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CHAPTER 8

ANALYSIS OF AUXILIARY DATA

8.1 Introduction

ln most long-term animal carcinogenicity studies, dat£: are acquired on many
variables other th an neoplastic and non-neoplastic lesions. As noted in Chapter 5, for
example, individual survival times may be of use both in establishing differences in
mortality patterns among the various treatment groups and in adjusting for such
differences in comparisons of tumour occurrence patterns between groups. Other key
variables routinely monitored in long-term studies include body weight and feed
consumption, clinical signs of toxicity, haematological parameters and organ weights
taken at time of necropsy.

Statistical analysis of such auxilary data may be broadly categorized into one of
three general types. A variety of established procedures for the analysis of censored

failure-time data can be used for survival data (Section 8.2). Continuous variables

monitored at a particular point in time, such as terminal organ weights or body weight
at 12 months on test, may be dealt with using analysis of variance procedures (Section

8.3). Variables observed at successive points in time, such as weekly body weight, are
subject to repeated measures or growth-curve analyses (Section 8.4). The remainder of
this chapter provides an overview of statistical techniques available within each of
these three categories.

The analysis of concomitant information is not the main goal of the statistical
analysis of a long-term experiment but assists in interpreting the findings with respect
to carcinogenicity. The particular methods addressing carcinogenicity form the main
part of this book and have been discussed in the preceding chapters. ln this chapter, we
shaH give only a brief introduction to the variety of techniques available to analyse

auxiliary data. It should be made clear that the methods mentioned in this chapter are
generaHy not suitable for the analysis of carcinogenicity.

8.2 Analysis of survval data

It has become apparent throughout this monograph that mortality plays an important
role in evaluating carcinogenicity in long-term animal experiments. Before any
evaluation of the carcinogenic response is undertaken, a thorough examination of the
underlying survival pattern should be performed. This wil identify differential
mortality patterns that can lead to bias in the assessment of the carcinogenic response.

Thus, survival analysis can assist in the choice of appropriate methods to adjust for



AUXILIARY DATA 171

differences in intercurrent mortality. The particular methods for the analysis of survival
data have already been introduced in Chapter 5. ln this section, we give a brief
summary of the se methods, with cross references to the appropriate sections.

The most common approach to the analysis of survival data in a long-term animal
experiment is to estimate the survival curves in each experimental group. These are
then displayed graphicaIly, and statistical tests are performed to find whether there are
significant differences in survival among the experimental groups or whether there is a
significant trend in survival with increasing dose. Methods appropriate to these issues
are outlined and ilustrated in Section 5.3. The impact of different survival patterns on
the assessment of the carcinogenic response is discussed at length in ehapter 2,

specifically in Table 2.2. Methods adjusting for differences in survival in the analysis of
carcinogenicity are discussed in detail in Sections 5.5, 5.6 and 5.7.

If survival as such appears to be an endpoint which merits more detailed analysis, for
example by regression analysis to study the effect of other covariates apart from dose,
the proportion al hazards model introduced in Section 6.3 is the method of choice. This
flexible regression model is a natural extension of the log-rank test for comparing
survival in several groups, given in Section 5.3. Furthermore, the proportional hazards
model allows the investigation of time-dependent covariates. For example, the
influence on an animal's survival of its body weight (if monitored continuously during
the experiment) could be analysed using the proportional hazards modeL. Proportion al
hazards methods are discussed by Kalbfleisch and Prentice (1980, Chapter 5), Miler
(1981b, ehapter 6) and Cox and Oakes (1984, Chapter 8). These authors also provide
a thorough treatment of aIl statistical issues of survival analysis, whereas Lee (1980)
provides a more elementary text.

8.3 Analysis of variance

Consider a simple experiment in which thereare 1 treated groups exposed to doses
di .. . . . .. di and an unexposed control, with dose do = O. The manner in which animaIs
are assigned to various treatment groups and the manner in which the experiment is
conducted wil determine the appropriate analysis for the experiment at hand. As
discussed in Chapter 3, the animaIs should be randomly assigned to each dose in
accordance with the experimental design.

