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CHAPTER 6

MODEL FITTING

6.1 Introduction

As most animal carcinogenesis experiments aim at determining whether or not a
particular treatment increases the risk of cancer at one or more sites, the statistical
methods described so far lean heavily towards techniques for hypothesis testing.
However, many long-term animal experiments are analysed to provide an appropriate
condensation of the information contained in the data and not merely to answer a
yes—no question.

Many statistical models fitted to experimental data have fruitfully influenced the
thinking on chemical carcinogenesis. The multistage model proposed by Armitage and
Doll (1961) has been able to account for various experimental as well as epidemiologi-
cal observations. Age-specific incidence of tumours induced by continuous exposure to
chemical carcinogens has been described successfully by such models (Lee & O’Neill,
1971; Berry & Wagner, 1969), which also predicted increasing incidence with age as
being a consequence of prolonged time since first exposure. This prediction was
confirmed experimentally (Peto et al., 1975).

On the epidemiological side, a marked regularity of age-incidence curves for most
spontaneous human tumours of epithelial origin has been noted (Cook et al., 1969) and
detailed dose-response curves, as observed for the dependence of lung cancer risk on
daily cigarette consumption, show a high degree of consistency with the multistage
theory (Doll, 1971; Peto, 1977; Doll & Peto, 1978). Epidemiological data on the joint
effect of two exposures are also interpretable in terms of the multistage model
(Wahrendorf, 1984). Day and Brown (1980) have explored the multistage model
concerning changes in risk after cessation of exposure. They were able to show both for
experimental and epidemiological data two different types of behaviour under the
multistage model.

An interesting empirical observation for chemical carcinogenesis data was made by
Druckrey et al. (1967). They noted that if d is the daily dose rate and ¢ the median time
to tumour induction (death with tumour), then the relationship, d - t* = constant, holds
for many carcinogens, especially nitroso compounds. This formula is predicted by the
Weibull model (Carlborg, 1981) and has received wide attention in the discussion of
thresholds in chemical carcinogenesis (Chand & Hoel, 1974; Port et al., 1976).

The fitting of statistical models has to compromise between specificity and
identifiability. On the one hand, one would imagine that inserting all relevant
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knowledge about the carcinogenic process into a mathematical model would result
in many parameters which could not all be identified by the limited amount of
information provided from a long-term animal experiment. On the other hand, models
which relate the probability of tumour development throughout life to the dose
administered appear very simple.

The degree of specificity which a model might be allowed to have depends on the
details of the experimental design, including whether and when animals are inspected
for diagnostic purposes and whether and when animals are killed — either by scheduled
sacrifice or by normally occurring deaths. The experimental design also specifies the
schedule of the dose application. Of special interest in this respect are chronic
exposures stopped at a certain time or the application of fractionated doses which can
differ in respect to total dose, number of fractions and time between single doses.

One essential problem with the fitting of statistical models should be stated clearly.
These models are usually fitted to data sets from single experiments done in one strain,
in one sex, by one route of application and by considering tumours at one site.
Consequently, the scope of generalization of one such fit is limited, particularly in the
absence of consistency in studies done under different conditions.

In the following sections, we will give an overview of some statistical models which
have been proposed for the analysis of long-term animal experiments. This will include
simple dose-response models, time-to-tumour models and models based on different
states in the course of the tumour development.

6.2 Dose-response models

As noted in Chapter 3, the probability of tumour occurrence depends on both the
dose and the period of exposure. In many cases, however, the dose-response
relationship at a fixed point in time may be of interest. In the absence of decreased
survival at high doses, for example, the proportion of animals developing tumours
during the course of a long-term study generally increases with dose.

The shape of such dose-response curves can vary widely depending on the agent used
(Fig. 6.1). While the dose-response curve for liver tumours induced in mice as a
result of exposure to 2-acetylaminofluorine (2-AAF) for 24 months is nearly linear
(Littlefield et al., 1980a), other curves may be distinctly nonlinear. The dose-response
curve for liver tumours induced as a result of exposure to gaseous vinyl chloride (six
hours per day for two years) increases somewhat linearly at low doses and then tends
to level off at higher doses (Maltoni, 1975). This plateau effect is thought to be due
to saturation of the metabolic activation mechanism for vinyl chloride in the liver
(Gehring et al., 1978). Conversely, the dose-response curve for squamous-cell
carcinomas of the nasal passage induced as a result of exposure to gaseous
formaldehyde (also six hours per day for two years) shows a marked increase in
response above 5.6 ppm (Swenberg et al., 1983), possibly due to saturation of the
mucociliary clearance mechanism. Finally, the dose-response curve for liver tumours
resulting from ingestion of aflatoxin in the diet (Wogan et al., 1974) increases at low
doses but levels off at high doses as a response rate approaching 100% is reached.

These examples clearly illustrate that the dose-response curves for different chemical
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Fig. 6.1 Examples of dose-response relationships for vinyl chloride (from Maltoni, 1975),
aflatoxin (from Wogan et al., 1974), 2-acetylaminofluorene (from Littlefield et al.,
1980a) and formaldehyde (from Swenberg et al., 1983)
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agents can be quite dissimilar. This kind of variation in shape is also encountered in
radiation carcinogenesis (Ullrich et al., 1976; Ullrich & Storer, 1979a,b; Ullrich, 1980).
In the remainder of this section, we consider the problem of modelling the
dose-response relationship for a given compound in order to obtain a more quantitative
description of the data. We shall consider also the use of such models in estimating the
response rate at doses not included in the experimental protocol.

Some mathematical models

The relationship between the crude proportion of animals developing tumours
during the course of a bioassay and the level of exposure may be described by means of
a statistical model relating the probability of tumour induction P(d) and the dose d.
Statistical or tolerance distribution models are based on the concept that each animal
has its own tolerance to the test compound and will develop a lesion only if that
tolerance is exceeded. The tolerances are presumed to vary within the population
according to some tolerance distribution, G(¢), so that the probability that an animal
selected at random will respond to dose d is given by

P(d) = Pr{tolerance =d} = G(d). (6.1)
A general class of tolerance distribution models is defined by
G(t)=F(a+ Blogr), (6.2)
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where F denotes some suitable cumulative distribution function and o and >0 are
parameters (Chand & Hoel, 1974). Three commonly encountered models in this class
are the probit, logit and extreme value, defined by

X

F(x)= (27r)‘”2j exp(—u?/2) du, (6.3)

F(x)=[1+exp(—x)]}, (6.4)
and

F(x)=1-exp{—exp(x)} (6.5)

respectively. Since under the extreme value model G(t) =1-exp(—at®), where
a =exp(«) and b = f, this model is sometimes called the Weibull model (see Section
6.3).

Stochastic or mechanistic models are based on the concept that a toxic response is
the result of the random occurrence of one or more fundamental biological events.
Under the multi-hit model, for example, a response is assumed to be induced once the
target tissue has been ‘hit’ by k = 1 biologically effective units of dose within a specified
time period. Assuming that the number of hits during this period follows a Poisson
process, the probability of a response is given by

] k~—1 (Ad)’
P(d) = Pr{at least k hits} =1— > exp(—Ad) T (6.6)
j=0 J:

where Ad >0 denotes the expected number of hits during this period (Rai & Van
Ryzin, 1981). When k =1, the multi-hit model reduces to the one-hit model given by

P(d)y=1-e* (6.7)

Incorporation of background response

All of the above models imply that the background response rate P(0) is zero. In
many cases, however, the response of interest will also occur spontaneously in control
animals (Tarone et al., 1981). Spontaneously occurring lesions may be assumed to arise
as a result of a variety of biological mechanisms. Two commonly encountered
assumptions in this regard are independence and additivity (Hoel, 1980). In the first
case, spontaneous and induced lesions are presumed to occur independently of each
other so that the probability of either a spontaneous or a treatment-induced response
occurring is given by

P*(d) = mo+ (1 - no)b(d), 6.8)

where 0 <, <1 denotes the background rate of response (Abbott, 1925). Under
additivity, spontaneously occurring effects are considered to be due to an effective
background dose 6 >0, with

P*(d) = P(d + §). (6.9)

Note that, with the one-hit model, the independence and additivity assumptions are
indistinguishable. A combination of both independent and additive background may be
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represented by the model
P*(d)=my+ (1 — 7o) P(d + 5). (6.10)

Other models

A simple class of tolerance distribution models in which background response arises
in neither an independent nor additive fashion is defined by

P(d) = F(a + Bd), (6.11)

with >0 as in (6.2). When F follows the logistic distribution in (6.4), Cox (1970) has
shown that the uniformly most powerful, unbiased test for positive slope f in the
proportion of animals responding with increasing dose is the Cochran—Armitage test
discussed in Chapter 5. Subsequently, Tarone and Gart (1980) demonstrated the
robustness of this test by showing that it is the locally most powerful for any monotone
increasing distribution F. However, because the model given by (6.11) involves only
two parameters, it is less flexible than those given by (6.8), and may not always provide
an adequate description of the observed dose-response curve.

Armitage—Doll multistage model

Perhaps the most widely applied model in the case of carcinogenesis is the
Armitage—Doll multistage model (Armitage, 1982). In this case, it is assumed that a
cell line progresses through k distinct stages prior to becoming cancerous and that the
rate of occurrence of the ith change is of the form A= a; + B;d, where a;>0 and
B:=0 for i=1,...,k The parameter g« represents the spontaneous rate of
occurrence of the ith change in the absence of any exposure, and the rate is supposed
to be linearly dependent on dose through f;d. The probability of a response within a
given time period is then approximately

P*(d)=1- exp{—-c ﬁ (a; + ﬁid)}, (6.12)

where ¢ >0 (Crump et al., 1976). Noting that the exponent in (6.12) is a polynomial in
dose, this model can also be viewed as

P¥(d)=1- exp{ —go b,.df}, (6.13)

where the b; are subject to certain nonlinear constraints (Krewski & Van Ryzin, 1981).
For simplicity, however, the linear constraints b, =0 are often employed in practice,
providing a more general model than given by (6.12) (Crump et al., 1977).

