
7. SPECIAL TOPICS

7.1 Introduction

7.2 Statistical inference at multiple sites

7.3 Multiplicity of tumours

7.4 Graded responses

7.5 Multifactorial designs: combining results

7.6 Litter effects

7.7 Association among tumour types

7.8 Historical control tumour rates



CHAPTER 7

SPECIAL TOPICS

7.1 Introduction

ln the previous chapters we considered the broad aspects of the design and analysis
of long-term animal experiments. There are, however, many special aspects that have
not been considered in the previous chapters, but that merit mention, as they occur
frequently in practice. These aspects are aIl concerned, in one way or another, with
multiplicity; that is, in design or analysis, one factor or one variable is added or
allowed to have multiple levels.

ln Section 7.2, we shall deal with the problem that arises from the study of more
than one tumour of interest in a long-term animal experiment, and, thus, the statistical
inference has to be carried out on data from a variety of sites. ln some experimental
systems, the multiplicity of tumours at one site is viewed as a relevant biological
endpoint, and the appropriate statistical methods are discussed in Section 7.3. A
tumour response may be graded according to a fixed number of clinical or histological
categories, and the methods applicable to these situations are outlined in Section 7.4. If
a further dimension is added to the design of an experiment, either by stratification or
by adding another exposure factor, it must be considered in the analysis, and
methods for doing so are outlined in Section 7.5. ln sorne experiments, the information
about the common litter membership of the test animais may be kept in order to
influence the design of the experiment. Statistical methods making use of this
information are discussed in Section 7.6. Several tumours can occur simultaneously in
one animal; in Section 7.7, we outline methods for assessing the association among
tumour types in appropriate experiments. Finally, Section 7.8 deals with the incorpora-
tion of historical information on tumour incidence in untreated control animaIs into the
statistical analysis.

7.2 Statistical inference at multiple sites

The false-positive and false-negative rates are of great importance in any screening
procedure. ln a carcinogenesis screeniag test, the false-positive rate is the percentage
of noncarcinogenic compounds which are incorrectly classified as carcinogens, and the
false-negative rate is the percentage of carcinogenic compounds which are incorrectly
classified as noncarcinogens. ln most animal carcinogenesis experiments, it is not
possible to predict a priori potential target organs at which carcinogenic effects are
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likely to occur. Thus, although the effect of a carcinogenic agent is likely to be
concentrated in one or a few target organs, aIl organs which are examined

histopathologicalIy must be evaluated for evidence of carcinogenesis. Because of the
multiple comparisons involved in the statistical evaluation of tumour incidence data
from several organ and tissue sites, there is a danger of inflating the false-positive error
rate. ln particular, a simplistic decision rule that routinely labels a chemical as a
carcinogen whenever a single tumour increase is significant at the 5% level for any
exposed group at any of the organs examined can result in a false-positive rate
considerably greater th an 5% (Fears et al., 1977; Salsburg, 1977; Fears & Tarone,
1977; Haseman, 1977; Elashoff et al., 1979). Some authors have argued that the
inflated false-positive rate associated with su ch a naive decision rule invalidates the use
of animal experiments in screening chemicals for carcinogenesis (Salsburg, 1977).
Others have noted that such a decision rule is not in fact used in practice, and that
rules which attempt to model the actual decision process indicate that false-positive
rates are close to the nominal level (Fears et aL., 1977; Fears & Tarone, 1977;
Haseman, 1977; Gart et al., 1979; Haseman, 1983b).

A major problem in trying to estima te the error rates of a carcinogenesis screening

test, or to recommend explicit adjustments for the multiple comparisons involved, is
the diffculty in modelling the interaction that takes place between the statistician and
scientists of other disciplines included in the decision-making process. The evaluation
of the carcinogenic potential of a test compound is not strictly a statistical decision. It is
impossible to incorporate the totality of knowledge and experience of the pathologists,
toxicologists, pharmacologists and other scientists involved in the decision-making
process into a simple statistical model. Nevertheless, investigations based on the
comparison of unadjusted tumour rates using the Fisher-Irwin exact test have led to
statistical devices that can be used to keep false-positive rates under control. The most
important finding of these investigations is that organs with low spontaneous tumour
rates can be ignored effectively in the calculation of false-positive rates (Fears et aL.,
1977; Gart et al., 1979; Haseman, 1983b). ln particular, for a given experimental

design and nominal significance level, one can compute the minimum number of
animaIs, in the combined control and exposed groups, which must be found with a
given tumour in order for a significant result to be obtained using the Fisher-Irwin
exact test. Accordingly, only those organs with spontaneous tumour rates for which
this minimum number of tumours is likely to be obtained need be considered in
determining an adjustment for multiple comparisons (Gart et aL., 1979). An alterna-
tive, but related, approach to control for multiple comparisons is to test for tumour
increases using one nominal significance level, say ai = 0.05, for organs with low
spontaneous tumour rates (for ex ample , tumour rates less than 2% for experiments
with 50 animaIs per group), and a second, sm aller nominal significance level, a2 -= 0.05,
for aIl other organs. The actual value of a2 leading to a false-positive rate of 5% can be
calculated for each species/strain/sex combination for which good estimates of
spontaneous tumour rates exist. Various modifications of this approach are possible,
for example, using a different nominal level for each value of the spontaneous tumour
rate, the nominal level decreasing with increasing tumour rate. Of course, if there is
evidence a priori that a test compound is likely to produce a carcinogenic effect at a
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particular organ, then the nominal significance level for the suspected organ should not
be reduced, regardless of the magnitude of the associated spontaneous tumour rate.
ln order to avoid the multiple comparisons problem, Brown and Fears (1981)

proposed a method of calculating a single overalI significance level for a carcinogenesis
experiment. Suppose that, in an experiment with one exposed group and a concurrent
control group, T organs are examined for the presence of a tumour in each animaL.

Then, each animal may have tumours discovered in one of 2T possible combinations of
organ sites, ranging from 'no tumours found' to 'tumours found in aIl T organs'. For
each of the T organs, a Fisher-Irwin exact test can be performed. For a fixed

significance level, æ, they provide a method for calculating the exact permutation al
probability of at least one significant Fisher-Irwin test, conditional on the 2T marginal
totals (each marginal total is the number of animais with tumours only in the organs
represented by one of the 2T possible combinations). An overall significance level can
be calculated by applying the method with æ set equal to the smallest of the T p-values
observed in the individual Fisher-Irwin exact tests. Unlike previously discussed

methods, the method of Brown and Fears requires no prior knowledge of the
spontaneous tumour rates.
Meng (1985) has proposed a Bayesian approach to the multiple comparisons

problem, incorporating historical data on spontaneous tumour rates in a manner
suggested by Dempster et al. (1983). The method proposed by Meng has the
disadvantage that an increased tumour rate at a single organ can be diluted by a

general decrease in tumour rates at other organs (such general decreases have been
observed due to the reduced food consumption in exposed animais). However, the
development of related methods warrants further investigation.

