV, host immune system, and 
genetic susceptibility

While many studies have been reported 
regarding the role of the humoral and cellular 
responses in the control of HCV infection, as 
well as micro-array analysis of primary liver 
tumours showing differential expression of many 
cellular genes in the tumours, no relevant data 
are available at the time of writing concerning 
specific immune or genetic mechanism involved 
in HCV-induced HCC.

4.7 Synthesis

Although there is strong evidence that HCV 
is one of the leading causes of HCC, there is 
still much to understand regarding the mecha-
nism of HCV-induced transformation. While 
liver fibrosis resulting from long-lasting chronic 
inflammation and liver regeneration resulting 
from immune-mediated cell death are likely 

factors contributing to the development of HCC, 
the direct role of HCV proteins remains to be 
determined. Many in vitro studies have shown 
that HCV expression may interfere with cellular 
functions that are important for cell differentia-
tion and cell growth. However, most studies were 
performed in artificial study models which can 
only give clues for potential mechanisms that 
need to be confirmed in more relevant models. 
Furthermore, the difficulty to localize HCV 
proteins as well as infected cells in vivo in the liver 
of infected patients contribute to the complexity 
of our current understanding.

For all these reasons, at the time of writing, 
the current view is that there is moderate experi-
mental evidence for a direct oncogenic role of 
HCV. Further studies are warranted to clarify 
these issues.

5. Evaluation

There is sufficient evidence in humans for the 
carcinogenicity of chronic infection with HCV. 
Chronic infection with HCV causes hepatocel-
lular carcinoma and non-Hodgkin lymphoma. 
Also, a positive association has been observed 
between chronic infection with HCV and 
cholangiocarcinoma.

Chronic infection with HCV is carcinogenic 
to humans (Group 1).
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