Pharmacokinetic model

In many cases, a chemical will require some form of metabolic activation before it
may exert its toxic effects (Cornfield, 1977). Rai and Van Ryzin (1983), for example,
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Fig. 6.2 A simple pharmacokinetic model for metabolic fate of a compound
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consider the simple compartmental model shown in Figure 6.2. Here, the administered
dose D,(z) at time ¢ undergoes a transformation 7, to the activated form D,(t) and may
then be eliminated via a second transformation 7,. Each transformation T; is assumed
to follow saturable Michaelis—Menten kinetics (Karlson, 1965, p. 80), with

biD(1)

Rate (T;) = o+ D)’

(6.14)

where b;, ¢;>0(i =1, 2). Assuming that the dose is administered at a constant rate k,
the system satisfies the nonlinear differential equations

dD (1) k- b1 Dy(¢)

6.15
dt ¢+ Dy(¢) ( )
and
dD,(¢) __biDy(r)  byDy(1) . (6.16)
dt c1+ Di(t) ¢+ Dy(¢)
Under the steady state conditions dD,(¢)/dt = 0, it follows from (6.16) that
a,d
;=1+1a d’ (617)
2

where d = D,(¢) is constant, a; = b,c,/b,c; >0 and a, = (b, — b,)/b,c; > —1/M, with M
being the highest dose D;() such that the rate of 7; does not exceed the rate of L. If
both transformations follow linear kinetics, then a, =0 in (6.17) and the effective dose
Dj is directly proportional to the administered dose d.

The probability of a response is assumed to depend only on the steady-state level of
the effective dose D5 in (6.17), say

P(d) = F[D3(d)]. (6.18)
Taking F to be of the one-hit form with an additive constant
F(x)=1—exp{—(a + Bx)} (6.19)
yields the dose-response model
d
=1- {—[0 +6 ( )]}, 6.20
P(d) exXp 1T 0\ 77 0d (6.20)

where 6, =a >0, 6,=Ba;>0and 6;=a,>—1/M. This model can, depending on the
rate coefficients governing 7; and 7,, describe both downward bending curves, such as
that noted for vinyl chloride (saturable activation), as well as ‘hockey-stick’ shaped
curves, such as that for formaldehyde (saturable elimination). Thus, even though the
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dose-response curve follows a simple one-hit model in terms of the effective dose D3, a
variety of curves may still arise as a result of the saturability of the activation and
elimination steps.

More generally, Rai and Van Ryzin (1983) also consider F to be of the form

F(x)=1-exp{—(a+ Bx")}, (6.21)

with y > 0. In this case, the overall dose-response model in (6.20) becomes

Pd)=1— exp{ —[91 + 92(17%9?1) 8]} 6.22)

where 6,= y. The use of the additional parameter 8, allows for additional curvature in
the model P(d) which cannot be accommodated by the pharmacokinetic parameters 6,
and 6;.

Gehring and Blau (1977) considered the somewhat more complex model shown in
Figure 6.3. Once taken up by the body, a chemical C may be either eliminated
immediately or activated to form a reactive metabolite RM. This in turn may be
detoxified or react with cellular macromolecules to form covalently-bound genetic
material (CBG). In this model, it is also possible that the reactive metabolite may be
neutralized by nongenetic covalent binding (CBN). The covalently-bound genetic
material may then be repaired (CBGR) or replicated (RCBG) resulting in the
development of a genetic lesion.

Fig. 6.3 A more complex pharmacokinetic model for metabolic fate of a compound (from
Gehring & Blau, 1977). C, chemical; RM, reactive metabolite; Ce, excreted chemical;
IM, inactive metabolite; CBN, covalent binding, nongenetic; CBG, covalent binding,
genetic; CBGR, repaired covalently bound genetic material; RCBG, retained genetic
programme, critical and noncritical
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This model was subsequently examined in detail by Hoel et al. (1983). They assumed
that all reactions are governed by linear first-order kinetics except for activation,
detoxification and repair, which are allowed to be saturable in accordance with
Michaelis—Menten kinetics. Since replication follows linear kinetics, the amount of
damage is proportional to [CBG], the concentration of CBG. Under this model,
[CBG] provides a measure of the effective dose.

Assuming that the dosing regimen is such that the concentration of a chemical [C] s
proportional to the administered dose, one can use the two nonlinear differential
equations describing the system first to solve for the concentration of a reactive
metabolite [RM] in terms of [C], in steady state, and then to express [CBG] in terms of
[RM].

Considering F to be of the one-hit form (6.18), Hoel et al. (1983) (see also Anderson
et al., 1980) noted that, under this model, the overall dose-response curve could
assume any one of the four shapes shown in Figure 6.4, depending on which of the
activation steps are saturable. With all processes being essentially linear, a linear
dose-response curve results. If only repair or detoxification is saturable, the dose-
response curve will be ‘hockey-stick” shaped. If only activation is saturable, the shape is
similar in form, although inverted. If more than one process is saturable, a
combination of these shapes will occur.

Under this more complex model, the explicit expression for the overall dose-
response model P(d), as in (6.20), is very complicated. For the purposes of describing

Fig. 6.4 Relationship between delivered and administered dose and different pharmacokinetic
conditions (from Hoel et al., 1983)
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actual data, the model in (6.22) may be fitted, however, using standard maximum
likelihood procedures, as described below.

Maximum likelihood estimation

Whatever the specific parametric form of a dose-response model, the probability of
observing a response at dose level d depends on some unknown parameters. In
general, there may be p such parameters 6,,..., 0,, summarized as a vector
0=(04,...,86,), the probability of response being then denoted as P*(d;9).
Subsequently, we shall outline how these unknown parameters can be estimated from
the observed data by maximum likelihood methods. Suppose that a total of n animals
are used in an experiment involving / + 1 dose levels 0 =d,<d, <---<d, and that x;
of the n; animals at dose d; (i =0, 1,...,I) develop tumours in the course of the
study. Assuming that each animal responds independently of all other animals in the
experiment, we find the likelihood ot the observed outcome under any dose-response

model P*(d; 0) is given by
L@ =11 (") -pry, (6:23)

where P} = P*(d;0). Those values § of the parameters  which maximize L(0)
are called ‘maximum likelihood estimates’. Since maximization of L(0) using direct
analytical procedures is generally not possible, the maximum likelihood estimator & of
0 is usually obtained using iterative numerical procedures. Under mild regularity
conditions, it can be shown theoretically that 0 is a consistent estimate for 0 as n —
(Krewski & Van Ryzin, 1981). Under these same conditions, Vr(® — @) is approxim-
ately normally distributed with mean 0 and variance/covariance matrix V = [(v,,)]. The
elements of the inverse of this covariance matrix V™' =[(v")] represent the Fisher
information and are derived through the second derivatives of the likelihood function
L(0) in (6.23):

L 9P} Py .
=3 a5 5 o/ ®ron, (s=1...,p) (6.24)
where ¢; =lim,_,.n,/n>0and Qf=1- PF.

These theoretical results provide the basis for computing the estimated dose-
response model P(d) = P*(d; #) and, when using the estimated covariance matrix of the
parameter estimates, to calculate corresponding confidence intervals. For this purpose,
the matrix [(v™)] is computed at 8 =, the actual values of the maximum likelihood
estimates, and using c; = n;/n. The usual chi-square statistic

I
2 — P (n,PFOY) (6.25)
may be used to assess the goodness-of-fit of P*(d). Provided that the assumed model

P*(d) is correct, the asymptotic distribution of this statistic is chi-square with
(I +1) — t> 0 degrees of freedom.
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Estimation procedures for the multistage model (6.13) are complicated by the
non-negativity constraints on the parameters b;. Because of these constraints, the
asymptotic distribution of the maximum likelihood estimators will generally not be
normal (Guess & Crump, 1978). Similarly, the usual chi-square statistic (6.25) will
generally be inapplicable. Nonetheless, efficient algorithms for obtaining the restricted
maximum likelihood estimators have been developed by Crump (1984) and Hartley
and Sielken (1978).

As an example, consider the following data on liver tumours induced in mice in a
lifetime study of feeding dieldrin (Walker et al., 1973).

Dose (ppm): 0 1.25 2.50 5.00
Response (x;/n;): 17/156 11/60 25/58 44/60

These data, along with the fitted extreme value model, assuming independent
background, are shown in Figure 6.5. The maximum likelihood estimates of the
parameters (+ standard error) are & = —2.46 £ 0.50, f = 1.66 + 0.35 and #,=0.106 +
0.024. As may be expected with most monotonically increasing data sets, the model fits
the data reasonably well, with no evidence of lack-of-fit provided by the chi-square
statistic (p-value >0.4). Similar results may be obtained with other data sets (Fig.
6.6 and Table 6.1) and with the other models discussed above. The fitted dose-response
curves assuming additive background will also be similar, although in this case the
likelihood surface is generally quite flat, and the parameters are thus less well
determined.