7.3 Multiplicity of tumours

The methods described in Chapter 5 concentrate on the presence or absence of one
or more tumours in an animaL. This reflects the fact that the fundamental measure of
carcinogenic effect is usualIy taken as the total number of animals which develop a
tumour of a given type rather than the total number of such tumours (Peto et al.,
1980). The main reasons for this are, firstly, that multiple tumours in an animal are not
independent events (a few animaIs often get a large number of tumours) and, secondly,
that for tumours not observable until death it is impossible to determine whether

treatment has caused tumours or has merely affected their progression. ln theory, as
noted by Peto et al. (1980), a chemical which inhibits metastatic spread of localized
tumours might allow animais with tumours to live longer and have time to develop
more tumours. Furthermore, it is the individual animal that is randomIzed among the
dose groups, and th us the animal should be treated as the experimental unit.

ln sorne cases, however, experimental systems have been specifically developed to
quantify response in terms of multiplicity, and it is useful to have methods available
which take into account the number of tumours at a given site. The most widely used
system of this type involves the mouse skin, where topical application of carcinogens
can produce a sequence of multiple lesions - usually papilomas. Continuous sur-
veilance of the animaIs is necessary to observe the course of the lesions accurately.



SPECIAL TOPICS 151

This involves observing the times of first occurrence of the lesions and the times when
sorne disappear due to systemic regression, scratching, biting or other external reasons.

Another experimental model developed by Shimkin (Shimkin & Stoner, 1975)
measures the development of lung adenomas in mice in a relatively short period of
time. AnimaIs are kiled after seven or eight months and the number of lung adenomas
are counted as a quantitative endpoint. ln a long series of experiments with urethane,
this same model was used to try to elucidate the mechanism of action of urethane
carcinogenesis; in direct screening assays with this model, urethane is usually

considered as a positive control.
The induction of multiple mammary tumours in female Sprague Dawley rats, mainly

by 7 ,12-dimethylbenz(a )anthracene, is an animal model which has been developed to
study the possible inhibitory effect of other chemicals such as, for example, vitamins,
on carcinogenesis. Multiplicity of tumours in this model is considered a quantification
of the response. This rat mammary model was developed as a quick model for direct
screening of compounds, but it has lost favour for this purpose due to its limited
specificity.

ln general, none of these special animal models are considered to provide conclusive
evidence on their own when used for screening the carcinogenicity of chemicals. They
play a more useful role in the study of the mechanisms of carcinogenesis. Nevertheless,
there is an interesting challenge in using the appropriate methodology for analysing
such studies.

It is necessary to distinguish between the situation in which the number of tumours is
counted at a fixed point in time in each experimental group and that in which the time
of development of each individu al tumour is accurately recorded. ln the first case, the
number of tumours seen in an individual animal represents the basic information. Let
Xli denote this number for the lth animal in the ith experimental group (l = 1, . . . , ni;
i = 0, . . . ,1). Analysis of variance methods can be applied to such data. Both
parametric and nonparametric methods are available to test the null hypothesis that
there is no difference between the experimental groups against either the unstructured
alternative that the responses are different between groups, or the ordered alternative
that the responses are increasing with increasing dose level.
ln Section 8.3, detailed methods are given for the analysis of concomitant

information by parametric or nonparametric one-way analysis of variance. These
methods can be applied directly by treating the tumour counts Xli (l = 1, . . . , ni;
i = 0, . . . , 1) as the basic observation per animaL. ln a parametric analysis of variance,
the Xli'S are used directly for the calculation of the test statistics, whereas in the
nonparametric methods they are converted into ranks. ln the first case, one may also
apply transformations, for ex ample the square root or logarithm, to achieve a better
fulfilment of the underlying assumptions (equal variances, normal distribution of
observational errors).

One parametric approach has been proposed by Drinkwater and Klotz (1981). They
suggest that the number of tumours per animal has a Poisson distribution, that is, the
probability, f(t), that an animal bears t tumours is

f(t) = e-ÀÀ( It! (t = 0, 1, 2, . . . ).
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Furthermore, in order to account for the empiricalIy observed variation, they suggest

that the parameter À, which is the mean number of tumours per animal, is subject to
further random variation modelIed by a gamma distribution. This leads to a so-calIed
negative binomial distribution which is frequently applied in the analysis of count data
(Anscombe, 1949, 1950; Bliss, 1953). Drinkwater and Klotz (1981) outline the
calculation of a likelihood ratio test statistic to compare the tumour counts in two
experimental groups under this parametric modeL. Their comparison of this method
with the t-test (parametric analysis of variance), the Wilcoxon test (nonparametric
analysis of variance) and the chi-square test from a 2 x 2 table contrasting tumour
incidence in the two groups is not fully conclusive as it is based on simulated data
derived exactly from the model of a negative binomial distribution. However, they do
provide sorne empirical support for this modeL. ln the absence of any firm knowledge
about a parametric model for the variation of the tumour counts, we recommend a
nonparametric analysis of such tumour counts at a fied point in time.

When the time of appearance of the multiple tumours is recorded for each animal,
the methods developed by Gail et al. (1980) can be used. They consider that,
in each animal, tumours are observed to appear at times Ti oe Ti oe . . . oe TK. The
notation of capital letters indicates that we introduce their approach in terms of the
observable random variables. ln addition, for any animal there is a censoring time
C which is assumed to be independent of the sequence Ti, Ti, . . . , TK, K being the
largest integer such that TK oe C. The jth gap is defined as Zj = ~ - ~-i, with Ta = 0 for

convenience. If the probabilty distribution of the jth gap depends only on j and on
tj-i, the value of ~-b but not on the earlier times ti, . . . ,tj-i, the sequence Ti,
Ti, . .. is calIed a Markov sequence. The hazard function of Zj is denoted by
h(z 1 j, tj-i) and is used as the basic element in developing inferential strategies. For
this purpose, the authors consider that h(z 1 j, tj-i) has a known parametric form or
that h(z 1 j, tj-i) is independent of tj-b in which case a so-calIed semi-Markov model
results. ln both situations the effect of the different treatment groups on the occurrence
of tumours is modelled similarly to the proportional hazards model (Cox, 1972). To
keep the notation simple, we consider two treatment groups, 1 and 2. Conditional on
tj-i, it is assumed that the gap Zj has hazard

exp( lXj)h(z 1 j, tj-i) or h(z 1 j, tj-i)

according to whether the animal has been giventreatment 1 or 2, respectively. Gail et
aL. (1980) discuss methods of estimating the parameters (Xj' of testing their homo-
geneity, and of testing that the common value of (X is zero. As mentioned above,
various specializations of h(z 1 j, tj-i) are used.

