
5. NONPARAMETRIC METHODS FOR ANIMAL
CARCINOGENESIS EXPERIMENTS

5.1 Introduction

5.2 Computation of nonparametric test statistics

5.3 Nonparametric analysis of survival curves

5.4 Analysis of cru de proportions

5.5 Prevalence analysis for nonlethal occult tumours

5.6 Analysis of rapidly lethal occult tumours and of observable tumours

5.7 Analysis of occult tumour data when contexts of observation are known



CHAPTER 5

NONPARAMETRIC METHODS FOR ANIMAL
CARCINOGENESIS EXPERIMENTS

5.1 Introduction

This chapter examines the statistical evaluation of an animal carcinogenesis
experiment with the goal of determining whether or not a test compound induces
tumours. ln most of the chapter, it is assumed that the animais were assigned to

different exposure groups in a completely randomized design. Each group received a
different dose level of a test compound or served as a control group, and the animais
were examined for the presence of tumours either continuously (for observable
tumours) or at necropsy (for occult tumours). As noted in ehapter 2, an evaluation of
tumour occurrence data requires the examination of mortality patterns in the various
groups. Accordingly, Section 5.3 describes the computation of nonparametric survival
functions and nonparametric test statistics, which permit a comparison of mortality
patterns among the different exposure groups; Section 5.4 de scribes methods for
comparing the crude tumour rates of the different groups; Section 5.5 describes the
method of Hoel and Walburg (1972) and other methods for nonfatal tumours; Section
5.6 describes the use of failure-time methods to analyse tumour incidence data for
observable tumours or tumour mortality data for rapidly lethal tumours; and Section
5.7 discusses the method of Peto for analysing tumour data in which the context of
observation of each tumour is known and tumours are observed in both the fatal and
incidental contexts (Peto, 1974; Peto et aL., 1980). Many of the nonparametric test
statistics presented in Sections 5.3 to 5.7 are closely related in functional form. Thus,
Section 5.2 presents technical details common to the computation of nonparametric
test statistics discussed in Sections 5.3-5.7.

5.2 Computation of nonparametric test statistics

Suppose that the animais have been randomized into 1 + 1 experimental groups, and
that the animais in the ith group are exposed to a dose level di of a test compound,
with do ~ di ~ . . . ~ db for i = 0, 1, . . . ,I. Often, the group indexed by 0 wil be a
control group, with do = O. Suppose that observations of the experimental endpoint of
interest (e.g., death or occurrence of a tumour) are made at K distinct times
tb k = 1, 2, . . . ,K. The data corresponding to each experimental endpoint may be
summarized in K 2 x (I + 1) contingency tables (K ~ 1). The kth contingency table
takes the form of Table 5.1, where Xik denotes the number of events (e.g., deaths or
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Table 5.1 Summary of data corresponding to a particular experimental endpoint for ail
animais in risk set k

Dose level
do d, d1 di Total

No. of events
No. of animais at risk

XOk

nOk

X1k

n1k
Xik

nik

X1k

n1k

X.k

n.k

animais with tumour) observed in the ith group at tb and nik denotes the number of
animais at risk in group i, for k = 1, 2, . . ., K. The n.k animaIs for which data are
summarized in the kth table will be referred to as risk set k. The definition of risk set
will vary according to the experimental situation being considered.

The expected number of events in the ith exposure group for risk set k using indirect
standardization is Eik = X.kAib where Aik = nik/ n.k' Thus, the observed and expected
number of events in the ith group over the entire experiment are Oi = l,f=i X¡k and

E¡ = l,f=i E¡b respectively, for i = 0, 1, . . . , I. Define

K

D¡ = O¡ - E¡ = ¿ (X¡k - E¡d
k=1 (5.1)

and

K

Vh¡ = L frkAhk( oh¡ - A¡k)
k=1 (5.2)

where frk = x.k(n.k - x.k)/(n.k - 1) and oh¡ is defined as 1 if h = i and 0 otherwise, for
h, i = 0,1, . . . , I. Then, letting D' = (00 - Eo, 01 - Ei, . . . , 01- Ei) be the vector of
deviations of expected from observed values, and letting V be the (I + 1) x (I + 1)
matrix with (h + 1, i + 1) entry Vh¡, a statistic to test for heterogeneity among the 1 + 1
groups with respect to the rate of occurrence of the experimental endpoint in question
may be calculated as

X~=D'V-D, (5.3)
where V- is a generalized inverse of V. The statistic X~ may be computed as
X~ = D~Vi-lD¡, where Di is the vector of dimension 1 obtained by deleting 00 - Eo from
the vector D, and Vi is the 1 x 1 matrix of full rank obtained by deleting the first row
and column of the matrix V. If there is no difference among exposure groups with

respect to the distribution of the occurrence of the endpoint in question, then X~ will
have an asymptotic chi-squared distribution with 1 degrees of freedom. A one-degree-
of-freedom chi-squared test for an increasing or decreasing rate of occurrence of the
endpoint in question with increasing dose level can be calculated as

xi= (d'D)2/(d'Vd), (5.4)
where d = (do, di, . . . , di) is the vector of dose levels, and a test for departure from a
monotone dose-response relationship can be based on

X2 -X2 -X2Q- H T1 (5.5)
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which has a chi-squared distribution with 1 - 1 degrees of freedom under the null
hypothesis that the dose-response relationship is linear.

ln computing the above statistics, the deviations of expected from observed values
from different risk sets are given equal weight. It is sometimes of interest to weight
certain risk sets more heavily than others. Accordingly, define

K

Diw = 2: Wk(Xik - Eik)
k=l

(5.6)

and
K

VhiW = 2: WillkAhk( Dhi - Aik),
k=l

(5.7)

where llb Aib Eik, and Dhi are defined above, and the Wk are non-negative weights.