Fig. 6.5 Dose-response curve for dieldrin-induced liver tumours in mice fitted under the
extreme value model
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In some applications, interest centres on the added risk over background which,
under the assumption of independence (6.8), would be
P*(d) — P*(0)

1—P*(0)

1(d) = (6.26)
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Fig. 6.6 Dose-response curves for eight compounds fitted under the extreme value model
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Table 6.1 Lesions induced by eight rodent carcinogens
Compound Reference Species  Tumour Duration Dose units
Hexachlorobenzene Arnold et al. Rat Phaeochromo- 2vyears ppm in diet -
{1985) cytoma
Nitrilotriacetic acid Food Safety Rat Kidney 2 years ppm in diet
Council (1978)
Ethylenethiourea Graham et al. Rat Thyroid 2 years ppm
(1975)
N-Nitroso- Terracini et al. Rat Liver 120 weeks ppm
dimethylamine (1967)
Bis{chloromethyl)- Kuschner et al. Rat Respiratory lifetime no. of
ether {1975) exposures
DDT Tomatis et al. Mouse Liver 130 weeks ppm
(1972)
Sodium saccharin Taylor & Rat Bladder 2 years % in diet
Friedman (1974)
Photomirex Chu et al. Rat Thyroid 21 months ppm in diet

(1981)
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In the same way, one may wish to evaluate the dose level corresponding to a certain
level of risk over background, g, say (0<q <1), which would be 4 =I1""(g). The
maximum likelihood estimator of d, is defined by d, = IT17!(g), where 1(d) = [P*(d) -
PHO)]/[1 - P*(0)]. Since Vn (d, - dg) is asymptotically normally distributed with
mean zero and variance

oIl & & JIall
2

=157 A0 an Urss . 7
7 {ad dqu} 2 256.2." (6.27)
an approximate 100(1 — a)% confidence interval for d, is given by

d, + 2,,6/Vn, (6.28)

where z,,, denotes the 100(1 — «/2) percentile of the standard normal distribution, and
6 is an estimate of ¢ obtained by replacing 8 by 0 in (6.27). Other possible confidence
limit procedures, including those based on the asymptotic distribution of the
log-likelihood (Cox & Hinkley, 1974, p. 343), are reviewed by Crump and Howe
(1985).

Two applications of doses associated with certain levels of risk over background are
of particular interest. First, Mantel and Bryan (1961) proposed the use of some suitably
low risks (for example, g =10"° as a means of defining a ‘virtually safe’ level of
exposure in the absence of a threshold in the dose-response curve. It is now widely
recognized that estimation of such extreme risks is subject to considerable model
uncertainty. Extrapolation of the data on 2-AAF-induced liver tumours shown in
Figure 6.7 (Littlefield et al., 1980a), for example, using the probit, logit, extreme
value, multihit and multistage models, yields estimates of virtually safe doses spanning
several orders of magnitude. Because of this uncertainty, it has been proposed that
some form of linear extrapolation be used to obtain a lower limit on such extreme
doses. The assumption of low-dose linearity follows, in fact, immediately from the
assumption of additive background, since in that case a simple Taylor expansion shows

Fig. 6.7 Dose-response curve for 2-acetylaminofluorene(2-AAF)-induced liver tumours in mice
fitted under the Weibull model and performance of six extrapolation procedures
(from Krewski et al., 1984b). X, linear extrapolation; M, multistage model: W, Weibull
model; L, logit model; G, gamma multi-hit model; P, probit model

0.5 — Dlose response 102 Low-dase
extrapolation

@
P
=
=)
=%
@D
8 3
S 025 T 108
> : v
Pr-—d 1%
= 8
=
= a5
=]
i .. 108
0 { XM WL, G P
I 1 I I I [ 1
0 75 150 106 102 102

Dose d {(ppm}



120 GART ET AL

that
I1(d) = (0)d (6.29)

for small d, where f(d) = dI1(d)/dd. One simple procedure which may be used for this
purpose is to extrapolate linearly from some higher quantile such as dg¢, (Van Ryzin,
1980). (For the 2-AAF data, this form of linear extrapolation yields results close to
those predicted by the multistage model.) A similar form of linear extrapolation has
also been proposed by the World Health Organization (1984, p. 50).

The second application of the above concept, which can also be termed as estimating
certain quantiles of the dose-response curve, is to derive a measure of carcinogenic
potency. The measure proposed by Clayson et al. (1983) is defined by

Cq =K — loglo dq, (6.30)

where the dose d is expressed in umol/kg body weight/day. The logarithm of dose is
used to put the index on an order-of-magnitude basis, with the minus sign associating
large values of C, with low values of d,. The constant K is set equal to 7 in order that
C, will usually lie in the range 1-10. By choosing a moderate value of g, say
0.10= ¢ =0.50, the model dependency encountered in estimating lower quantiles is
avoided.

Despite its simplicity, the index C, seems to provide a useful method of ranking
animal carcinogens. Values of C, with g =0.25 for a selection of suspected and
well-known animal carcinogens are shown in Table 6.2. Saccharin, the carcinogenicity
of which has been widely debated, is assigned a potency index of 1.8, whereas the
highly potent 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) has a value of 9.1. For a
more complex ranking system that takes into account other factors, such as the
spectrum of neoplasia induced and genotoxicity, the reader is referred to Squire (1981)
and the related discussion by Crump (1983) and Theiss (1983).

Other quantitative measures of carcinogenic potency have also been proposed.
Historically, Twort and Twort (1930, 1933) and Iball (1939) proposed several measures
of potency in an attempt to summarize the data obtained from their experimental
studies. For example, one of their measures was based on the time at which 25% of the

Table 6.2 Potencies Cg,5 of some selected compounds

Compound (Reference) Species Site Potency
C0‘25

Saccharin Rat Bladder 1.8
{Scientific Review Panel, 1983)

2-Acetylaminofiuorine Mouse Bladder 4.3
{Littlefield et al., 1980a) Liver 4.4

DDT Mouse Liver 5.0
{Thorpe & Walker, 1973)

Aflatoxin Rat Liver 8.6
{Wogan et al., 1974)

Dioxin Rat Thyroid 9.1

{National Toxicology Program, 1982)
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animals would have developed tumours. Irwin and Goodman (1946) subsequently
considered other related measures of potency, and noted that the different indices
tended to give somewhat similar results. Bryan and Shimkin (1943) suggested the use
of the dose required to induce tumours in 50% of the exposed animals, the quantity on
which Meselson and Russel’s (1977) index is defined.

More recently, Jones et al. (1981) considered the use of the time until 50% of the
exposed animals would die from the tumour of interest as a measure of potency.
Crouch and Wilson (1981) took the slope parameters in the one-hit model in (6.7) as a
measure of potency. Noting that the probability of tumour induction P(d) = Ad for low
levels of exposure d, Crouch and Wilson also proposed using the value of A as a means
of estimating the response rate P at a given dose d. This will be reasonable when the
one-hit model, which is essentially linear even at moderate doses, provides an adequate
description of the observed dose-response curve, but will be less satisfactory when the
dose-response curve is highly nonlinear.

Sawyer et al. (1984) proposed a potency index based on the TDso, or dose estimated
to induce tumours in 50% of the exposed subjects. The method provides for the effects
of both dose and time, and, like the method of Crouch and Wilson, is based on a
simple exponential or one-hit model for the effects of dose. In cases where the time to
tumour occurrence may not be directly observable, moreover, Sawyer et al. used the
time to death with tumour present as a surrogate for the observable failure time (see
Peto et al., 1984, for further discussion of this point).

Fig. 6.8 Range of carcinogenic potency in male rats (from Gold et al., 1984)
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The index proposed by Sawyer et al. (1984) has recently been calculated using an
extensive data base of known animal carcinogens compiled by Gold et al. (1984).
Expressing the TDs, in terms of the daily intake of the compound relative to total body
weight, this analysis revealed potencies varying over more than seven orders of
magnitude (Fig. 6.8). Only a few nanograms of TCDD, for example, were required to
induce a 50% tumour occurrence rate during the course of a rodent lifetime, whereas
several grams of the food colours FD & C Red No. 1 and FD & C Green No. 1 were
required to elicit the same rates of response.

6.3 Time-to-tumour models
Why use time-to-tumour models?

There are a number of situations in which the use of models based on time-to-
tumour information has advantages. For example, when survival differs very greatly in
different groups, one may be able to make fuller use of the data. In the extreme case,
where near the end of an experiment there are survivors in only one group, most of the
methods described so far cannot make use of any tumours detected in that group, as
there is nothing with which to compare them. Where a parametric time-to-tumour
model can be fitted, however, these data can be used to make more precise group
comparisons.

Time-to-tumour models may allow one to present the results fully in a concise
manner, which allows direct comparison with results from other comparable experi-
ments. As we shall see, it is often possible to fit parametric models in which certain
parameters, common to all groups, describe the general shape of the tumour incidence
or survival curve, while a further single parameter, estimated separately for each
group, describes the strength of the treatment effects. If common shape parameters are
used, the strength parameters can be used to compare directly the results of different
experiments, which would not be possible for methods based on testing a null
hypothesis.

Graphical presentation of the observed and fitted time curves for tumour onset in
treatment and control groups can be used to indicate whether there might be any
interaction between the effect of treatment and time that should be investigated in
more detail. The null hypothesis methods may, for example, not pick up a situation in
which treatment increases tumour incidence early on in the study but decreases it later.

Time-to-tumour models are also of particular use in experiments specifically aimed at
characterizing the mode of action of the carcinogen being tested. The shape of the
time-response curve may assist in indicating whether the animal model used is apposite
to the human situation where information on time-response may also be available.
Furthermore, especially in more complex designs such as stopping experiments, it may
give insight into whether the carcinogen had initiating or promoting action.

Finally, as noted in the previous section, time-to-tumour models may allow a more
reliable method of low-dose extrapolation than those based on percentages of animals
with tumours, especially where high doses markedly reduce mortality.

There are two main disadvantages of time-to-tumour models. One is the need to
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make the additional assumption, as compared with nonparametric methods, that
tumour incidence follows a particular parametric relationship with time. A poor choice
of relationship can affect conclusions as to the carcinogenicity of the treatment under
test. The second is that, generally, far more extensive computing is required.

A general formulation

In the past, time-to-tumour models have mainly been applied to visible tumours.
However, in recent years a number of attempts have been made to consider the more
general situation where tumours may also be fatal or incidental (for example, Hartley
& Sielken, 1977; Kodell er al., 1982a; Peto et al., 1984).