The models used in this approach can be derived from the so-called m-site model,
which is often used in mathematical theories of carcinogenesis (Whittemore & Keller,
1978). The original paper should be consulted in detail when applying these methods.
An alternative strategy is to apply the proportional hazards model (Cox, 1972) (see
Section 6.3) with its feature of time-dependent covariates or strata (Kalbfleisch &

Prentice, 1980) to adjust for the number of tumours already developed while

comparing the hazards of developing the next tumour (Scribner et al., 1983).
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7.4 Graded responses

As the principal interest in carcinogenicity experiments is the presence or absence in
an animal of a tumour of a given type, we have concentrated on techniques to analyse
response as a 0-1 variable. Section 7.3 dealt with the multiplicity of tumours where
counts of tumours occurring at a given site represent a quantification of the response.
Another quantitative measure of the carcinogenic response is the grade of the les 

ionaccording to sorne pathological criteria. These may differ from site to site and between
schools of experimental pathology, but it is possible to grade any lesion on a scale, such
as: 0 = absent, 1 = minimal, 2 = slight, 3 = moderate, 4 = severe, 5 = very severe; or,
0= absent, 1 = benign, 2 = malignant.

ln the case of grading, a fixed, limited scale is applied to aIl animaIs, whereas for
multiple tumour counting (Section 7.3) there is, at least in principle, no limitation on
the number of tumours which could be observed.

Snedecor and Cochran (1980, pp. 146-148) have suggested that comparison of
graded data from two groups may be carried out using Fisher's randomization test with
small numbers and a cúntinuity-corrected t-test with larger numbers. ln the latter case,
one could alternatively use the nonparametric techniques discussed in Section 8.3.
Application of ranking procedures to graded responses can lead to a large number of
ties, but it has been stated that this may not be crucial (Conover, 1980, p. 232).

To ilustrate the suggestion of Snedecor and Cochran, consider the simple, fictitious
experimental outcome (Table 7.1) of a control group of sample size six and a dose
group of sample size four, graded on a three-point scale, 0, 1, 2.

Table 7.1 Example to illustrate Fisher's randomization test

n- Control group (6) Dose group (4)1

(Xij) (0,0,0,0, 1, 1) (0,1,1,2)
x. 2 41.

X. ~ _1
~ = 11. 6 - 3

The randomization test is based on the fact that there are (no + ni)!/(nO!ni!) possible
divisions of the no + ni animais into groups of no and ni' We also wish to find the
number of such possible outcomes for which Xl. - xo. matches or exceeds the observed
value. Equivalently, this is the number of outcomes for which Xl. matches or exceeds
the observed value, for example, 4. ln this particular case, the number of outcomes is
1O!/(4!6!) = 210, the observed Xl. - xo. = ~ and Xl. = 4. eonsider the numbers of ways
in which Xl. ? 4. These are listed in Table 7.2.

Thus, there are in total 30 + 1 + 4 = 35 combinations with Xl? 4, and the exact
one-tailed p-value is p = 35/210 = t. The corresponding t-test with no + ni - 2 degrees
of freedom is

where
te = (Xl. -xo. -c)/(spv'(I/no+l/ni)),

r ni no JIs; = lj~ (Xlj - Xi.)2 + j~ (Xoj - xo.f (no + ni - 2)
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Table 7.2 List of extreme outcomes for computation of

randomization test

(X1i ) Numbers of combinations

X1. =4 (0,1,1,2)
(~)(~)C) = 30

(~)(:)(~) = 1

(~)(~)C) = 4

(1,1,1,1)

X1. = 5 (1,1,1,2)

and c is a continuity correction. The value of c is one-half of the absolute value of the
difference between the observed Xl. - xo., and the next highest value of this statistic
among aIl the possible randomizations. Thus, for this example, xl. - xo. = ~ - ~ = ¡,
and the next highest value is ¡ - ì = l. Thus c = (¡ - l)/2 = i4' We also find that s; = rz.
These give the approximate t-value with eight degrees of freedom:

¡-i4 11te = Yt(f2)(l + ì)j = 10 = 1. 1.

This approximation yields p = 0.1517, only slightly less than the exact result of ì.
It should be noted that Snedecor and Cochran recommend that with such small

samples with very little overlap the exact p is easily calculated and should be reported.
They note that, with more extreme results, tc may yield too smalI a p-value. Consider
the most extreme possible outcome in our example, that is, Xl. = 5 or Xl. - xü. =
ì - ì = g. The exact one-tailed p = 4/210 = 0.0190. ln this case,

13 5
12 - 24tc = YH~)(l + ì)j = 3.047,

which, with 8 degrees of freedom, gives p = 0.0079, less than one-half the exact
p-value. Randomization tests for trend and associated approximate t-tests may also be
performed when more than two groups are to be compared.

The particular nature of a graded response may also be taken into account by using
methods which have been developed for the analysis of ordinal data (McCullagh,
1980). Let the response be graded in G categories, g = 1, . . . , G, and let there be 1 + 1
experimental groups, represented by dose levels do, di, . . . , di. As above, let ngi be
the number of lesions in group i (i = 0, 1, . . . ,1) at grade g (g = 1, . . . G). From these
data, one can estimate Ygi' the probabilty of a lesion in group i being graded at or

below level g. Note that YGi = 1, so that there are only G - 1 essential estimates Ygi

(g = 1, . . . , G - 1) for each group.
McCulIagh (1980) proposes finding a suit able transformation of Ygi and investigating

how the transformed values depend on the dose levels di' Two particular models have
been proposed for this purpose. One model is
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(i) the proportional odds model:

10g(ygJ(1 - Ygi)) = eg - ßdi (1 -: g -: G).
This means that for any two dose levels ii and i2 the odds ratio

(Ygi)(1 - YgiJJ/(Ygi/(l - Ygii)) = exp ß(dii - diJ

is independent of the grade g and depends on the difference between the dose levels
only. The parameters eg, which are nuisance parameters, and ß, which is the essential
parameter relating the graded response to the dose levels, can be estimated by

maximum likelihood methods. Another model is
(ii) the proportional hazards model

log( -log(1 - Ygz)) = eg - ßdz (1 -: g -: G).
This model is related to the proportional hazards model formulated by Cox (1972) for
the analysis of survival data. Again, maximum likelihood methods allow estimation of
the parameters eg and ß.

ln general, any other monotone increasing function mapping the unit interval (0, 1)
onto (-00, (0) can be used as a 'link'-function Ley) to postulate a model

l( Yg¡) = eg - ßdi (1 -: g -: G).
The two examples given above, however, have the advantage of a straightforward

interpretation of the parameters. This regression model can be generalized to allow for
any set of covariates, not only one dose variable. The number of parameters wil
increase accordingly.