The simplest possible randomization scheme is to assign the available animaIs to the
various treatment groups completely at random. With only one animal housed in each
cage, this leads to the completely randomized design, discussed in Chapter 3. The
familiar randomized block design means that the animais are grouped into a number of
homogeneous blocks prior to randomization (for example, on the basis of initial body
weight or litter status), with animaIs from each block randomly assigned to each
treatment. ln this case, the blocking factor (initial body weight or litter status) must be
taken into account in the analysis of variance. Even with complete randomization, the
conduct of the experiment is important in determining the method of statistical
analysis. With two animais housed in each cage, for example, any cage effects are
'nested' within treatment effects and should be considered in the analysis-of-variance

model employed.
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There are two major categories of statistical methods available for the analysis of
experimental data: parametric methods, which are based on specific assumptions
(usualIy normally distributed data with equal variances in each group), and nonpara-
metric methods, which are not based on such assumptions and often replace the actual
observations by their ranks.
ln describing these methods, we follow closely two main textbooks - one on

parametric methods (Brownlee, 1965) and the other on nonparametric methods

(Hollander & Wolfe, 1973). Many other textbooks also provide a good coverage of
these methods and could be used when studying technical aspects in detaiL. The
introductory nature of this section requires restriction to essential principles, and it
should be borne in mind that the analysis of concomitant information should help in
interpreting the findings of a long-term carcinogenicity study but does not, in general,
play a central role.

Parametric methods

Let Yij denote the response of animal j (j = 1, . . . , ni) at dose i (i = 0, 1, . . . , 1). As
noted earlier, Yij might represent body weight, feed consumption or any other
continuous variable observed at a specified point in time. Let

n.

Yi = ~ Yij/ni
j=l

denote the mean of the ni observations at dose i and
1 ni

Y = ¿ ¿ Yij/n
i=O j=l

denote the mean of the
1

n = ¿ ni
i=O

animaIs in the experiment. The standard analysis-of-variance model for the completely
randomized design is formulated as

Y" = Il + T. + £..l) r l l)'
where lt is a constant, Ti denote the effects of treatment i = 0, . . . , l, with r.f=o Ti = 0,
and £ij are random error terms assumed to be independent, identicalIy-distributed,
normal random variables with a mean 0 and variance of.

The assumption that the £i/S have a normal distribution can be checked using a
normal probabilty plot of residuals (Daniel & Wood, 1971) or using a goodness-of-fit
test (Sokal & Rohlf, 1981, p. 696; Miler, 1986, p. 82). If the design is not badly
unbalanced (Le., if the ni do not vary greatly), th en moderate departures from
normality have very little effect on the nominal significance levels of the analysis of
variance methods presented in this section (Miler, 1986, pp. 80-82). Likewise,

inequality of error vanances has little effect on the analysis of variance tests unless the
design is badly unbalanced (Miler, 1986, pp. 89-92). A preliminary test of homogen-
eity of error variances is not, in general, recommended. Rather, if visual inspection
reveals obvious heterogeneity of error variances, then steps should be taken to try to

(8.1)
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reduce that heterogeneity before applying analysis of variance methods (Miler, 1986,
pp. 92-94).

Failure of the assumptions regarding normality and homogeneity of error variances
could be due to the presence of anomalous values or outliers in the data. If these can
be identified from the residual plots, they can be either corrected or eliminated prior to
analysis of the data. ln sorne cases, heterogeneity of variance can be avoided by using a
suitable transformation of the data. If the variance ar is proportional to the group

mean Yi, for example, the transformation y' = VY wil result in homogeneous error
variances (Brownlee, 1965, p. 145). Generally, the Box-Cox power transformation
(Box & Cox, 1964) can be employed in an attempt to achieve simultaneously both
normality and homogeneity of variance.

ln the usual one-way analysis of variance for the completely randomized design, the
variability among the observed treatment group means is compared to the within-group
variability using a standard F-test (Brownlee, 1965, p. 312). As indicated in Table 8.1,
this involves calculation of a sum of squares, SSD, between the treatment group means
and a pooled within-treatment sum of squares for error, SSE' After dividing by the
degrees of freedom to form the corresponding me an squares MSD and MSE, the ratio
F = MSD/ MSE follows a central F -distribution under the null hypothesis Ho: Ti =
o (i = 0, 1 , . . . , 1).

