The International Agency for Research on Cancer (IARC) was established in 1965 by the World Health Assembly, as an independently financed organization within the framework of the World Health Organization. The headquarters of the Agency are in Lyon, France.

The Agency conducts a programme of research concentrating particularly on the epidemiology of cancer and the study of potential carcinogens in the human environment. Its field studies are supplemented by biological and chemical research carried out in the Agency's laboratories in Lyon and, through collaborative research agreements, in national research institutions in many countries. The Agency also conducts a programme for the education and training of personnel for cancer research.

The publications of the Agency contribute to the dissemination of authoritative information on different aspects of cancer research. Information about IARC publications, and how to order them, is available via the Internet at: http://www.iarc.fr/

This publication represents the views and opinions of an IARC Working Group on the Evaluation of Cancer Preventive Strategies which met in Lyon, France, 18–24 November 2003

From left to right:
Front: T. Byers; A. Nishikawa; M. Manson; A. Seow; S. Hecht, L. Dragsted; G. Stoner
Middle: A. Agudo, L. Bradlow; Y. Zhang; F.L. Chung; E. Taioli; J. Thornalley, I. Johnson
Back: O. Vang, F. Kassie; H. Schut, G. Bailey; J. Hayes, S. Loft, R. Mithen, A. Miller
Note to the Reader

Anyone who is aware of published data that may influence any consideration in these Handbooks is encouraged to make the information available to the Unit of Chemoprevention, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France

Although all efforts are made to prepare the Handbooks as accurately as possible, mistakes may occur. Readers are requested to communicate any errors to the Unit of Chemoprevention, so that corrections can be reported in future volumes.

Acknowledgements

We would like to acknowledge generous support from the Foundation for Promotion of Cancer Research, Japan (the 2nd Term Comprehensive 10-Year Strategy for Cancer Control), and from the World Cancer Research Fund, London, United Kingdom (WCRF Grant 2001/45).
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of participants</td>
<td>ix</td>
</tr>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>1. Cruciferous vegetables</td>
<td></td>
</tr>
<tr>
<td>Botanical classification</td>
<td>1</td>
</tr>
<tr>
<td>Estimated intake by region and country</td>
<td>2</td>
</tr>
<tr>
<td>Production</td>
<td>8</td>
</tr>
<tr>
<td>2. Glucosinolates, isothiocyanates and indoles</td>
<td></td>
</tr>
<tr>
<td>Major dietary sources of specific isothiocyanates and indoles</td>
<td>13</td>
</tr>
<tr>
<td>Biochemical genetics of glucosinolate biosynthesis</td>
<td>17</td>
</tr>
<tr>
<td>Factors that affect glucosinolate concentrations</td>
<td>21</td>
</tr>
<tr>
<td>Estimates of dietary intake of isothiocyanates and indoles</td>
<td>22</td>
</tr>
<tr>
<td>3. Metabolism, kinetics and genetic variation</td>
<td></td>
</tr>
<tr>
<td>Observations in humans</td>
<td>25</td>
</tr>
<tr>
<td>Experimental studies</td>
<td>30</td>
</tr>
<tr>
<td>4. Cancer preventive effects</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>43</td>
</tr>
<tr>
<td>Experimental studies</td>
<td>99</td>
</tr>
<tr>
<td>In-vitro studies</td>
<td>147</td>
</tr>
<tr>
<td>Mechanisms of cancer preventive effects</td>
<td>171</td>
</tr>
<tr>
<td>5. Other beneficial effects of cruciferous vegetables, isothiocyanates and indoles</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>177</td>
</tr>
<tr>
<td>Cataract</td>
<td>177</td>
</tr>
<tr>
<td>Anti-bacterial activity</td>
<td>177</td>
</tr>
<tr>
<td>6. Carcinogenicity</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>181</td>
</tr>
<tr>
<td>Experimental studies</td>
<td>181</td>
</tr>
<tr>
<td>7. Toxic effects</td>
<td></td>
</tr>
<tr>
<td>Adverse effects</td>
<td>191</td>
</tr>
<tr>
<td>Cytotoxicity, genotoxicity and mutagenic and related effects</td>
<td>198</td>
</tr>
<tr>
<td>8. Summary</td>
<td></td>
</tr>
<tr>
<td>Cruciferous vegetables</td>
<td>205</td>
</tr>
<tr>
<td>Glucosinolates, isothiocyanates and indoles</td>
<td>205</td>
</tr>
<tr>
<td>Metabolism, kinetics and genetic variation</td>
<td>206</td>
</tr>
<tr>
<td>Cancer preventive effects</td>
<td>206</td>
</tr>
<tr>
<td>Other beneficial effects</td>
<td>210</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>210</td>
</tr>
<tr>
<td>Toxic effects</td>
<td>211</td>
</tr>
<tr>
<td>9. Evaluation</td>
<td></td>
</tr>
<tr>
<td>Humans</td>
<td>213</td>
</tr>
<tr>
<td>Experimental animals</td>
<td>213</td>
</tr>
<tr>
<td>Overall evaluation</td>
<td>213</td>
</tr>
<tr>
<td>10. Recommendations</td>
<td></td>
</tr>
<tr>
<td>Research recommendations</td>
<td>215</td>
</tr>
<tr>
<td>Public health recommendations</td>
<td>216</td>
</tr>
<tr>
<td>References</td>
<td>217</td>
</tr>
<tr>
<td>Appendix</td>
<td>247</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>253</td>
</tr>
<tr>
<td>Working procedures</td>
<td>255</td>
</tr>
</tbody>
</table>
List of participants