A simple way to model a long-term animal experiment is illustrated in Figure 6.9,
where the possible states an animal can be in are given as boxes, and the connecting
arrows indicate possible transitions (Kodell & Nelson, 1980). In this model, an animal
starts in a normal disease-free state (N) and may at some time either develop a tumour
(T) — or perhaps more precisely be in a state where a tumour can be detected — or die
from a cause unrelated to the tumour of interest (Dyz). An animal with a tumour may
also subsequently die from this unrelated cause, or may die because of the tumour

(Dr).

Fig. 6.9 [Illustration of illness and death states with possible transitions in rodent bioassay;
N, normal; T, tumour; Dy, death from tumour; Dy;, death not from tumour (from
Kodell & Nelson, 1980)

i

This model is aimed at the types of observation which can arise from a long-term
experiment. The assumption that a transition is made from a normal state to a state
where the tumour is detectable is simplistic, inasmuch as it does not take into account
details of the underlying biological processes. However, it would not in practice be
possible to identify all of these states, even by increasing the number of investigations.
Even in the model proposed, the information on cause of death, required to distinguish
between Dy and Dyr when a tumour is present, is often difficult or impossible to

obtain.
Three random variables may be used to describe the above model:

Ve

(a) X: time to onset of tumour, or transition time from the normal state (N) to the
tumour-bearing state (T

(b) Y: time to death due to tumour, or transition time from the normal state (N) to
the death-from-tumour state (D7)
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(c) Z: time to death from an unrelated cause, or transition time from the normal
state (V) to the death-not-from-tumour state (Dyr).

The random variable Z is not of major concern in drawing statistical conclusions on
the process of carcinogenesis and is not considered further, except with regard to
assumptions about Z needed to form the likelihood functions upon which statistical
inferences may be based. The two random variables X and Y, however, which have to
satisfy the condition X =Y, are of major interest for the statistical inference.

Let Gx(¢) and Gy(¢) be the distribution functions of X and Y, or Sx(¢) =1 — Gx(t) =
pr(X =1¢) and Sy(¢) =1 — Gy(t) = pr(Y =) the survivor functions of X and Y.

In addition, we consider for any index X or Y the density f(¢) = dG(¢)/dt, the hazard
function A(t) =f(¢)/S(t) and the cumulative hazard function, A(¢) = [§ A(u) du. Note
that S(¢) = exp[—A(?)].

The hazard function A(¢) is an extremely useful tool for modelling distributions of
random variables which represent the time to a well defined event. It can also be
defined as the conditional probability that the event of interest occurs at time ¢, if it has
not occurred before that time. Let X be the random variable of interest:

Ag(t) = lim pr(tSX<t+At|X2t)=fX(t) .
Ar—0 At Sx(t)

The hazard function is therefore also denoted the age-specific failure rate.
In a long-term animal experiment, considering visible or occult tumours, four
different events can be observed at a certain time point:

A. appearance of a visible tumour

B. death caused by the tumour of interest (fatal context)

C. death from unrelated cause, tumour of interest present (incidental context)
D. death without tumour of interest.

It has to be noted that deaths under C and D, from a cause unrelated to the tumour
of interest, can occur in scheduled sacrifices. Thus, animals killed because of the
experimental design or other external reasons represent observations of type C and D,
depending on whether the tumour of interest is seen or not seen in the particular
animal.

The contribution to the likelihood function of the four types of observations,
expressed in terms of the two random variables X and Y, are as follows:

A. density of X: fx(0)

B. density of Y: fy(0)

C. pr(X<t=Y): Sy(t) — Sx ()

D. survivor function of X: Sx(¢).
In a given experiment, let ¢, ¢,, . .., tx be the distinct times at which events of the
above type are observed; ay, by, ¢, and d, (k=1, ..., K) are the number of events of

type A, B, Cor D at time #,. The latent-failure-time approach is taken in the formation
of likelihoods below. Although this is the most common approach to the competing
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risks problem, strong yet unverifiable assumptions are required to form the likelihoods
for occult tumour data (Kalbfleisch et al., 1983).
We consider four typical types of experiments:

(1) Visible tumours

As the time of onset is observable directly, there is no interest in the random
variable Y; only events of the type A and D are observed, leading to a likelihood
function

L,= kll {Fx (6} Sx (1) } .

With fx(£) = Ax(£)Sx(t) and Sx(r) = exp(—Ax(t)), the log-likelihood function is often
expressed as

LLi= 3 (o, loglhx(t)] - (ax + d0)Ax(to),

using only the hazard function and its cumulative version, which are often the basic
entities on which parametric models are formulated.

(i) Occult tumours — all tumours observed in a fatal context

In this special situation, where no tumours are found in animals dying from
unrelated causes, only events of types B and D are observed. The likelihood function is

L,= kI;Il {fr(te)}{ Sy (1) }*

or, as above, the log-likelihood function

K
LLy= 2, {bclog[iy(t)] = (be + d) Ay (%)),
k=1
which are formally identical to L, and LL,, respectively.

(iii) Occult tumours — all tumours observed in an incidental context

In this case Sy(f) = 1, as no deaths due to the tumour of interest are occurring, only
events of the types C and D being observed. In order to form a likelihood for this case
it must be assumed that tumour-bearing and tumour-free animals of the same age have
identical hazard functions for death unrelated to tumour (that is, intercurrent
mortality). The likelihood function under this assumption is

Ly= 1<1—=I1 {1 = Sx(t) }*{ Sx(t) .
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The log-likelihood function expressed in terms of Ax(¢) would be
K
LLy= 2, {c; log[l — exp(—Ax(t)] — deAx(te)}-
k=1

(iv) Occult tumours — observed in fatal or incidental context

In this most general case, events of the types B, C and D are observed. In order to
form a likelihood for this case, it must, of course, be assumed that each tumour can be
reliably classified as either fatal or incidental. In addition, it must be assumed that
tumour-bearing and tumour-free animals of the same age have identical hazard
functions for death unrelated to tumour. The likelihood function under these
assumptions is

L,= 1<1_=I1 {fr (1) Sy () — Sxc(te) Y { Sx (1) } .

Kodell et al. (1982a) pointed out that

Sy (1) = Sx(2) = [1 = Q(O]Sx(0),

with Q(t) = Sx(t)/Sy(t) = pr(X >t | Y > ¢) being the conditional probability of tumour
onset after time ¢, given tumour-free survival through time ¢. Even under the strong
assumptions noted above, the function Sy(¢f) does not have a simple interpretation in
terms of time to death due to tumour alone (that is, independent of the influence of
time to onset of tumour).

From this it follows that

K
L= kﬂ (At} (S (1)} {1 = Q1) }*{ Q (1)},
=1
which can be written as the product of two parts. One,
’ K
LY = T] )y {(Sy(t)y*+,
k=1

depends on Sy(¢) only; the other,

LY = kl;ll {1-0@t)}*{Q(t)}™,

on Q(¢) only.
The two components of the log-likelihood function are

LLgl) = ﬁ {bk logMY(tk)] - (bk + e+ dk)AY(tk)}’

which is similar to LL, above; and, taking Ay(t) = —log Q(¢), the second part

LLY = kgl {ci log[1 — exp(—Ao(t)] — diAo(t)},

which is similar to LL;.
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In the case where all tumours are fatal or visible, nonparametric estimation of the
survivor functions can be made by the Kaplan—Meier method, as discussed in Section
5.3. Where all tumours are incidental, nonparametric estimation can be done by the
method of Hoel and Walburg, as discussed in Section 5.5. Kodell et al. (1982a), who
consider the fourth, most general case where tumours may be either fatal or incidental,
note that the Kaplan-Meier estimator can be applied to the first part, LY or LLY, to
estimate Sy(f). With the assumption that the ratio Q(¢) is monotonically decreasing,
they then derive a nonparametric maximum likelihood estimation for Sx(t) as well.

Dinse and Lagakos (1982) weaken the restriction of monotonicity of Q(¢t) and
propose to estimate Sy(¢) in the class of all survivor functions that are stochastically
smaller than Sy(¢). The Kaplan-Meier estimate of Sy(¢) is used as a starting point in an
iterative approach. Given this estimate, LL{ is maximized for Q(f) under the
restriction that the resulting estimate must be a monotone decreasing survival function.
This is enforced by applying techniques of isotonic regression. The estimate for Sx(?)
thus derived is then inserted into the original likelihood function, which is maximized
again for Sy(¢). This process is iterated until convergence.

Turnbull and Mitchell (1984) have proposed a simpler algorithm, by addressing the
problem in terms of the joint distribution of time of onset of tumour (X) and time of
death from tumour (Y), which have marginal distributions 1 — Sy(r) and 1 — Sy(t). They
point out that the joint distribution can have positive mass only on a finite set of
disjoint intervals in the (x, y)-plane, which can be constructed from the observations.
They then use the EM-algorithm to estimate the probability masses to be attributed to
these intervals. The marginal distributions, and hence the survivor functions Sx(¢) and
Sy(t), can then be derived from the estimate of the joint distribution.

Choice of parametric model

The ideal model to use would clearly be one derived from sound biological theories
of the carcinogenic process. In practice, of course, understanding of the carcinogenic
process is far from perfect, but one can still aim for a model which both fits in with
available knowledge and fits observed data at least reasonably well. By far the most
attention has been given to the multistage model and, in the case of carcinogenesis
experiments in which the dose has been applied continuously or at regular intervals, to
the use of the Weibull distribution derived from it. For this reason, and also because it
has proved satisfactory for analysis of a considerable number of data sets, we will
consider this in detail first and turn our attention to other models only at the end of this
section.

Multistage models and derivation of the Weibull distribution

Armitage and Doll (1954) observed that, in humans, the age-specific incidence rates
of many types of cancer are proportional to a power of age (or time from first
exposure) and showed that this result would be expected under a multistage model.
This model makes the following simplifying assumptions:

(i) that there is a large and constant number (N) of cells at risk,
(ii) that all the cells start in an identical state,
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(iii) that at least one of them has to undergo a fixed number k of stages or
transformations before a tumour appears, and

(iv) that any cell in a given stage has the same very small, but constant probability
per unit time of commencing the transformation into the next stage (kinetic
rate-constants 8,, 8, - - - §,).