Table 8.1 Analysis of variance for the completely randomized design

Source
of
variation

Degrees
of
freedom

Sum
of
squares

Mean
square

Expected
mean
square

F
statistic

Error n-/-l

1

SSD = L n¡(y¡ _ y)2
¡=o
J nj _ 2

SSE = L L (Xi -Yi)
¡~o i=1

MSD = SSDI1
f

a2 + L n¡(T¡ - 'f)2 MSDIMSE
¡~o

Dose

MSE = SSEI(n-/-l) 2a

Total n - 1

If the between-group variation is significantly higher than the within-group variation,
th en there is evidence of significant differences between the treatment effects Ti'
However, no indication of what these differences are is provided. For this reason, tests
for trend or multiple comparison procedures, which are described below, can be

informative.
For the following, we denote by

n.

sr = :¿ (Yij - Yi)2/(ni - 1)
j=l

the error mean square for treatment group i = 0, 1, . . . , 1 with E(sf) = af. The pooled
error mean square is then given by

s' ~ í (ni -1)s¡ /í (ni -1).

ln what follows, we assume that ar = a2 for i = 0, 1, . . . . l, so that E(S2) = a2. Note
also that S2 = MSE from Table 8.1.
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Tests for trend

These have already been discussed in the framework of tumour data and survival
(see Chapters 2 and 5) and can also be used with concomitant information.
Monotonicity is represented by formulating the alternative Hi: Ti c: Ti (0 c: i ~ j c: 1),
with at least one strict inequality. Monotone decreasing or two-sided alternatives may
also be specified.

Armitage (1955) proposed a test for linear trend with equalIy spaced doses
(represented here by the group index i) based on the regression model

Y" = a + b . i + E..n n, (8.2)
where a and b are parameters to be estimated. The null hypothesis Ho: b = 0 is rejected
in favour of the alternative Hi: b ? 0 if

~l (' ';)-
L.i=O ni l - L Yi

V~l (' _ ')2:: tlX,n-l-lS,L.i=O ni l l

where l = l.f=o in¡/n, and tlX,n-I-1 denotes the 100(1 - æ) percentile of the t-

distribution with n - 1 - 1 degrees of freedom. This test is identical to the test for
significance of the slope in a linear regression except that S2 is used to estimate a2
rather than the residual mean square error. This is done to eliminate any bias which
would be included in the residual mean square for error if the true dose-response curve
were not linear. Abelson and Tukey (1963) noted that for ni = no (i = 1, . . . ,1), that
is, equal group sizes, Armitage's test is of the form

~l -L.i=O cSi S
V~l 2 :: tlX,n-I-I.. C'L.i=O Ci V n

where l.f=o Ci = O. Although it is impossible to choose the weights Ci to be uniformly
most powerful against aIl possible monotone increasing functions, Abelson and Tukey
suggested the weights

r (' 1)11/2 r ( . )11/2Ci = L Ci - 1) 1 - ~ : 1 J -ii 1 - 1 ~ 1 J .

Although Armitage's procedure wil be more powerful if the dose-response curve is
linear, there exist nonlinear alternatives for which the power of Armitage's test is
smalIer than the power of the Abelson- Tukey test. Extensions of this procedure to the
case of unequal ni are discussed by Barlow et al. (1972) and by Miler (1986, pp.
78-80) .

Pairwise group comparisons

Although tests for trend are usuaIly of greatest relevance and interest, it can
sometimes be informative to carry out certain pairwise group comparisons (for
example, comparing each of the 1 treatment groups to the control).