McCullagh has also pointed out that there is a direct theoretical relationship between
his regression models for ordinal data and the nonparametric test discussed above, the
latter, however, lacking simple descriptive parameters.

Graded response data can also be analysed in a stratified way, for example, when a
tumour observed in an incident al context is graded. Generally, the grading is more
severe in later time periods, and fewer animaIs from the higher-dose groups survive
into the later intervals, due to toxicity. ln such a case, the analysis could be stratified by
time intervals, the e¡,s varying between time intervals, but the essential parame ter ß
being the same for aiL.

7.5 MDltifactorial designs: combining resDlts

ln the previous chapters, attention has centred on the design and analysis of

experiments that test only one treatment of interest, often at different dose levels. Such
one-factor experiments are commonly used to screen different exposures for their
potential carcinogenicity. However, studies in which the experimental groups form a
multiple-factor design are not uncommon. Sometimes, such designs are necessitated by
practical reasons, so that, for example, the eight groups might form combinations of
the main exposure of interest at four levels (control, low dose, middle dose, high dose)
and two batches of animaIs, as it is impossible to obtain the number of animais
required from one batch. On other occasions, there may be one main treatment of
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interest, but one may wish to study simultaneously the effect of different methods of
administering the treatment, for example, cigarette-smoke condensate at three dose
levels dissolved in two alternative solvents. More interestingly, one may wish to study
the effects of joint exposure to combinations of two or more carcinogens. It can be
argued that such studies can often be more realistic than single carcinogen studies,
since hum ans are frequently exposed to a variety of carcinogens simultaneously or in

sequence. Often such studies are of value in investigating mechanisms of action; they
also have direct public health implication, and they are often carried out where
knowledge has already been accumulated about the dose-response of individual
exposures.

ln Chapter 3, the design of multifactorial experiments was briefly mentioned and
sorne formai concepts outlned. For the purposes of this section, we limit ourselves to
the study of two exposures, A and B, applied at aIl combinations of dose levels
ao( = 0), ai, . . . , ai' . . . , ai of A and bo( = 0), bi, . . . ó. bj, . . . , bJ of B so that there
are (1 + 1)(1 + 1) experimental groups. Such a design leads to two distinct questions:

(1) Given equivalent exposure to B, is the risk of tumour significantly related to
exposure A?

(2) Is the joint effect of A and B different from what one would expect from the
effect of A or B alone?

The first question is essentialIy aimed at avoiding bias due to the effect of B in assessing
the effect of A, and of ma king a combined inference about A over the different levels
of B. Seen in this light, A is the main exposure of interest, B being a secondary
'nuisance' variable that has to be standardized for.

There are two major techniques for answering this first question. Throughout
Chapter 5, we have extensively described methods in which observed and expected
values (as weIl as other statistics necessary for calculating significance levels of the
observed/ expected differences) from different time periods can be. combined by
accumulation. As long as the group structure remains the same in each stratum over
which accumulation occurs, this method of combining can be used in an exactly
analogous manner to combine results in dimensions other th an time. Thus, in our
example, we treat the data as consisting of 1 + 1 subexperiments ('strata') defined by
the levels of B. Each subexperiment has the same group structure (I + 1 levels of A),
and a combined result can be obtained in a straightforward manner. The same process,
of course, can be used to make ove raIl inferences for exposure B, adjusted for the
effects of exposure A.

The second major technique for answering the first type of question would be
ápplied where the response variable of interest can be related to the effects of the
exposures A and B by a regression equation. For this purpose, we introduce the general
notation that Uij is the response in those animaIs exposed to level i of exposure A and
level j of exposure B. For specific applications, the effect measure Uij has to be defined
very carefulIy, and this wil have strong implications on the interpretation of the
results. However, we discuss first the general concepts of absence or presence of
interactions by denoting further ll to be an ove raIl mean response, ti a deviation from

tj
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the mean due to the ith level of A, and Cj a deviation from the mean due to the jth
level of B (to and Co are assumed to be zero to avoid overparameterization).

A test of the effect of A adjusted for the effect of B can be achieved by comparing
the fit of the models

and
E(u..) = Il + (. + c.lj r" 1 )

E(u..) = Il + c-I) r" ) ,
where E(u) denotes the expectation (i.e., mean) of u. This is, in general, a more
appropriate test for the effect of A than the comparison of the two simpler models both
ignoring Cj' The test recommended, on 1 degrees of freedom, is a test of overall
variation in response with level of exposure A. It is of course possible to test for a
linear effect of A by replacing tz in the above formulation by a term yd;, where y is a
parameter to be estimated and d; is the dose applied at level i, although the full set of s
parameters, representing effects of the confounding variable B, should be retained.

Implicit in both techniques for answering the first type of question is the no-
interaction assumption, that is, that the effect of A does not vary significantly according
to level of B. An overalI conclusion that exposure A slightly increases tumour risk
might be misleading, for example, if it considerably increased risk at high doses of B,
while reducing risk somewhat at low doses. Statistical tests for interaction of the
effects of the stratifying variable with those of the main variable of interest, when
analysing stratified contingency tables, are given by Breslow and Day (1980). With the
regression equation, a test of no interaction can be achieved by comparing the fit of the
model

E(u..) = Il + (. + c.lj r" 1 )
with that of the model

E(u..) = Il + x..1) r" 1) ,
where Xij represent effects of each combination of treatments (xoo is assumed to be zero
to avoid overparameterization).

ln the second question, the interest is in the joint effect of both exposures. This, of
course, is related to the test of no interaction, as lack of interaction implies in a sense
that the joint effect of A and B does not differ from that of A or B, alone, since the
data are weIl described by the model

E(u..) = Il + f. + c-lj r" 1 l
It is important to repeat that the particular type of model depends strongly on the scale
on which the effects Uij are measured. To consider this further let us for the moment
take the response variable in experimental group (i, j) to be the probability of
developing a tumour Pij' which is estimated by the proportion of tumour-bearing

animaIs. Pio (i= 0, 1, . . . 1) and POj (j = 0, 1, . . . J) then denote the probabilties of the
dose-response patterns for the individu al exposures.

There are two basic possibilties for modellng the response probabilty Pij in the
combination groups exposed to both A and B.
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(i) ln the first, the additive model, we consider the absolute increase over the
background response probability, measured in the untreated control group, as the

quantity which describes the effect of exposure, and assume that, in a group treated
with both exposures, this effect should be the sum of the effects of both the respective
individual effects

Pij - Poo = (PiO - Poo) + (POj - Poo)

or

Pij = PiO + POj - Poo

for i and j ? 1, Pij being taken as 1 if the right-hand side of the second equation exceeds
1.