Under these assumptions, the number of cells that have undergone the first kK — 1
stages by time ¢ is given by

t Uge—q Uy NS, 6. fe=1
NK—IzNjék—lf 61(—2' . J' 61 dul duz_ . 'dux_1= 1V2 K—1
0 0 0 (x —1)!

If it is further assumed that each transformation takes a constant time
(wy, W, - - - W), the formula for the incidence rate I(¢) becomes

1(t) = pr(t —w)<™,

where f=N6,6,- - - 6,/(x!) and w=}/_, w, is the sum of the constant times of the
transformations, which can be seen as the minimal time to tumour. This is a particular
way of parametrizing the Weibull distribution. The survivor function is then

S(t) = exp(—B(t — w)*). (6.31)

While this model is clearly an over-simplification, it may be expected that if cancer
mechanisms in animals and humans are of this type, incidence rate data from
laboratory animals, which are often inbred and presumably therefore more homoge-
neous, may follow a Weibull distribution even more clearly than for humans. The
suggestion of using Weibull distributions to analyse continuous carcinogenesis experi-
ments in animals where time-to-tumour is observable was first made by Pike (1966).

From a study of the way in which the formula was derived, it should be clear that k
and w are inherent properties of the process being studied and should not vary between
groups within an experiment studying the same cancer type in the same species of
animals. The parameter 8, on the other hand, should be affected by treatment,
assuming that the effect of continuous application of a carcinogen will be to alter at
least one of the kinetic rate constants. In an experiment with several dose groups,
i=1,..., 1, say, one would consider different parameters B4, . .., B, for the Weibull
distribution of time to tumour for the animals from the respective groups, or, as will be
outlined later, one would model the dependence of the f; on the dose level or other
covariates.

Fit of Weibull distributions to visible tumour data

Weibull distributions have been used mainly in the literature to analyse visible
tumour data, often from mouse skin-painting experiments widely used in the 1960s and
1970s to evaluate the carcinogenicity of tobacco-smoke condensates and of other
chemicals. In the next few sections we consider these applications in some detail,
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before turning to more recent work using Weibull distributions in the analysis of
tumours not visible in life. Some of the ideas used in the visible tumour analyses (for
example, for significance testing of treatment effects) have natural analogues for
nonvisible tumours, but are described in detail only for the former situation.
Maximum likelihood estimation of the parameters 8, xk and w of the Weibull
distribution is discussed in detail by Peto and Lee (1973). The contribution of the
log-likelihood LL; of an animal dying without a tumour at time ¢’ is given by

log[Sx(t')] = —B{" —w)~,

while that of an animal getting a tumour at time ¢” is given by
log[Ax(t")Sx(£")] =log B + log x + (k — Dlog(¢" — w) — B(t" — w)* .

To illustrate the fitting of Weibull models, consider the cigar-smoke condensate data
(Section 4.2). The maximum likelihood estimates (and standard errors obtained from
the inverse of the information matrix) of w, x and B for the three cigar-smoke
condensate groups are given in Table 6.3.

Table 6.3 Parameter estimates of Weibull models fitted to the three groups,
from data on cigar-smoke condensate

Low dose Middle dose High dose
W+ SE 19.5+ 8.6 30.4+10.1 345+4.9
K+ SE 1.7+0.6 2.3+0.8 20105
(B + SE)x 10* 2.13+5.95 0.62+2.25 3.17 £ 6.61
Log-likelihood —131.622 —164.084 —180.537

Because the estimates of k and w have not been constrained to be equal in the three
groups, the estimates in the table do not provide a particularly useful summary of the
relationship between cigar-smoke condensate dose and tumour incidence. The standard
error estimates are relatively large due to the fact that the likelihood functions are
quite flat around their maxima. Accordingly, when making inferences about the
Weibull parameters, likelihood ratio tests should be employed rather than tests based
on the asymptotic normality of the maximum likelihood estimators.

Estimated percentiles often provide a useful summary of the Weibull time-to-tumour
curves. Estimates of percentiles can be obtained directly from the estimated tumour
incidence curves, and standard errors of estimated percentiles can be derived using the
delta method (Miller, 1981b, pp. 25-27). Estimates of the 25th percentile (denoted T;s)
and the 50th percentile (that is, the median, denoted Ty,) for the three cigar-smoke
condensate groups are as follows:

Low dose Middle dose High dose

Tys + SE 84.5+8.3 71.4+4.2 62.5+3.1
Too + SE 127.6 £ 19.2 90.8 + 4.8 77.5+3.5
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The percentiles provide a much more useful summary of the Weibull curves than was
provided by the estimates of the three Weibull parameters. They indicate that the
tumours are appearing earlier with increasing dose of cigar-smoke condensate. The
standard errors of the percentile estimates, with the exception of the median for the
low-dose group, are less than 10% of thei. corresponding estimates. The standard error
for the estimated median of the low-dose group is large because the estimate, in this
case, represents an extrapolation outside the observed time period.

To formulate the full log-likelihood function LL,, in the situation of common values
for w and x but different parameters ; (i=1, ..., ) for the different experimental
groups, we have to extend our notation slightly. Let a,; and d,; be the number of
events of type A and D observed at time ¢ in group i(k=1,...,K;i=1,...,1).
Then we have

K I
LL,= kz > [aw{log B; + log x + (x — Dlog(ty — w)} — (ax + di) Bt — w)*].

=1 i=1
Maximization of this log-likelihood function, which dependson 8,, ..., B;, kand w, is
not straightforward, but can be achieved satisfactorily by a modified Newton—Raphson
iterative procedure.

For the cigar-smoke condensate data, the maximum likelihood estimates of w(xSE)

and x(+SE) are 17.5(+6.45) and 2.8(+0.5), respectively, and the maximum likelihood
estimates of f; are as follows:

Low dose (i = 1) Middle dose (i=2) Highdose (i=3)

(B, £ SE) x 10° 2.28+5.22 4.50 +10.22 7.69 +17.28

The parameter estimates now are indicative of an increasing tumour rate with
increasing dose of cigar-smoke condensate. The log-likelihood for this model, with
common w and x but different B;, is —481.173. Fitting a model with a common S in
addition to common w and k gives a log-likelihood of —491.353. Thus, the likelihood
ratio test statistic for Hy:f8, =B, = f; is computed as 2(491.353 — 481.173) = 20.36.
Comparing this computed value to a table of percentiles for the chi-square distribution
with two degrees of freedom (in general, / —1 degrees of freedom) we find that
p =0.00004, indicating a strong effect of cigar-smoke condensate on tumour incidence.
The sum of the log-likelihoods from the initial fits of separate Weibull models to
each dose group is —131.522 — 164.084 — 180.537 = —476.143. Thus, a test of the null
hypothesis that w; = w, = wy and k; = k, = k; can be based on the likelihood ratio test
statistic, which is computed as 2(481.173 — 476.143) = 10.06. Comparing this computed
value to a table of percentiles for the chi-square distribution with four degrees of
freedom (in general, 2/ —2 degrees of freedom), we find that p =0.039, indicating
some evidence of heterogeneity. It is interesting to note that in spite of this evidence
that the assumption of common w and x may be invalid, the likelihood ratio test
statistic for Hy:f;=f,=p; differed only slightly from the log-rank test statistic
calculated for the cigar-smoke condensate data in Section 5.6 (that is, X%, = 20.16).
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Peto and Lee (1973) discuss various possibilities for proceeding in the case of known
or unknown parameters k and . Of particular importance is the situation in which the
main interest is in between-treatment comparison, that is, in the relative magnitude of
the fB; values. Then, rather than carry out full estimation of x, w and Bi, it is
reasonably satisfactory, and much simpler computationally, to fix ¥ and w values from
previous experience and compute the §; from the formula

ﬁi = Si/vi:

where s, = Y.K_, a,; is the number of animals bearing tumours in the ith group and
v; = oy (8 — w)*, the summation being over both times of tumour and times of death
without tumour in group i. Pike (1966) has demonstrated that the ratio of B’s between
different groups is virtually independent of the actual values of x and w chosen,
provided the (k, w) pair is not too far from the best fitted values. Where k and w are
known, the asymptotic variance of §; is given by var 8; = B?/s,.

Goodness-of-fit to the Weibull distribution can be tested by dividing the experimen-
tal time period into J intervals (7;=0, T;]}, (T}, T3], . .., (T,—;, T;]. Within each
interval one compares the observed number of animals in the ith group first developing
a tumour in the jth interval O; with the number expected E;. E; is calculated by
E; = Bv;, where j refers to the interval (j=1,...,J ), and v; is calculated by
summing, for each animal of group i surviving and tumour-free at 1._,, the term
(¢* = w)* = (L= — w)*, where t* = min(T;, ¢,), that is, the time to death or tumour for
animals that experience one of these events during the jth interval, or the upper limit
of the interval for the remainder. If the numbers of tumours are too small per group, it
will often be useful to combine these O, and E; values over groups for each time
interval:

1 I
i=1 i=1

The statistic X*=Y_, (O; — E;)’/E; should then produce an approximate chi-square
variable on J —1 or J —3 degrees of freedom, depending on whether x and w were
assumed to be known or were fitted from the data.