A test for the difference between any two groups (indexed, say, by h and i) can be
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performed by declaring the difference to be significant if

(1 1)1Ii
IYi - Yhl ? tlX/i,n-i-iS - + - ,

ni nh

where tlX/i,n-l-l denotes the 100(1 - (12) percentile of the t-distribution with n - 1 - 1

degrees of freedom and where a is the nominal significance leveL. This provides a valid
test for the single comparison of group i to group h. However, if several such tests, say
M? 1, are carried out (for example, comparing each treatment group in turn to the
control, for which M = 1), then the overall significance level (that is, the probability of
finding at least one of the M tests significant under Ho: Ti = 0 for aIl i) using the
criterion in (8.3) wil exceed the nominal level a. If, for example, two independent
comparisons are performed with a = 0.05, then the probability of declaring at least one
of the two differences significant un der Ho is 1.0 - (1.0 - 0.05)i = 0.0975, which is
substantially higher th an the nominal significance level, 0.05, of the two separate tests.

The goal of multiple-comparisons procedures is to alIow several comparisions of
interest to be made while maintaining the overall significance level at a fied a. The

methods presented require that the M comparisons to be made be chosen a priori. The
simplest multiple comparisons method is the Bonferroni method (Miler, 1981a). The
test criterion for the Bonferroni method is identical to that in (8.3) above, except that
a is replaced by a' = al M. A slight improvement on the Bonferroni method,

particularly for large M, is provided by the Dunn-Sidák method (Dunn, 1974; Miler,
1981a), for which the test criterion is again identical to that in (8.3), but with a

replaced by a" = 1 - (1 - a)1IM.

The comparisons that are likely a priori to be of general interest are of each
treatment group in turn to the control. When ni = no for aIl i, the method of choIce is
the many-to-one t-test (Dunnett, 1955), which is performed by declaring a difference to
be significant if

(8.3)

IYi - Yol ? IdllX,l,n-l-isV2Ino,

where Idla-,l,n-I-l is tabulated by Dunnett (1955, Table 2). The many-to-one t-test for
unequal sample sizes and tabulated critical values for the general case are described by
Dunnett (1964) and Dutt et al. (1975, 1976).

Extensions of the one-way analysis of variance

Extension of the one-way analysis of variance may be required, since, as indicated in
ehapter 3, many experiments do not follow the simple structure of a completely
randomized design. For example, consider a two-generation study in which the parent
or Fò generation has been assigned to treatment groups in accordance with a
completely randomized design, and the males and females in the same groups were
mated on a one-to-one basis. Suppose now that a fixed number m? 2 of pups of each
sex was selected from each litter to continue on test in the second or Fi generation.
Two animais from the same litter may be expected to have similar characteristics
because of their common genealogy (see Chapter 3). Thus, this experiment has two
levels of randomization, since the litters are first randomly assigned to treatments and
then the pups are randomly selected from the litters. Here, the litter effect is
considered to be nested within the main treatment effect.
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As a second example, consider a single-generation experiment in which animais are
assigned to treatments using a completely randomized design, but two or more animaIs
are caged together. ln this case, it is possible that animaIs housed together respond
more similarly than animaIs housed in different cages. Thus, the cage effect is nested
within the main treatment effect. These experiments can be analysed using the nested
analysis of variance model

Y_Ok = Il + r. + k(-) + E--klJ t' l Jl lJ' (8.4)

where Y ijk denotes the response for animal k = 1, 2, . . ., mij' in litter or cage j = 1,
2, . . . ,ni, in treatment group i = 0, 1, . . . , I. Here ri denotes the effect of treatment
i, Àj(i) denotes the random effect of the jth level of the nesting factor within treatment
i, and Eijk denotes a random error term. The Eijk'S are assumed to be independent
normal random variables with mean 0 and variance a; and the Àj(i) are independent
normal random variables with mean 0 and variance aÄ.

If the mij are aIl equal, the analysis is straightforward. The litter or cage averages can
be calculated and analysed using the procedures discussed previously for the
randomized design. ln addition, the significance of litter or cage effects can be assessed
using standard analysis-of-variance procedures. If the number of animaIs varies from
litter to litter, then procedures for analysis of the experiment are more complicated.
Healy (1972) has proposed an analysis based on weighted averages of Htter means,
where the weights are estimated from the variance components. This procedure ignores
the uncertainty in the estimation of the weights which may invalidate the technique for
small sample sizes. Tietjen (1974) has examined a test for treatment effects based on a
Satterthwaite approximation (Searle, 1971). However, the conventional F-test ignoring
the imbalance appears to perform better than the Satterthwaite approximation.