(ii) ln the second, the multiplicative model, the effect of an exposure is measured by
the proportional increase over the background response, so that in a combination
group the effect should be equal to the product of the effects of individu al exposures

Pij/Poo = (PiO/Poo)(POj/Poo)

for i and j ? 1. This is also equivalent to

Pij/POj = Pik/POk

for j, k = 0, 1. . . ,J (j =1 k), which means that the effects attributed to exposure A
indicated by the subscript i are the same at any level j or k of exposure B.

The two models introduced above represent simple statistical models based on the
choice of different effect measures. More refined models incorporating mechanistic
considerations, usualIy with reference to the multistage action of the carcinogenic

process, have been proposed (for example, Siemiatycki & Thomas, 1981). Note that,
under a multistage hypothesis, one would normally expect two carcinogens that act on
different stages to act multiplicatively, whereas two carcinogens acting on the same
stage might act additively.

The additive and multiplicative models outlined above have the advantage that the 

y
can also be formulated in terms of relative risks. Let Rij = Pi)Poo ((i, j) =1 (0, 0)) be the
relative risk of group (i, j) compared with the control group, where neither exposure is
present. The additive model then predicts that Rij = RiO + ROj - 1, whereas the

multiplicative model predicts that Rij = RiORoj.

Formulating these models in terms of relative risks enables utilization of the basic
methods for the analysis of long-term animal experiments described in Chapter 5.
These methods, which account for intercurrent mortality and consider the context of
observation of tumours, allow one to describe the differences in tumour yield between
two or several groups in terms of relative risks. We ilustrate this by an example, based
on our study of aIl combinations of 1 + 1 levels of A and J + 1 levels of B, in which we
investigate the multiplicative model for the joint action of the two exposures.

If ai is a fied level of exposure A, then the groups receiving the combination

(ai' bo). . .(ai' bJ) form a subexperiment which can be analysed by the methods
described in Chapter 5. The particular analysis may depend on the context of
observation of the tumours and on whether time to death is available, but in aIl cases
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one should calculate for each level of factor B an expected number of tumour-bearing
animaIs Ead which can be contrasted with the respective observed numbers Oij.

Rad = (Oi) Ead)/( OiOl Eaio)

then represent the relative risks at the different dose levels of factor B with reference
to the base line bo = O. Such an analysis can be carried out at all r + 1 levels of factor A,
and when the effect of factor B is the same at aIl these levels, it is justified to
summarize it by adding the O's and E's over the different levels of factor A.1 1

o . = "" 0.. and E. = "" E _'.) LJ 1) .) LJ adi=O i=O
then denote the so-derived summary values, and the relative risks at the different levels
of factor B, averaged over factor A, would then be

R.j = (O.jl E.j)/( 0.01 E.o).

This process of averaging the effect of one factor over the different levels of the other
assumes that the relative risks are the same, irrespective of which level of factor A is
considered. This means that the assumption of a multiplicative model (as formulated
ab ove ) is made implicitly.

ln exactly the same way as we have summarized the effect of factor B averaged over
factor A, we can derive a summary description of the effect of factor A averaged over
factor B. This yields the observed and expected numbers 0i. and Ei. and hence the
summary relative risks

Ri. = (Oi./EiJ/(Oo./EoJ.

Finally, we can also calculate the relative risks of developing a tumour in any of the
single combination groups compared to the untreated control group. This is do 

ne by
conducting an analysis only with the particular group of interest (ai' b¡) and the
untreated control group (ao, bo). If we denote the observed and expected numbers in
this analysis as Oij' 000, Eij and E&li), the resulting relative risks are then

Rij = (Oijl Ei¡)/( 0001 E&P).

Under the multiplicative model, one would expect to observe that

R..=R.R.1) I..l'
This can be inspected in an informaI way, with the calculated relative risks. Either the
model is reasonably fulfilled for all r. s combination groups, or the pattern of deviation
wil provide an indication of whether the multiplicative model applied fits the data or
not. It should be made clear that this approach does not represent a fulI-scale fitting of
a statistical model, as the random variation behind the relative risk estimates is not
considered in this descriptive approach. Also, the method is likely to be useful only
when the observed number of tumours in the untreated control group is 'not too small,
otherwise the variation in relative risk wil be very large. However, this descriptive
approach can give an indication of possible underlying models (Métivier et aL., 1984). It
can be used to investigate whether a multiplicative model for relative risks of life-time
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development of tumours can explain the joint effect. Adjustment for intercurrent
mortality and context of observation is achieved by utilizing the methods given in
Section 5.7.

For the analysis of observable tumours or rapidly lethal tumours, survival methods
can be applied, and the probabilty of tumour-free survival to the end of the
experiment may be a relevant endpoint to consider. A multiplicative model for this
effect measure would imply that the age-specific hazard in a combination group is the
sum of the age-specific hazards of the respective single-exposure groups. This was
shown by Wahrendorf et al. (1981), and Korn and Liu (1983) proposed likelihood ratio
tests for this purpose.

To assume that the age-specifie hazard rates are multiplicatively related in the
absence of an interaction has been used in the framework of Weibull models (see
Section 6.3). Assuming common values for w and K, the parameters ßij fitted for each
group can be viewed as relative hazard rate parameters. A formaI test of the
multiplicative model for the hazards can be achieved by using maximum likelihood
methods (Peto & Lee, 1973) to compare the models log ßij = ¡. + ti + Cj' which may be
calIed the multiplicative main effects model, and log ßij = ¡. + Xij' which is a saturated
modeL. This results in a chi-squared statistic on Il degrees of freedom testing the
ove raIl fit of the multiplicative main effects model. Departures from the fit can be
investigated further by comparing the observed number of animaIs with tumours in
each group Dij with that expected under the first model

Êij = ßijVij'

where v is defined in Section 6.3.
An analogous analysis of time to tumour or death from tumour can be based on the

proportional hazards model (Section 6.3). ln this case one would assume that the
hazard function satisfies the equation

Àilt) = exp(Llij)ÀO(t)

for (i, j), where postulating Llij = ¡. + ti + Cj would lead to a multiplicative model for the
hazard functions, and where analogous comparisons between the multiplicative main
effects model and the saturated model can be performed. More formaI tests of the
multiplicative model can be carried out in a straightforward manner when time to death
can be ignored and the data can be expressed as simple counts of tumour-bearing

animaIs in a 2 X (1 + 1) x (1 + 1) contingency table (Bishop et al., 1974; Baker &
Nelder, 1978).

FinalIy, it should be noted that studying quantal responses to mixtures of drugs has a
long tradition in investigations of acute toxic effects. The different models considered
in this framework have been reviewed by Hewlett and Plackett (1979, Chapter 7).