Treatment effects: estimation and significance testing

If x and w are known or have been estimated from the data, then the log-likelihood
for an I group experiment is given by

I I
LL = 2 S; 10g ﬂi - z ﬁivi.
i=1 i=1

If the parameters f8; for each group depend on certain covariates as explanatory
variables (dose, carcinogen, method of application, etc) z; - - - z,, where z;, is the
value of the uth variable in the ith group, then it is convenient to relate B; to the z;, by

the expression

P
log Bi= 2, 0,z
u=1
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or
P
ﬁi = exp 2 guziu)
u=1

where the 6, are regression coefficients to be estimated. It can be said that a log-linear
model for the S; is used. The log-likelihood function then becomes

I P { P
LL = 2 S; Z 0.z, — 2 U; exp E 0,z,.
i=1 u=1 i=1 u=1

Multiple regression methods based on maximum likelihood estimation are used for
this problem. Likelihood ratio tests can be employed to investigate the significance of
certain covariates. Let LL™ be the log likelihood of a given model with a certain
number of covariates. Inclusion of d further covariates alters the fitted log likelihood to
LL®. Under the null hypothesis that the regression coefficients 6, for the newly
included covariates are zero, 2(LL™" — LL®) should be approximately chi-square-
distributed with d degrees of freedom. For detailed illustrations, see Peto and Lee
(1973). .

Aitkin and Clayton (1980) have published a computer program to fit such regression
models to possibly censored failure-time data as they arise in this context. Their
program is developed in the framework of the GLIM package (Baker & Nelder, 1978)
for fitting generalized linear models.

Support for the model

The fourth assumption of the multistage hypothesis underlying the Weibull distribu-
tion implies that, if treatment is continuous, the Kinetic rate-constants for each stage do
not depend on the age of the animal. It follows that, provided the carcinogen affects
the first stage of the process strongly enough for it to be a reasonable approximation to
assume all observed tumours to have arisen because of this, the age-specific incidence
rates will depend wholly on the duration of treatment and not at all on age per se.

In a large experiment carried out by Peto et al. (1975), 3,4-benzo[a]pyrene (BP) was
applied to the skin of mice in four groups of increasing size starting at 10, 25, 40 and 55
weeks old, respectively. As can be seen from Figure 6.10, the percentage of mice
without a tumour, when plotted against age, differed markedly between the four
groups. However, when plotted against treatment duration, the four groups were
virtually identical, as expected from multistage assumptions. Having shown that the
relationships between tumour incidence and duration in the four groups were not
significantly different, Peto et al. (1975) combined the results of the four groups to
illustrate the overall fit to the Weibull distribution. This is shown in Figure 6.11; it is
obvious that, over the 100-fold range of incidences from 0.25% per fortnight up to the
massive rate of 25% per fortnight observed after 90 weeks of regular BP administra-
tion, the points did approximately fit the theoretical straight line obtained by taking
logarithms of the Weibull equation I = B(t — w)*. The multistage model also predicts
that, if a carcinogen has an effect directly proportional to dose on each of ¢ (of )
kinetic-rate constants, and if the dose applied is sufficiently large for the background
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Fig. 6.10 Percentage of tumourless mice against (a) age or (b) duration of exposure to
benzolalpyrene {from Peto et al., 1975)
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rate-constants to be neglected for those c stages of the cancer process, the age-specific
tumour incidence rate will then be proportional to dose to the power of c. Thus, if, say,
stages two and three of a five-stage process are affected linearly by treatment, d is
dose, 8; are background rate-constants and ¢; is the increment in rate-constant per unit
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Fig. 6.11 Incidence rates of 10-mm epithelial tumours at successive fortnightly chartings
against duration of benzo[alpyrene (BP) application, on a log-log scale from 28
weeks onwards. (The points are statistically independent, and 90% confidence
intervals are indicated.) {from Peto et al., 1975)
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dose for affected stages, the Weibull parameter 8 will be proportional to
61(82 + ¢2d) (05 + Pp3d)646s.
As d becomes large, this approximates to
816,05¢,¢,d*

Another way of testing whether the observed failure times comply with the Weibull
distribution is based on the fact that for the Weibull distribution loglog[1/S(f)] =
log B + K log(t — w). Note that the left-hand side can also be written as log[—log S(¢)].
Using a nonparametric estimate of the survivor distribution S(¢) (Kaplan—Meier
estimate discussed in Section 5.3) and plotting its above transform against the
logarithm of time provides a simple check of the model.

Lee and O’Neill (1971) analysed an experiment in which BP was pamted con-
tinuously at 6, 12, 24 and 48 ug per week on four groups of 300 mice. They found that
not only could skin tumour incidence be well described by a Weibull distribution with x
and w common to all four groups, but that § was proportional to dose squared. As can
be seen in Figure 6.12, the plots of loglog[1/S(¢)] against log(t —17.70) form
approximately parallel equidistant straight lines. The slope of the lines, 2.95, estimates
k and is not significantly different from an integer value as suggested by the model. The
average vertical difference between the lines is almost exactly twice the logarithm of
the ratio of successive doses implying ¢ =2 and thus the results are consistent with a
multistage hypothesis in which BP affects two out of three of the stages of the process.
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Fig. 6.12 Fit of Weibull distribution to data from a skin-painting experiment with
benzola]pyrene in mice (from Lee & O’Neill, 1971)
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Lee et al. (1977) describe the analysis of a series of ten mouse skin painting
experiments in which there were a total of 55 treatment groups consisting of either
whole cigarette smoke condensate (SWS) or various fractions of it tested at varying
dose levels. Common values of k =3.05 and w = 11.29 were fitted to the skin tumour
data by maximum likelihood methods and the following linear model for the remaining
Weibull parameter

log B; = u + a; + q (log dose;)

was fitted to the responses for the ith treatment (fraction) and jth dose level. This
approach leads to a simple description of the results in terms of the ‘tumorigenic ratio’
which measures the activity of the fraction relative to whole-smoke condensate on a
weight-for-weight basis.

Druckrey (1967) reported quantitative dose-response relationships incorporating
time to response information for a variety of chemical carcinogens and established the
now well-known relationship

d - t" =const.,

where d is the daily dose and ¢ the median ‘tumour induction time’. This empirical
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relationship can be seen as a corollary of the Weibull model (6.31) (Carlborg, 1981).
Consider w =0 and the parameter § being proportional to some power of the daily
dose d, that is, B = « - d™. The absence of a constant, not dose-dependent term in this
submodel for B implies a zero background response. Solving (6.31) for the median
induction time gives

0.5 = exp(—ad™t")

or
dr* = {(log 2)/ a}™ = const.

with n = k/m.

Noncontinuous exposure

Although the examples considered above concerned only the analysis of experiments
in which skin tumours were produced in mice by regular skin painting, a Weibull
distribution has also been successfully fitted to experiments with rats in which a single
intrapleural inoculation of asbestos resulted in mesotheliomas of the pleura (Berry &
Wagner, 1969; Wagner et al., 1973). There are two theoretical reasons why a Weibull
distribution might fit in this situation. One is that, although the injection of asbestos is
given as a single dose, the asbestos is not easily destructible and remains in the animal
for a considerable time after injection, thus simulating continuous exposure. The
second is that, in the multistage model, if the effect of a single exposure is so large that
a substantial proportion of cells at risk are transformed very rapidly through the first
K™ stages, with a subsequent tumour occurring only after background transformations
cause the remaining x — k* transformations, the incidence rate will still obey a Weibull
distribution but with a parameter k - x* and not k. :

In other experiments, such as those described by Day and Brown (1980), animals
have been exposed for varying lengths of time and then treatment has been stopped. It
is clear that in many of these experiments a simple Weibull distribution does not fit the
observed response. This is not surprising, as the fourth assumption of the multistage
hypothesis will not hold since kinetic rate constants of the stages affected by treatment
will presumably change on stopping treatment. A number of workers have considered
the mathematical implication of the application of multistage models to ‘stopping
experiments’ (Lee, 1975; Whittemore & Keller, 1978; Day & Brown, 1980; Parish,
1981). For example, in a three-stage model in which treatment causing Kinetic rate
constants a;, a, and a3 was applied up to time S and then stopped, causing reversion
to background kinetic rate-constants &,, &, and &,, the incidence rate at time
T (>S +w), in the simplified situation where the waiting time w all occurs after the
final transformation, is given by

N[ oY 20 P\ o

’

T—-S—w)
+ a/16263S(T - S - W) + 616263 (—_'—ui')—‘]

2

the above references give details of formulae in more general situations (k stages
rather than three; individual waiting times for each stage). It should be noted that the



MODEL FITTING 137

shape of the incidence curve with time after stopping depends on which stages it is
assumed that the carcinogen affects. Thus, if only the first stage is affected
(a1>8,, @, =d,, a3=0;), the fall off in incidence compared with continuous ex-
posure will be much less pronounced than if later stages are affected. In particular,
incidence will tend to be approximately constant for some time after stopping if the
penultimate stage only is affected, and will tend to drop sharply to background levels
after stopping if the final stage is affected. Lee (1975) has used maximum likelihood
methods in an attempt to distinguish formally between hypotheses in which a
carcinogen does and does not affect a certain stage or stages. However, the
computation involved is considerable.

Further discussion of details of analysis of these special experimental situations is
outside the scope of this monograph, although it is worth pointing out that the methods
for stopping experiments can also be applied to crossover experiments in which varying
treatments are given in varying orders to the same animals.

Fitting Weibull distributions to data for internal tumours

In their analysis of data from the British Industrial Biological Research Association
(BIBRA) nitrosamine study, some of which are described in Section 4.3, Peto et al.
(1984) successfully used related Weibull distributions to describe the distribution of
time X to onset of tumour and of time Y to death because of tumour. Referring back
to the general formulation given above, they assumed Ax(r) = B¢* and Ay(t) = Bft~
The additional parameter f they referred to as the “fatality factor’, ranging from O for a
completely nonfatal tumour to 1 for an instantly fatal tumour.