Nested designs can be further generalized to the case where there are more th an two
levels of randomization. For example, consider a two-generation study in which males
and females are assigned to treatments under a completely randomized design, with

each male randomly paired with two females. This experiment may be viewed as
having three levels of randomization, with sires randomly assigned to treatments, dams
randomly alIocated to sires for mating and pups randomly selected within the litters.
The litters are thus nested within sires which are in turn nested within treatments.

Consider an experiment in which n animaIs are to be assigned to each of 1 + 1
experimental groups. Suppose that the (1 + l)n animais are divided into n groups of
size 1 + 1 so that aIl animaIs in the same group have similar weights, and that one
animal from each weight group is randomly assigned to each treatment. The groups in
this experiment are referred to as 'blocks', and the experiment is referred to as
following a 'randomized complete block design'. The blocks do not have to be defined
in terms of animal weight. For example, one could consider litters to be blocks and
assign one animal from each Htter to each treatment (see Section 7.5). The randomized
complete block design can be analysed using the analysis of variance model

Y-- = Il + r- + ß. + E--lJ t' l J lJ' (8.5)

where Yij denotes the response of the animal from block j given treatment i, ¡. IS a
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constant, ri denotes the effect of treatment i, ßj denotes the effect of block j, and £ij is a
random error term.

The above model is based on the assumption that each treatment has the same effect
on each block. The effect of blocking is to remove from the error sum of squares a
term which measures the variation in the observed response among blocks. It also
reduces the experimental error of the estimated differences between treatments. If the
inter-block variation is large, the randomized complete block design wil provide more
sensitive tests for treatment effects than the completely randomized design.

Nonparametric methods

The methods outlined above rely on the parametric assumption that the error terms
in the respective analysis of variance models - (8.1), (8.2), (8.4) and (8.5) - are
distributed according to a normal distribution with mean zero and some unknown
variance. This assumption is frequently not met by the data one is analysing.
Therefore, methods that make less stringent assumptions about the underlying
distributiOn have been developed which can easily be employed, as they are simply
based on ranks. When compared to the methods based on assumptions of normality,
these methods have been shown to lose only slightly in effciency when the assumptions
are valid, but can be considerably more effcient when they do not hold.

We shalI give a brief introduction to nonparametric methods which can be used to
analyse continuous variables monitored at a particular point in time. This introduction
follows the description of these methods in the textbook by Hollander and Wolfe
(1973).

Let Yij denote the response of animal j (j = 1, . . . , ni) to dose i (i = 0, 1, . . . ,1). We
deal again with model (8.1), Yij = l. + ri + £ij' but assume that the error terms £ij are
mutually independent and follow sorne continuous random distribution. To test the nuIl
hypothesis, that aIl treatment effects ri (i = 0, 1, . . . ,1) are equal, against the
alternative that they are not aIl equal, aIl n observations Yij are ranked in ascending
order, giving rank 1 to the lowest value and rank n to the largest. Let rij be the rank of
observation Yij in this joint ranking. The sum of ranks for observations in group i is

n.1

R- = '" r--1 L. Il
;=1

(i = 0, 1, . . . , 1),

the average rank in group i being denoted by Ri. = Rdni. The average rank of aIl n
observations is R.. = (n + 1)/2. ln order to assess whether the ranks in the individu al
groups differ from the ove raIl average, the statistic

12 1H = '" n.(R- - R )2
( + 1) t. 1 1. ..n n 1=0

is computed. Under the null hypothesis of no difference between the treatment groups,
H follows asymptotically a chi-square distribution with 1 degrees of freedom. This test
is usualIy referred to as the Kruskal-Walls test. For smalI sample sizes and limited
numbers of groups (1 = 2, ni oe 5), tables of exact critical values for H have been
published (Hollander & Wolfe, 1973).
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ln the case of ties among the observations, the me an of the respective ranks, or

midranks, may be assigned to aIl the tied observations. Consider g sets of tied
observations and let tj (j = 1, . . . , g) be their respective size. Then H should be
corrected by dividing its value by

1 - t~ (t1- tj) / (n 3 - n ) J.

ln the case of two groups only (1 = 1), the Kruskal-Walls test is identical to the
Mann- Whitney or Wilcoxon test.