7.6 Litter effects

The statistical methods discussed in Chapter 5 are based on the assumption thaf the
responses for different animais are statisticalIy independent. As noted in Chapter 3,
however, the assumption of independence may be violated with experimental designs
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involving the use of littermates, since pups within the same litter may tend to respond
similarly (Gaylor et aL., 1985b). There are three main possibilities for distributing
littermates among the experimental groups. First, animais from each complete litter
may be assigned to the same group, as is necessary in two-generation experiments
when the parental generation is exposed to different doses of a substance. Second,
littermates may be distributed among different treatment groups in blocked designs
with blocks defined in terms of equal-sized litters. Third, animaIs may be allocated to
different treatment groups regardless of litter membership as in the completely
randomized design.

ln the first two cases, special methods of statistical analysis are required. ln the first
situation, it is necessary to take into account the within-litter correlation by using the
variation between litters rather than variation between animaIs as the basis for
between-group comparisons. Below, we discuss the statistical consequences of this in
general terms and outline specific methods of analysis that may be used with such data.
The third case, in which littermates are distributed across experimental groups, does
not have as great an impact on the statistical inference and wil be discussed at the end
of this section.

Complete litters assigned to different groups

ln the presence of positive intralitter correlation, standard methods of statistical
analysis which ignore the litter structure wil tend to underestimate the standard error
of the difference between the overalI response rates in two different treatment groups
and hence overstate the statistical significance of any observed differences (Hase man &
Hogan, 1975). Gladen (1979) showed that the use of standard chi-squared or likelihood
ratio tests which ignore intralitter correlation can result in inflated false-positive rates.
ln this regard, Rao and Scott (1981) have shown that the correct asymptotic null
distribution of the usual chi-squared statistic for comparing several treatment groups is
in fact a weighted sum of independent chi-square random variables with weights

related to the intralitter correlation within each group. The use of the Fisher-Irwin
exact test for comparing two treatment groups, ignoring the liUer structure, has also
been shown to result in somewhat inflated taise-positive rates in the presence of
positive intralitter correlation. With negative intralitter correlation, however, the
standard tests would be valid in the sense that the actual false-positive rate would tend
to be less than the nominal rate.

ln order to avoid these problems, statistical methods which take litter structure into
account should be employed. Let nij denote the size of the jth litter in the ith treatment
group (j = 1, . . . , mi; i = 1, . . . ,1), and let Xij denote the number of these animais
developing tumours. Conditional on the nij' Cochran (1943) assumed that the sample
Proportions p.. -- = x ..In-- have me anlJ lJ Il

E(ßij 1 Pij) = Pij

V(ßij 1 Pij) = pij(1 - pij)lnij,

where the Pij are considered to be held constant. If the Pij are actualIy independent

and variance
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random variables with me an

and variance
E(Pij) = fli

V(P--) = a~ ? 0n 1 ,
we have

and
E(ßij) = fli

V(ßi) = fli(ln~ fli) + a¡( 1 - :.).Il Il
Note that the first term in the above formula represents the variation that would occur
in the absence of any litter effects, whereas the second term reftects the between-litter
variation associated with such effects. Cochran proposed a weighted analysis of
variance of the observed proportions Pij as a means of assessing treatment differences,
with estimates of the litter-specific variances at used to obtain the weights (see also
Kleinman, 1973).

Gladen (1979) used a more general model with V(fij) = f(nij) for sorne general
function f. Although the natural estimator

PA. =x. ln- = ~ x-./~ n..1 1. 1. L. Il L. Il
j=l j=l

of tii is unbiased, Gladen proposed the unbiased jackknife estimator

(m- - 1) miA A 1 ~ A
PJi = miPi - L. Pi(-j)'mi j=l

where Pi(-j) = (Xi. - xij)/(ni. - ni) denotes the estimator of fli omitting the jth litter in
group i. The jackknife estimator of the variance of each PJi is given by

m. - 1 mi ( 1 mi J 2VJi= 1 L pi(-j)--LPi(-j) .
mi j=l mij=l

To compare two groups with mi and m2 litters, respectively, the statistic

t - Pn - PnJ - !
(vn + vn)

wil then approximate at-distribution with mi + m2 - 2 degrees of freedom under the
null hypothesis Ho: fll = fl2, provided mi and m2 are suffciently large.

Frangos and Stone (1984) investigated, among other approaches, the estimator
m.

Pi = :¿ pijlmi,
j=l

which is the average of the litter-specific proportions in group i. The variance of Pi can
be estimated by

m.

Vi = :¿ (fij - pi?/tmi(mi - 1)).
j=l
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For comparison of two groups with mi and m2litters, this would le ad to a standardized
test statistic

z = (Pl - P2)/(vi + V2)~'

which asymptotically follows a standard normal distribution. The small sample
behaviour of z has not been investigated. For a single group, however, Frangos and
Stone (1984) demonstrated that confidence intervals based on Pi and on a modification
of an estimator proposed by Southward and Van Ryzin (1972) outperform the
jackknife confidence intervals.

Another nonparametric technique has been considered by Haseman and Soares
(1976). ln particular, they showed that comparing the litter-specific proportions in two
treatment groups using the nonparametric Wilcoxon test (Hollander & Wolfe, 1973, p.
68) is in. many circumstances a suffciently accurate and powerful statistical procedure.

A more parametric approach to modellng litter effects was used by Wiliams (1975),
who assumed that Pu follows a beta distribution with parameters lli, ßi ? O. ln this case,
J-i = aJ( lli + ßi) and of = J-i(1 - J-i)pJ(1 + Pi), where Pi = (ai + ßi)-l ? 0 provides a
measure of the degree of association between litter mates. Williams proposed the use
of beta-binomial likelihood ratio methods to test the null hypothesis Ho: J-l = J-2;
Pl = P2 against a general alternative. Willams also considered Ho: tti = J-2 = tt with
Pl = P2 = P fied. Based on a simulation study, Shirley and Hickling (1981) concluded
that, for typicalIy encountered litter sizes, the nonparametric Wilcoxon test was
preferable to the beta-binomial likelihood ratio test. (See also Haseman & Kupper,
1979. )

A different approach has been suggested by Kupper and Haseman (1978). They
assume that 'fetuses in the same litter tend to have an inherent relationship to one
another.' Thus, the assumption of mutual independence of the outcomes within a litter,
which usually leads to a binomial within-litter model, is altered by applying a
correction factor which depends on the covariance between two Bernoull trials within
one litter. Kupper and Haseman (1978) demonstrate that this correlated binomial
model is in a sense an extension of the beta-binomial model, as discussed by Wiliams
(1975), in that it also allows, to sorne degree, negative correlations between responses
within a litter. A likelihood ratio test is again proposed to test for differences between
the experimental groups. For one example, Kupper and Haseman demonstrated a
better fit of their correlated binomial model than of the beta-binomial model.