Over the wide range of dose levels tested, f (and k) appeared to be essentially
invariant of dose. This allowed characterization of the dose-response relationship for
liver and oesophageal tumours in terms of a single parameter § for each tumour type.
While more experience is needed with this model, it appears to be a very useful
approach. ‘

Kodell and Nelson (1980) use the Weibull distribution within their simplified
observational model for the carcinogenic process, which was introduced above (Fig.
6.9). They consider the transition time from N to T, which corresponds to the random
variable X for time to onset of tumour, to follow a Weibull distribution. Their
parameterization of the hazard function is B;¢"'. They further consider the transition
time from T to Dz, which corresponds to the random variable Y — X, being of a
Weibull type with hazard function B,¢** as well as transition from N or T to Dy with
hazard function f;¢". Within this framework, the likelihood function is developed
considering both natural deaths as well as scheduled sacrifices. The likelihood function
depends on the six parameters B, f,, B35, 71, v, and y; and can be maximized
numerically.

Tolley et al. (1978) also chose a Weibull function to describe transition to the tumour
state, but chose a Gompertz function for transition to death from other causes. More
generally, Kalbfleisch er al. (1983) discuss likelihocd estimation for an arbitrary
parametric model without necessarily making the assumption of independent compet-
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ing risks. In principle, however, the general formulation outlined earlier in this section,
which does not require estimation of the distribution of time to death from causes
other than tumour, seems simpler.

Limitations of multistage models and other modelling approaches

In an analysis of data from a mouse-skin painting experiment, it was assumed that
the incidence rate followed a log-normal distribution with time (Day, 1967). Subse-
quent analysis by Peto et al. (1972) showed that Weibull distributions with a (x, w)-pair
common to all groups provided a significantly better fit to the data than did the
log-normal.

Parish (1981) felt that it was unreasonable to expect animals to have an identical
susceptibility to the effects of applied carcinogens, and suggested a model in which the
parameter § had a gamma distribution. To gain an impression of the likely variation in
susceptibility, she analysed data from the ageing experiment of Peto et al. (1975)
referred to previously, looking at time to appearance of further tumours in animals
according to how many tumours they already had. She concluded that the data were
consistent with a 50-fold variation in susceptibility between the Sth and 95th percentile
of the distribution. But even so, this variation was not large enough to make the
distribution of time to tumour differ materially from a Weibull distribution, except
where incidence rates were extremely high. The effect of susceptibility is to make the
plot of log incidence against log(z — w) fall away from a straight line at high ¢ values,
and this may be why, in Figure 6.12, there is a discernible, slight drop-off with the
48 mg/week dose for the last four points plotted.

It has also been noted that in some circumstances the dose-response relationship is
not of the form predicted by the multistage model. Davies et al. (1974), who tested
response to seven dose levels of smoke condensate in a mouse-skin painting
experiment, noted that there was a clear flattening off in response above doses of
180 mg/week. They suggested that high-dose levels were killing off a proportion of the
cells at risk due to toxic effects, thus violating the first assumption of the multistage
model that the number of cells at risk for each animal is the same for each group. In
certain circumstances, it may be useful to modify the multistage model to allow for this
possibility. Hulse et al. (1968) showed that the observed incidence of epidermal and
dermal tumours in mice following superficial external S-irradiation may be accounted
for by assuming that tumour incidence is proportional to the square of the dose and
that potential tumour cells lose their reproductive integrity according to an exponen-
tially decreasing relationship with dose. For example, the dose-dependent part of the
hazard function may be of the form

(Bo+ B1d + Brd*)exp(—ayd — a,d?).

Whittemore (1978) has reviewed a number of quantitative theories of carcinogenesis.
She presented clear evidence of the inadequacy of theories not dependent on a
multistage process, such as the single-stage theory of Iverson and Arley (1950) and the
multicell theory of Fisher and Hollomon (1951), and considered a number of
alternative versions of the multistage theory. She concluded that, although the
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multistage theory has a number of limitations (failure to distinguish between benign
and malignant tumours, to consider the possibility of cell repair or the action of the
host’s immune system, to consider the differences in susceptibility or to consider that
the sensitivity of target cells to transformation may not be constant), it nevertheless
provides a flexible, broad and biologically plausible framework in which to examine the
gross behaviour of tumour data.

Moolgavkar and Knudson (1981) propose a two-stage model which incorporates the
growth and differentiation of normal target cells and intermediate cells (that is, cells in
which the first stage has occurred). They demonstrate that experimental animal data
and human epidemiological data are consistent with their two-stage model, noting that
previous inferences that there are more than two stages in the development of cancer
can be explained by differences in the growth kinetics of intermediate cells. By
incorporating differentiation into their model, the authors are able to explain the
age-incidence curves for some cancers (for example, certain childhood cancers), which
cannot be explained easily in terms of a simple multistage model.

In an attempt to use the full information from an animal experiment (including time
to death) for the estimation of ‘safe doses’, Hartley and Sielken (1977) model the
hazard function as a product of a dose-dependent and a time-dependent term

AL, d) = g(d) - h(),
where the time-dependent term is chosen to be

R

h(t)= D rb, .

r=1

Proportional hazards models

For the analysis of rapidly lethal or observable tumours, we showed in Section 5.6
that the appropriate methods correspond to those given in Section 5.3 for survival
analysis. The only difference is that one uses death due to tumour, or the appearance
of an observable tumour, as the experimental endpoint, rather than death from any
cause. It is useful to adopt the terminology ‘failure’ to denote such well-defined events
as appearance of an observable tumour or death, and “failure time’ to denote the time
to occurrence of such an event. Methods have been developed for the analysis of
censored failure times which require no distributional assumptions (such as Weibull
distributed time-to-tumour). The most widely used method is the proportional hazards
model (Cox, 1972).

Under the proportional hazards model, the hazard function, that is, the age-specific
failure rate for an animal with covariates z=(z,, . . . , z,), is

AL, 2) = Ag(¢) - exp(0'z)

where Ay(¢) is a completely unspecified hazard function, and 8’ = (0,, . . . , 0,) a vector
of regression parameters, and '

0'z=> 0,z,.
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For example, for a given animal, z, could be the administered dose level of a test
compound, z, could be the initial body weight, z; could describe the row location and
z, the column location of the animal’s cage. Then the magnitude of the association
between dose level of the compound and the failure, with adjustment for the remaining
variables, can be measured by the estimate of the parameter 8, corresponding to z; in
the proportional hazards model.

As in Section 5.3, suppose that failures are observed at K distinct times f, k =
1, ..., K. Let x, denote the number of animals failing at #,, and let s, denote the sum
of the covariate vectors z; corresponding to the animals failing at 4,i=1,..., x.
Then, if the number of ties (that is, x, > 1) at each ¢, is small, the parameter vector
can be estimated by maximizing the approximate likelihood (Breslow, 1974):

exp(8’sy)
b= H  Tyorm cxp(®'z))

where R, denotes the set of indices corresponding to animals which survived to time #,
and thus were at risk of failing at #.. The approximate likelihood can be maximized
using the Newton—Raphson method, and the covariance matrix for the resulting
estimator @ can be estimated by the negative of the inverse of the matrix of second
partial derivatives of log(L) (Kalbfleisch & Prentice, 1980, Chapter 4; Miller, 1981b,
Chapter 6). To illustrate analyses based on the proportional hazards model, consider
the cigar-smoke condensate data (Section 4.2). The data can be examined for evidence
of a dose-related increase in tumour rates by fitting the model A(t; z) = exp(6z)Aq(2),
where z =0 for animals in the low-dose group, z =19 for animals in the middle-dose
group and z =44 for animals in the high-dose group. As noted above, the hazard
function for the low-dose group, Ao(¢), need not be specified. Maximizing the
likelihood L leads to the estimate 6 =0.0261+0.0060, indicating that cancer risk
increases with increasing dose.

Pairwise comparison of the middle-dose group to the low-dose group and of the
high-dose group to the low-dose group can be accomplished by fitting a model which
includes two covariates z; =1 if the animal is from the middle-dose group and =0
otherwise, z, =1 if the animal is from the high-dose group and =0 otherwise. The
model

A(t; z) = exp(012; + 0225)Ao(f)

provides estimates 6, and 8, such that exp(8,) and exp(8,) are estimates of the relative
risk of the middle-dose group compared to the low-dose group, and of the high-dose
group compared to the low-dose group, respectively. The results are summarized in
Table 6.4.

Table 6.4 Estimates of relative risks using the proportional
hazards model, for data on cigar-smoke condensate

Dose d;
0 19 44
expldz) 1.0 1.88 3.20

exp(6,z, + 0,z,) 1.0 1.64 3.16
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As in Section 5.6, there is good agreement between the estimates exp(8,z, + 0,2,)
and the estimates based on the regression parameter 6.

If there are no ties (that is, x, =1 for all k), L can be derived as the marginal
likelihood based on the distribution of ranks, but in the presence of ties, the expression
for the marginal likelihood is more complicated than L (Kalbfleisch & Prentice, 1980,
Chapter 4). Estimates of survival curves based on the proportional hazards model are
available (Kalbfleisch & Prentice, 1980, pp. 84—87; Miller, 1981b, pp. 133-136), and
estimates of percentiles can be obtained from the estimated survival curves.
Confidence intervals for percentiles can be calculated by analogy to the methods based
on the Kaplan—-Meier survival curves (Slud et al., 1984), with substitution of the
variance expression corresponding to the proportional hazards survival curves (Kalb-
fleisch & Prentice, 1980, pp. 116-117).

Regression models for tumour prevalence

The logistic regression model of Dinse and Lagakos (1983) for comparing treatment
groups with respect to tumour prevalence was discussed in Section 5 .5. Their
regression model can be used in a more general setting when there are other covariates
in addition to specific group membership or dose level. This more general regression
context allows incorporation of several covariates and is computationally simple to
analyse. \

Formally, Dinse and Lagakos use the regression model

pr(Y=1|X=x,Z=2,T=1)
pr(Y=0|X=x,Z=2,T=1)

to model the odds ratio of having (Y =1) or not having (Y = 0) the tumour at death,
with X a binary treatment indicator, z a p-vector of covariates and T survival time. The
scalar « and the p-vector @ are unknown parameters with y(¢) and w(r) prespecified
functions of time. If treatment is assumed to have a constant effect on log-odds, w(t) is
set equal to 1 for all «. By setting w(f) =1+ f(¢)8/a where f(t) is some function of
time, such as ¢ or log ¢, one replaces axw(t) by ax + 6xf(t), and this allows a test of the
hypothesis 6 =0, that is, whether the proportional treatment odds relationship
depends on time.