Test for monotone trend

A test for monotone trend wil be indicated in most experiments involving a series of
increasing dose levels. The analysis of concomitant information must assess whether
the observations of interest folIow a corresponding trend. ln addition, when multi-
plicity of tumours (Section 7.3) or graded responses (Section 7.4) are considered,
nonparametric approaches to the analysis of these endpoints are indicated.

From the ove raIl ranking used for the Kruskal-Walls test, one test statistic for the
presence of a positive trend with increasing dose can be derived as follows. The rank
sum Ro of the first group can be viewed as a two-sample Wilcoxon statistic, comparing
the responses in group 0 with the pooled responses in groups 1 to 1. Similarly, Ro + Rb
the rank sum of groups 0 and 1 combined, can serve as a test statistic to compare these
to groups jointly against the combined group 2 to I.

With 1 + 1 groups, 1 such two-sample comparisons can be considered. The sum of aIl
their test statistics wil be considered to test for the presence of a positive trend

1-1
L = Ro + (Ro + Ri) + . . . + (Ro + Ri + . . . + RI-1) = ¿ (I - i)Ri. (8.6)

i=O

Under the nuIl hypothesis of no difference between the I + 1 groups the expectation of
Lis

n + 1 1-1E(L) =- ¿ Si'
2 i=O

where
i

S. = "" n.1 L. J
j=O

is the cumulative sample size up to, and including, group i. The variance of L is

+ 1 ri-l i-i 1-1 1
var(L) = n 12 l~ Sien - Si) + 2 ~ j~1 Sien - sJ J' (8.7)

Small values of L, that is, values below the expectation, are indicative of a positive
trend. This leads to the following standardized test statistic

TL = (E(L) - L)/(var(L))1/i. (8.8)
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Asymptotically, TL follows a standard normal distribution. If the value of TL exceeds
ZIX' the upper (1 - æ) percentile of the standard normal distribution, a positive trend

can be concluded with a significance level of æ.
ln the case of ties, midranks, rij say, are assigned and the test statistic T can be

corrected by replacing, in formula (8.7), the term (n + 1)/12 by

1 / ni ( n + 1)2
¿ ¿ rzj - - .n(n - 1) Z=O j=1 2

This test, which is similar to the test proposed by Page (1963) for complete block
designs and also described by HolIander and Wolfe (1973), has been proposed by
Wahrendorf et aL. (1985) for complete randomized designs in the framework of
mutagenicity data. However, it is also perfectly applicable to the analysis of
concomitant information or special responses in long-term animal experiments. Here,
the consistency and strength of the trend can also be estimated by some nonparametric
measure of the stochastic ordering between two populations.

As can be seen in (8.6), this nonparametric trend test weights the rank sums of aH
treatment groups by an integer score. For the many experiments conducted on a
multiplicative dose scale, these scores correspond to the logarithms of the dose levels.
Marascuilo and McSweeney (1967) have proposed a second test for trend where the
actual dose levels are used as scores, and the construction of such a general rank test
has also been noted by Cuzick (1985). These tests can easily be performed in a
stratified situation by summing the differences E(L) - L and the variances calculated
according to (8.7) over the strata and then forming a standardized test statistic
according to (8.8).