A. Agudo
Department of Epidemiology
Catalan Institute of Oncology
Av. Gran Via s/n km 2.7
08907 L'Hospitalet de Llobregat
Spain

G.S. Bailey
MFBS Center
Department of Environment and
Molecular Toxicology
Oregon State University
435 Weniger Hall
Corvallis, OR 97331
USA

H.L. Bradlow
David and Alice Jurist Institute for
Research
Hackensack University Medical
Center
30 Prospect Avenue
Hackensack, NJ 07601
USA

T. Byers (Chairman)
Department of Preventive Medicine &
Biometrics
University of Colorado School of
Medicine
Box C245
4200 East Ninth Avenue
Denver CO 80262
USA

F.-L. Chung
Division of Carcinogenesis &
Molecular Epidemiology
Institute for Cancer Prevention
American Health Foundation
Valhalla, NY 10595
USA

L.O. Dragsted
Institute of Food Safety and Nutrition
Danish Veterinary & Food
Administration
19 Morkjoj Bygade
2860 Seborg
Denmark

J. Hayes
University of Dundee
Biomedical Research Centre Level 5
Ninewells Hospital & Medical School
Dundee DD1 9SY
Scotland
United Kingdom

S.S. Hecht
University of Minnesota Cancer
Center
Mayo Mail Code 806
420 Delaware St, SE
Minneapolis, MN 55455
USA

I.T. Johnson
Institute of Food Research
Norwich Research Park
Colney
Norwich NR4 7UA
England
United Kingdom

F. Kassie
Institute of Indoor & Environmental
Toxicology
University of Giessen
Aulweg 123
35385 Giessen
Germany

S. Loft
The Panum Institute of Public Health
University of Copenhagen
Blegdamsvej 3
2200 Copenhagen N
Denmark

M.M. Manson
Cancer Biomarkers and Prevention
Group
Biocentre
University of Leicester
University Road
Leicester LE1 7RH
England
United Kingdom

A.B. Miller
Department of Public Health
Sciences
University of Toronto
Box 992
Niagara on the Lake
Ontario LOS 1JO
Canada

R. Mithen
Institute of Food Research
Norwich Research Park
Colney
Norwich NR4 7UA
England
United Kingdom

A. Nishikawa
National Institute of Health Sciences
Division of Pathology
1-18-1 Kamiyoga
Setagaya-ku
Tokyo 158-8501
Japan
Preface

Why a Handbook on cruciferous vegetables, isothiocyanates and indoles

Nutritional epidemiology provides the only direct approach to the assessment of the health effects of the human diet. During the past 10 years, various study designs and sophisticated methods have been used to establish relationships between dietary habits and risks for noncommunicable diseases, including cancer. In the light of reports that fruit and vegetables are important dietary components for reducing the risks for various cancers, IARC considered it important to evaluate the current evidence on the health effects of a diet rich in fruit and vegetables.

Volume 8 of the IARC Handbooks of Cancer Prevention confirmed that a high consumption of fruit and vegetables is associated with lower risks for cancer at several sites. More specifically, the final evaluation stated that consumption of fruit probably lowers the risks for cancers of the oesophagus, stomach and lung, while consumption of vegetables probably lowers the risks for cancers of the oesophagus and colorectum. Various fruit and vegetables have been investigated separately, to identify the most effective cancer preventing groups and active ingredients. Cruciferous vegetables have been considered good candidates.

Consumption of cruciferous vegetables, such as broccoli, cabbage, cauliflower, watercress and Brussels sprouts, was shown to be associated with decreased risks for cancer in epidemiological studies in the 1980s. These vegetables contain substantial amounts of glucosinolates, which are hydrolysed to isothiocyanates and indoles when normal portions of these raw vegetables are chewed or otherwise macerated. Experimental studies have shown that these compounds inhibit carcinogenesis, and plausible mechanisms of action have been investigated extensively.

This Handbook provides an up-to-date review of knowledge on the efficacy of cruciferous vegetables and naturally occurring isothiocyanates and indoles as chemopreventive agents. Data from human, experimental and mechanistic studies are reviewed. In the epidemiological studies, cancer risk was examined in relation to consumption of cruciferous vegetables, which was assessed either from food frequency questionnaires or by measuring markers of cruciferous vegetable intake. In some recent studies of intake, individuals were stratified on the basis of genetic polymorphisms.

The volume also provides recommendations for future research and public health action.