Y(x, z,6)= =exp{axw(t) + 0’z + y(¢)}

Integrated models for tumour prevalence and lethality

Another method, which differs from those described above, in that it takes into
account the possibility of simultaneous study of more than one type of tumour, but is
applicable only to experiments in which there are a number of scheduled sacrifices, has
been described by Turnbull and Mitchell (1978) and by Mitchell and Turnbull (1979).
For the purposes of their method, animals in one of R treatment groups (r=1,..., R)
dying in M time intervals (m=1, ..., M) are classified as being in one of K (k =
1,..., K) ‘illness states’. These illness states are defined in terms of whether an animal
has or does not have particular tumour types. Thus, dealing with three tumours of
interest, there are 2° = 8 illness states.

‘Their statistical model is defined in terms of prevalence py,,,, the probability that an
animal from group r, alive at the beginning of the mth interval, is in illness state k at
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that time, and lethality g,,,, the conditional probability that an animal from group r
dies during the mth interval, given that it was alive and in illness state k at the
beginning of this interval. Data consist of wy,,, the number of animals in group r
sacrificed (withdrawn) in interval m and found in illness state k; d,,,, the number of
animals from group r dying in interval m and diagnosed with illness stage k, and s,,,,,
the number of animals from group r surviving through interval m. The distribution of
such surviving animals among the illness states is not known, but can be characterized
by Simr as these unobserved counts must be taken into account when fitting statistical
models for the prevalence and for the lethality.

The numerator of the prevalence of an illness state is represented by wy,,, + dg,., +
Skmr, the term sy, being estimated iteratively. Such values comprise data to which a
log-linear model, formulated in terms of dependency of p,,, on explanatory factors,
such as treatment, time and the presence of tumours of each type can be fitted.

Similarly, a statistical model is fitted for lethality gq,,,. Since the lethality is a
conditional probability, both numerator, d,,,,, and denominator, dy,,, + Si..,, have to
be specified. The model used is a logistic one in which the dependency of g, on a
similar set of explanatory factors is studied.

The crucial problem of not knowing the s, is dealt with as follows. Firstly, the
distribution of the s,, survivors to the illness states is assumed to be as in the
distribution observed in the animals which died or were killed, so that

K
S;cmr = Smr(dkmr + wkmr) 2 (dkmr + kar)'
k=1

Using these sy, prevalence and lethality models are then fitted, which give rise to
estimates py,,, and §,,,,. These estimates are then used to re-assess the distribution of
the s,,, survivors to the illness states by the formula

sllémr = Smrﬁkmr(l - kar)/(l - hmr)’

where A,,, = Y.5—1 Prmdim: 18 the unconditional probability of dying in group r in
interval m. s, can be replaced by s7,, and the same models fitted to the slightly
modified data. This process can then be iterated until the distribution of the survivors
into the illness state no longer changes.

It should be noted that the analysis makes the (technical) assumption that illness
state changes are made only at the beginning of each of the M time intervals and that
sacrifices occur only immediately after the illness state changes, in order for the
prevalences and the lethalities to be defined. It is thus convenient to choose partitions
of the time axis such that each interval covers one scheduled sacrifice.

A detailed application of this approach is given by Wahrendorf (1983). A very
interesting feature of this method is that it allows simultaneous analysis of different
tumour types. This opens interesting possibilities for assessing associations between
different tumours. Berlin ef al. (1979) also consider a general Markov model for
multiple tumour types and discuss the question of identifiability.
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6.4 Summary

The number of animals developing tumours during the course of a conventional
two-to-three-year rodent carcinogen bioassay will depend on the dose level to which
they are exposed. The overall shape of the dose-response curve can, however, vary
widely, depending on the particular agent being evaluated. Although most dose-
response relationships generally increase with dose, this increase may be either linear
or distinctly nonlinear. In the latter case, dose-response curves which increase rapidly
beyond a certain dose range may be noted, as with nasal tumours induced by exposure
to formaldehyde. Conversely, a levelling off of the rate of response may be observed at
high doses, as with liver tumours resulting from exposure to vinyl chloride. Combina-
tions of these different shapes are also possible, as with the S-shaped dose-response
seen for aflatoxin-induced liver tumours.

A variety of different mathematical dose-response models may be used to provide a
parsimonious description of the observed dose-response relationship. Simple tolerance
distribution models, although often sufficiently flexible to provide a good fit to
dose-response data, are somewhat naive in terms of their underlying biological basis as
a possible mechanism for carcinogenesis. Stochastic models based on the notion that
carcinogenesis results from the random occurrence of one or more fundamental
biological events are more appealing, but are necessarily based on strong but uncertain
assumptions. Foremost among such mechanistic models is the Armitage—Doll multi-
stage model, based on the assumption that a cell progresses through a number of
distinct stages before becoming cancerous, the transition intensity function for each
stage being a linear function of dose.

Since many compounds may require metabolic activation before being converted
into their active form, consideration may be given to pharmacokinetic models for this
process. This is particularly important when certain steps such as absorption,
elimination, activation or detoxification are saturable. Even if the response rate is
directly proportional to the dose level of the activated complex reaching the target
tissue, such saturation effects may account for nonlinearity in the dose-response
relationship when expressed as a function of the administered rather than of the
delivered dose.

Given a suitable model for the dose-response relationship, estimates of certain
quantiles of the curve may be of interest. Because human exposure to most
environmental carcinogens is low, there has been considerable interest in obtaining
estimates of risk in the low-dose region based on the downward extrapolation of results
obtained at higher doses. Unfortunately, this is subject to considerable model
uncertainty, and different models, all equally consonant with the observed data, give
widely different projections upon extrapolation of low doses. Because of this, a linear
extrapolation to low doses is often advocated as the most prudent approach. This will
be particularly appropriate in cases where the background response rate can be
considered to arise from an at least partially dose-wise additive model.

This low-dose model dependency may be circumvented by restricting attention to
those quantiles lying well within the observable response range. Historically, quantiles
such as the TDy, (the dose estimated to induce tumours in 50% of exposed animals)
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have been used as the basis for various measures of carcinogenic potency. The TDx,
itself has recently been used by Gold et al. (1984) to demonstrate variations in
carcinogenic potency spanning eight orders of magnitude.

Time-to-tumour models attempt to describe the carcinogenic process in detail and
make use of information on individual tumour occurrence and survival times. For
observable tumours, parametric models addressing the time to first occurrence of this
tumour have been developed on biological principles. The parameters of these models
allow for inferences to be drawn on both the time and dose dependency of tumour
incidence. For occult tumours the situation is more complicated: tumour incidence is
not directly observable and its estimation depends on the experimental design,
particularly the use of a series of interim sacrifices. However, within this framework,
estimates for the relevant functions characterizing the carcinogenic response are
derived, if identifiable. This provides the basis not only for unbiased statistical
inference but also for clear biological conclusions. Time-to-tumour models make use of
as much information as possible; they are in turn based on some assumptions, but they
provide the most thorough description of the observed response in a long-term animal
experiment.

LIST OF ESSENTIAL SYMBOLS - CHAPTER 6 (in order of appearance)

P(d) probability of treatment-induced tumour at dose d
G(t) tolerance distribution
P*(d) probability of spontaneous or treatment-induced tumour at dose d
Ty background response rate (probability of spontaneous tumour)
D(¢) administered dose at time ¢
Ds(t) activated dose at time ¢
D3 effective dose under steady state conditions
0 vector of parameters 6, . . ., 0,
P*(d, 0) probability of response (tumour) at dose d dependent on parameter 0
d, dose levels (dg=0,d,<---<d))
X; number of animals with tumour at dose d,
n; number of animals at dose d;
L(0) likelihood of observed outcome under any dose-response model
P*(d; 0)
0 maximum likelihood estimate of 0
0 vector of zeros
vV variance—covariance matrix of Va (0'—90)
T (r, s)th element of the inverse of V
I1(d) added risk over background at dose d
d, dose corresponding to the added risk, g, over background
G, measure of carcinogenic potency based on d,,
N disease-free state of animal
T animal with tumour
Dyt death from a cause unrelated to the tumour of interest

Dy death due to tumour of interest
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time to onset of tumour (random variable)

time to death due to tumour (random variable)

time to death from an unrelated cause (random variable)
density function

hazard function

cumulative hazard function

survival function

(N.B. A subscript X or Y to the quantities f(¢), A(f), A(f) and S(¢) indicates the

L,

corresponding functions for the random variable X or Y)

time of observation of an event such as death or the occurrence of
tumour (k=1,..., K)

number of animals with appearance of a visible tumour at time ¢,
number of animals with death caused by tumour of interest (fatal
context) at time

number of animals with death from unrelated cause, tumour of
interest present (incidental context), at time ¢,

number of animals dying without tumour of interest at time
likelihood in the case of visible tumours

likelihood in the case of occult tumours all observed in a fatal context
likelihood in the case of occult tumours all observed in an incidental
context

likelihood in the case of occult tumours observed in fatal or incidental
context

(N.B. LL;(i=1, 2, 3, 4) denotes the logarithm of the likelihoods L; (i =1, 2, 3, 4))

At; z)
Ao(t)

number of stages or transformations required before tumour occurs
kinetic rate constants for the jth stage of multistage model (j=
1,...,K)

constant time taken by the jth transformation of the multistage model
G=1,...,K)

Weibull shape parameter for group i (i=1, ..., 1)

log-likelihood for an experiment with I groups under the Weibull
model with known w and k

vector of covariates observed for each animal

hazard function of animal with covariates z

baseline hazard function