The above tests for trend are based on an overall ranking of the observations in aH
1 + 1 groups. Another nonparametric test of trend, which is based on aH 1(1 + 1)/2
pairwise comparisons of two groups, is the Jonckheere test (Jonckheere, 1954), also
described by HolIander and Wolfe (1973). Two groups, u and v say (u, v =
0, 1, . . . ,1; u =1 v), can also be compared by a Wilcoxon test by counting the number
of pairs (æ, ß) for which y UIX .c Y vß' If cp (a, b) = 1 if a .c b, and 0 otherwise, this is

nu !l
Uuv = ¿ ¿ cp(YUIX' Yvß)'

1x=1 ß=1

frequently referred to as Mann-Whitney counts. Summing these Uuv from aH 1(1 + 1)/2
pairwise comparisons gives the J onckheere statistic

/-1 /
J=¿ ¿ VU/.

u=o v=u+l

Under the null hypothesis of no difference between the 1 + 1 experimental groups, this
follows asymptoticaHy a normal distribution with exp.ectation

E(J) = rn2- tu n¡J/4
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and variance

var(J) = f n2(2n + 3) - t. n¡(2n¡ + 3) J /72.

ln this case, large values of J are indicative of a positive trend, leading to the

standardized test statistic

Ti = (J - E(J)J/(var(J)J1I2
which, under the null hypothesis, folIows a standard normal distribution.

Multiple comparisons

For the purpose of multiple comparisons, say M pairwise comparisons among groups
(for example, comparison of each exposed group in turn to the control group), the
average ranks of each group R¡. (i = 0, 1, . . . ,1) are used. These correspond to the
group means used earlier in the parametric approach, and the underlying arguments
regarding the logic of adjusting tests (because of the multiplicity of comparisons) are
exactly the same as described there. We shall outlne the approximation procedure
given by Dunn (1964) and described by HolIander and Wolfe (1973).

Maintaining an overall significance level of a, one can decide that the response in
group i is different from the response in group h, that is, r¡ =1 Th, if

f(n(n + 1)) ( 1 1 )J1I2IR¡.-Rh.l:;za'i 12 n¡+nh '
where Z a' is the 100(1 - (X') percentile of the standard normal distribution and
a' = a/2M. It has to be noted that the above comparison between a group i and a

group h is based on the ove raIl ranking of aIl observations, and, thus, it depends on the
observations in the other groups. For detailed discussions, see Hollander and Wolfe
(1973) and Miler (1981a).

8.4 Repeated measures and growth curves

A long-term study often involves repeated measurements of the same parameter in
the same subject over a period of time. For example, blood samples may be taken from
a subsample of animais at specified points in time and subjected to detailed
haematological evaluation. Body weights are generally recorded for aIl animaIs in a
study on a regular basis in order to establish growth profiles. Similar records of food
consumption are also maintained.

Since early work on the analysis of such data by Box (1950), statistical methods for
repeated measures of growth-curve data have undergone extensive development

(Geisser, 1980; Woolson & Leeper, 1980). The essential difference between these
procedures and those discussed in Section 8.2 is that repeated measures are taken on
the same individual, and that one needs to allow for the possibilty of correlation
among these observations. ln the first part of this section, we consider the use of
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multivariate linear models for this purpose. Nonparametric or related approaches to
this same problem are then considered in the second part. Finally, sorne biologically-
based growth models are described briefly.

Multivariate linear models
Let lit denote the measured value of a particular variable for individual i = 1, . . . , N

at time t = 1, . . . , T. These data may be conveniently summarized in matrix form as

_ ( ~1l ~TJ
Y -: :,

YNl ... YNT

where each row corresponds to the set of results for one individual obtained during the
course of the study period, and each column represents the results for all individuals at
a particular point in time. A multivariate linear model for the data Y is then

y = XfJ + E, (8.9)
where X is an N x P design matrix consisting of zeros and ones indicating the
treatment assigned to each individual and Il is a P x T matrix of unknown parameters
reflecting both treatment and time effects, with each column representing linear model
regression coeffcients for that time period. The rows Ei of the error matrix E are
assumed to be independent, multivariate normal random variables with mean 0 and
covariance matrix Si' Under this model, the rows Yi are independent, multivariate
normal random variables with me an Mi = (XIl)i and covariance matrix Si' As for the
univariate analysis of variance procedures discussed in the previous Section 8.3, a
multivariate analysis of variance based on the model in (8.9) may be carried out under
the homoscedasticity assumption that Si = S for all i. Details of this analysis are given
by Morrison (1976) and in other texts on multivariate methods. The case of

heteroscedasticity has been discussed by Chakravorti (1974). Procedures for handling
missing values have been proposed by Kleinbaum (1973) and Leeper and Woolson
(1982).