AIl of the procedures proposed above are based on asymptotic approximation and
rely on large mi for their validity. This is particularly important when the response
probabilities tti are near zero or one. Because many rodent lesions occur with
frequencies of 1 % or lower, exact permutation tests of the nulI hypothesis Ho: J- l = tt2
against the alternative H2: tti ? J-2 based on the observed difference d = Pl - P2 may be
considered (Crump & Howe, 1980). These tests are based on the fact that, under the

null hypothesis, each of the s = (ml;lm2) possible assignments of mi litters to group

one and m2 litters to group two are equally likely. The significance level for the exact
randomization test against the alternative Hi: J-i? J-2 is then given by ris, where r is
the number of permutations leading to a value of d at least as large as the observed
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value. When s is large, Crump and Howe suggest that the significance level may be
estimated on the basis of a random sample from the permutation distribution. ln the
special case nij = n, the algorithm given by Soms (1977) may be used to obtain the
randomization significance level. Although these procedures are exact, they are
conservative for small values of f. in the sense that the false-positive rate can be

notably less than the nominal level (Krewski et aL., 1984a).
Several approaches to modellng dose-response data which take into account

intralitter correlation have also been proposed. Under the beta-binomial model
considered by Wiliams (1975), the marginal distribution of Xij (the number of animaIs
developing tumours in the jth litter in the ith treatment group) is a beta-binomial, so
that the likelihood for the parameters f.i = lX) ( lXi + ßi) and Pi = (lXi + ßJ -1 :? 0
Ci = 1, . . . , 1) is a product of 1 independent beta-binomial terms. Segreti and Munson
(1981) then proposed that the effects in dose di administered to the ith group be
modelIed as

f.i = À + (1 - À)F(lX + ß log di),

where O.c À.c 1 and ß ? 0 as in (6.2) and (6.8). The beta-binomiallikelihood may then
be used to ob tain estimates of the parameters lX, ß and À in the presence of
dose-specific litter effect parameters Pl' . . . , Pi. (Segreti and Munson also consider a
simpler but less realistic model in which Pl = . . . = Pi = p.) The former three estimates
then provide a fitted dose-response curve

p = Å + (1 - Å)F( & + ß log d).

Another approach to this problem has been studied by Ochi and Prentice (1984). ln
general terms, the y consider a correlated probit regression model in which the binary
responses within the same litter are defined as indicators of whether or not the
corresponding components of a multivariate normal regression vector with common
mean and variance exceed sorne threshold value. Although the likelihood calculations
are somewhat more complex than in the Segreti-Munson model, the Ochi-Prentice
model provides for multiple covariates as weIl as flexibilty in modellng changes in
intralitter correlation with dose.

Litters distributed across groups in blocked designs

The situation in which littermates are distributed across litters has been investigated
by Mantel et al. (1977) and by Mantel and Ciminera (1979). For a discussion of this
issue see also Mantel (1980). BasicalIy, the y suggest comparing the tumour incidence in
different treatment groups by stratifying over the litters. This could be done with the
methods discussed in Chapter 5. However, as litters are usualIy not very large, it may
be that, towards the end of an experiment in certain litters, animaIs in only one
experimental group are at risk, with no surviving littermates for comparison. Thus, the
information from the se animaIs may remain unused. To avoid this, Mantel et al. (1977)
suggest several special devices for combining remaining animaIs into new strata.
Mantel and Ciminera (1979) outline a different approach, in which so-calIed 'Savage-



SPECIAL TOPICS 165

scores' are assigned to each animal, irrespect ive of litter and group, based on when or
whether the animal developed a tumour. Using these scores, which are common in
life-table analyses, litter-adjusted comparisons between control and treated groups
were proposed.

Problems with this approach were pointed out by Michalek and Mihalko (1983), with
a discussion by Mantel (1983). It was demonstrated that the attempt to utilize
remaining information can confound litter and treatment effects. It should also be
noted that use of the hypergeometric variance, as in Chapter 5 (formula (5.2)), is
preferable for stratified comparisons to the permutation al variance used by Michalek
and Mihalko (1983) because the permutation al variance is invalid when treatment
influences mortality. Therefore, a simple litter-stratified analysis, as outlined by Mantel
et al. (1977) and Michalek and Mihalko (1984), but without recovery of interlitter
information, appears to be the most advisable approach. ln any case, complete

randomiz"ation of experimental animais into aIl the experimental groups, irrespective of
their litter membership, represents the preferable experimental design.

7.7 Association among tumour types

It is obvious from the preceding chapters and sections that several tumour types are
investigated in a long-term animal experiment. Statistical analysis is usually performed
for each of the se tumour types individuaIly. This may lead to problems of multiple
comparisons in making statistical inferences from the study, as discussed in Section 7.2.
The association of a given tumour type with another represents in this context a
nuisance factor which is manifested in the intercurrent mortality. Methods accounting
for this are discussed at length in Chapter 5.

However, the association among tumour types also represents an interesting aspect
of studies on the mechanism of action of the exposure in the entire biological system
(for example, animal) investigated. For the moment we shall neglect the role of
treatment and consider only animaIs from one group. Looking at two tumour types, A
and B, say, one could define the association between these tumour types by the odds
ratio in the resulting 2 x 2 table if one categorizes the animaIs according to the

occurrence of the two tumours of interest:

Tumour A
absent present

absent a b
Tumour B

present c d

The association would be defined as ;p = (ad) / (bc ), and standard statistical methods
for odds ratios (see Chapter 5) could be employed. However, before doing so, careful
attention must be given to the way the tumours have been found in the animaIs. The
intercurrent mortality, probably influenced by the presence of one or both of the two
tumours, plays a crucial role. Consider the simple model of Breslow et aL. (1974).
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Assume XA and XB to be the times of clinical onset of tumours A and B, defined
operationally as the earliest time the tumours would be detected by necropsy. Let YA
and YB be the times from onset until death from tumours A or B, and Z the time of
death due to an unrelated cause, including seriaI sacrifice. An animal would be
classified in one of the ce Ils of the above 2 x 2 table if

(a) Z -: min(XA, XB): neither tumour present at necropsy;
(b) XA -: XB and mineZ, XA + YA) -: XB: only tumour A present;
(c) XB -: XA and mineZ, XB + YB) -: XA: only tumour B present;
(d) max(XA, XB) -: min(XA + YA, XB + YB' Z): both tumours present.