This multivariate approach to data on repeated measurements requires that suffcient
data be available in order to estimate the many unknowns involved in the mean vector
Xil and the dispersion matrix S of the data Y. To reduce the dimensionality of Il,
Potthoff and Roy (1964) suggested the use of polynomials in time t to provide for
longitudinal effects (see also Khatri, 1966). The use of a low-order polynomial of
degree Q -c T, for example, would reduce drastically the number of parameters to be
estimated when T is large. (This approach has been employed in the analysis of
growth-curve data from a long-term bioassay of ortho-toluenesulfonamide conducted

by Arnold et al., 1980.) Similarly, further assumptions could be made concerning the
form of S (Grizzle & AlIen, 1969), although oversimplification may result in an
increase in false-positive rates (Boik, 1981; Elashoff, 1981; Schwertman et al., 1981). A
parametric approach in which the regression coeffcients of the growth curves are
considered as random variables and provide the basis for statistical inference has been
proposed by Schach (1982).
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Nonparametric methods and related approaches

As with the nonparametric methods discussed in Section 8.3 for the univariate linear
model, there exist multivariate nonparametric methods which are again based on ranks
and can be applied to the situation of repeated measurements (Bhapkar & Patterson,
1977). Koch et al. (1980) provide a comprehensive overview of the methods available
for different situations. A specific application suitable to situations of partialIy

incomplete observations is given by Koziol et al. (1981). Both these papers provide
many further references.

Another approach to the analysis of growth curves would be to fit a certain
parametric model to the shape of each individu al growth curve, and to extract certain
parameters or functionals from the fitted curves which are particularly relevant to the
biological aspects of the assay. For example, the slope of the growth curve or an
estimate of its second derivative (acceleration of growth), the area under the curve, the
location or value of a maximum or minimum, or a categorization of the curve's profile
may represent such measures derived for each animal from its growth curve. These
measures for the different treatment groups can then be compared using the
nonparametric techniques for one-way analysis of variance as given in Section 8.3.
Thus, this approach, initially suggested by Wishart (1938) and considered by Prestele et
al. (1979) and Haux (1985), reduces the multivariate data of repeated measurements to
univariate comparison. This approach is very promising for the analysis of auxilary
data in carcinogenicity studies, since it is based on easily interpreted parameters, it can
alIow for different numbers of observations per animal and it does not rely on strong
parametric assumptions.

Robust estimation procedures (Huber, 1981) may also be considered as a means of
avoiding the parametric assumptions required in the multivariate linear modeL.

Pendergast and Brofftt (1985), for example, considered the use of M-estimation for
growth curve data. This approach is based on an arbitrary loss function chosen to be
less sensitive to outlying values than the quadratic loss function on which the
multivariate analysis of variance is based. It appears to provide a robust alternative to
the latter analysis. Like the nonparametric methods based on ranks, however, this
robustness is achieved only with considerably more computational effort.

Biological growth-curve models

The multivariate linear models discussed previously are purely statistical in nature
and, while often providing an adequate description of growth-curve data, do not have
an underlying biological basis. Sandland and McGilchrist (1979) consider models which
alIow for an initial period of rapid growth followed by a period of slower growth and
then a levellng off or even a decline in body weight. The logistic model, for example,
is based on the differential equation

dW(t)
dt = aW(t)(b - W(t)),

where W(t) denotes the expected body weight at time t. These models are specified in
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terms of biologically meaningful parameters and predict the anticipated shape,
although this do es not necessarily imply that the model represents the correct
underlying growth mechanism (Kowalski & Guire, 1974).

Other stochastic models may be based on autoregressive processes in which
successive errors may be correlated (Glasbey, 1979), or on stochastic differential
equations (Sandland & McGilchrist, 1979).

Models which relate body weight to food consumption have also been proposed
(Daniel, 1983). This last approach has been used to distinguish between weight changes
attributable to changes in food consumption and those resulting from alterations in
metabolism.