Assume that there is no association between tumours A and B, that is, XA and XB
are independent random variables, but one tumour, say A, is rapidly lethal, that is, YA
is very sm aiL. Then animais with both tumours present are very unlikely to be found
among those dying. Based on such data the estimated association would appear to be
unjustifiably negative, that is, iì -: 1. However, if one constructed a 2 x 2 table, as
above, on the basis only of animais which died from causes not related to the
tumour(s), such as by seriai sacrifice, the rapid lethality of one tumour would lead to
the general finding of a low proportion of animais with this tumour, either alone or in
combination with the other tumour. Therefore, the resulting estimate of the association
should not have a systematic error.

The method for the analysis of carcinogenicity data proposed by Turnbull and
MitchelI (1978) and MitchelI and Turnbull (1979), as already discussed in Section 6.3,
includes prevalence models. Tumour prevalence can be observed directly only by seriaI
sacrifice of animais. Therefore, such designs are needed to obtain an unbiased
assessment of the association among tumour types. The log-linear prevalence model
(see Section 6.3) can depend on various factors. These factors may include aspects of
the experimental design, such as treatment group or time period of scheduled sacrifice,
but also relate to the presence or absence of certain tumours. The resulting interaction
terms between different tumour types can be used to evaluate possible associations. ln
addition, the interaction terms of each individual tumour with the treatment group wil
indicate whether the occurrence of this tumour depends on the treatment of the
animais. Also, the interaction terms with the time periods wil give indications of the
temporal pattern of the tumour prevalence. This log-linear model for prevalence is
combined with a logistic model for lethality which potentially depends on the same set
of factors and interactions, but for which a different subset may prove to be significant.
Interpretation of the results from both models has to be made jointly and the results
have to be checked carefulIy for biological consistency.

ln the search for jointly best-fitting prevalance and lethality models, the same
approaches used for the fitting of multiplicative models for discrete data (Bishop et al.,
1974) can be applied. The operational criteria by which interaction terms are
successively inserted or deleted may vary from application to application. Usually,
likelihood ratio statistics are employed to judge whether a significant change in the
goodness of fit is observed when altering the model in one direction or another. An
example using this approach, but also including consideration of the simple 2 x 2 tables
above, has been given by Wahrendorf (1983). Data from a long-term carcinogenicity
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study with DDT using CF-l mice were used. ln this study, which was originaIly
reported by Tomatis et aL. (1974), mice were fed 250 ppm of DDT for 15 or 30 weeks,
after which exposure ceased. An untreated control group was also used. Scheduled

sacrifices were conducted at 15, 30, 65, 95 and 120 weeks of exposure, though not
equaIly frequently in aIl groups. Consequently, only two time intervals were available
to define the corresponding factor in the prevalence and let 

ha lit y modeL.
Three tumour types were investigated: lymphomas, liver and lung tumours. ln the

prevalance model, liver tumours showed a significant interaction with the factor
treatment group, demonstrating the weIl-known hepatocarcinogenic effect of DDT.
The prevalence of aIl three tumours showed a significant interaction with time,
indicating increased occurrence of aIl tumours in the later time intervaL. However,

there also remained significant negative interaction terms between lymphomas and
liver tumours and between lymphomas and lung tumours. These were inspected further
by calculating coeffcients of association in a simple 2 x 2 table contrasting two

tumours. Such tables were derived by using only those animaIs which were sacrificed in
each group and each time intervaL. This showed a consistent pattern of negative
association between lymphomas and liver tumours. Counteracting this negative
association, by including among those animaIs with both tumours also those who died
naturally, did not alter this conclusion. As the prevalence of lymphomas was not
related to treatment group, it was concluded that the hepatocarcinogenic activity of
DDT may have an influence on the development of lymphomas in CF- 1 mice.

7.8 Historical control tumour rates

ln the evaluation of a chemical carcinogenesis experiment, knowledge of the

spontaneous tumour rates obtained from control groups of previous experiments can
often provide insight into the possible carcinogenicity of a test compound (Gart et aL.,
1979; Tarone et al., 1981; Haseman, 1983a). The most appropriate and important
comparison of an exposed group is with the control group randomized from the same
source. However, historical control tumour rates can be helpful in evaluating

experiments for which the statistical analysis based on matched control tumour rates
indicates equivocal evidence of carcinogenicity. One situation in which historical rates
are likely to be particularly helpful is in the evaluation of smaIl nonsignificant tumour
increases at tissue sites with very low spontaneous tumour rates. When historical
control rates are used to evaluate an equivocal experiment, both the magnitude and
variability of these rates must be considered (Tarone et al., 1981; Haseman, 1983a).

Although informaI, ad-hoc comparisons with historical control data can often
provide some insight into the carcinogenic potential of a test chemical (Fears et al.,
1977; Tarone et al., 1981), methods have recently been developed which permit the
incorporation of historical control information in a formaI framework. Tarone (1982)
modeIled historical control rates using a beta-binomial model and derived a test for
dose-related trends which is a modification of the Cochran-Armitage test. The
modification depends both on the magnitude and variability of the historical rates.
Hoel (1983) proposed an exact test based on the beta-binomial model. When the
parameters of the beta-binomial distribution are known, Hoel's exact test is valid, and
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Tarone's test is asymptotically valid (Krewski et aL., 1985; Hoel & Yanagawa, 1986).
Problems arise, however, when the para 

met ers must be estimated from the available
historical data (Tamura & Young, 1986). Bias in the estimates of the beta-binomial
parameters causes the methods to give too much weight to the historical control data.
Thus, methods based on the beta-binomial model should be used with caution until
unbiased estimators of the beta-binomial parameters are developed.

Dempster et al. (1983) assume that the logits of the historical control rates are
normally distributed, and evaluate the evidence of a dose-response relationship using a
Bayesian analysis, again incorporating information about the magnitude and variability
of the historical rates. Dempster et aL. also discuss diagnostic methods to assess the
sensitivity of their analysis to different prior distributions and to assess the goodness of
fit of the various models (including the beta-binomial model). The small-sample

performance of the method of Dempster et al. has not been investigated, but, because
of the tractabilty of estimation procedures for normal models, it is unlikely that their
method wil share the problems associated with those based on the beta-binomial
modeL.

ln making a formai analysis based on historical data, care must be taken to ensure
that the historical control rates used in the analysis come from experiments which are
similar to the current experiment in factors known to affect the magnitude of
spontaneous tumour rates. Such factors may include the length of time on study,
housing conditions, type of food, and possibly the year of birth of the test animaIs

(Gart et al., 1979; Tarone, 1982; Haseman, 1983a). Certainly, sorne initial screening is
necessary to determine which historical rates may be used in the analysis of a particular
experiment. ln cases where the historical control data are informative with respect to
the concurrent control response rate, their use may greatly strengthen the inferences

made concerning the hypothesis of carcinogenicity. ln contrast to their value in
hypothesis testing, however, historical control data seem to provide little additional
information when modellng dose-response relationships (Smythe et al., 1986).