Then, letting D~ denote the vector (Dow, D1W, . . . ,DlW) and Vw denote the
(I + 1) x (1 + 1) matrix with (h + 1, i + 1) entry VhiW' a weighted statistic to test for
heterogeneity among the L + 1 groups with respect to the rate of occurrence of the
experimental endpoint in question may be calculated as

X~H = D~VwDw, (5.8)
where Vw is a generalized inverse of V w. The statistic X~H may be computed as
rWH = D~lVW\Dw¡, where DW1 is obtained by deleting Dow from Dw and VW1 is
obtained by deleting the first row and column of V w. If there is no difference among
exposure groups with respect to the distribution of the occurrence of the endpoint in
question, and if the weights are chosen properly, then X~H wil have an asymptotic
chi-squared distribution with 1 degrees of freedom. A one-degree-of-freedom test for
an increasing or decreasing rate of occurrence of the endpoint in question with

increasing dose level can be calculated as

X~T= (dDW)2j(d'Vwd), (5.9)

and a test for departure from a monotone dose-response relationship can be based on

rWQ = X~H - X~r, (5.10)
which has a chi-squared distribution with 1 - 1 degrees of freedom under the null
hypothesis that the dose-response relationship is linear.

ln discussing xi and X~H above, it is stated that the se statistics have asymptotic
chi-squared distributions with 1 degrees of freedom under the nulI hypothesis.
Exceptions may occur in the analysis of tumour data from experiments in which some
groups have extremely high early mortality rates (e.g., due to toxicity of the test
compound). For example, if aIl animais in the ith group die prior to observation of the
first tumour in aIl 1 + 1 groups, then Di = Ei = 0, and the ith group makes no
contribution to the above test statistics. ln such cases, under the nuIl hypothesis of
homogeneity among groups, Xk and X~H wil have asymptotic chi-squared distribu-
tions with 1 - r degrees of freedom, where r denotes the number of groups for which
Di = Ei = O. Similarly, if the response is linear, X1 and rWQ wil have asymptotic
chi-squared distributions with 1 - r - 1 degrees of freedom. The computation of the
test statistics proceeds exactly asabove, using only data from those groups for which
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Ei ? O. When in aIl risk sets the n 's are nearly zero for a particular dose, i.e., there is
(almost) no animal at risk in that group, the asymptotic distributions may then not be
valid. Thus, dose groups for which Ei is near zero should be omitted in calculating the
test statistics, with a corresponding reduction in degrees of freedom for the tests of
heterogeneity and of departures from a monotone dose-response relationship.

When results are available from several strata (see Section 2.5), an analysis
combining the evidence from aIl strata can easily be obtained using the statistics
described in this section. Let the strata be indexed by j, for j = 1, . . . , J. Restricting
the above methods to data from stratum j yields a vector of weighted observed minus
expected, Dwj, and an associated covariance matrix, V Wj' Then, the combined analysis
proceeds exactly as described in equations (5.8), (5.9) and (5.10), with Dw replaced by
r.f=i yjDwj, and V W replaced by r.f=l y;V Wj' where the Yj depend on the choice of
weights, Wb in (5.6).

5.3 Nonparametric analysis of survival curves

The first step in evaluating an animal carcinogenesis experiment is to determine the
effect of exposure to the test substance on mortality. Suppose that deaths are observed
at K distinct times tb k = 1, 2, . . . , K. For the purposes of summarizing the effect of
exposure to the test compound on mortality, the times of death for animaIs killed
accidentally or in planned sacrifices are considered to be censored observations.

AnimaIs lost to observation are considered censored at the time they were last under
observation. The mortality data at time tk may be summarized as in Table 5.1, where
Xik is the number of deaths in group i at time tb and nik is the number of animais in
group i at risk of dying at tk (Le., the number of animaIs that die at or after tk). For any
time t, let R(t) = f k: tk ~ t); that is, R(t) is the set of aIl k with index times of deaths
occurring at or before t. Then, the Kaplan-Meier estimator of the survival function for
group i is the step function defined as (Kaplan & Meier, 1958)

Si(t) = rr (1 _ Xik) ,
keR(i) nik

and the variance of Si(t) may be estimated by

V fSi(t)) = SUt):¿ (Xi~ )'
keR(i) nik nik Xik

A plot of the (1 + 1) estimators, Si(t) from the beginning of the experiment until
terminal sacrifice reveals any effects of exposure to the test compound on mortality.
Nonparametric estimates of percentiles can be obtained from the Kaplan-Meier
survival curve (Miler, 1981b, pp. 74-75), and corresponding confidence intervals can

be calculated. (See Slud et al., 1984, for a review and comparison of several available
methods. )

Consider the data presented in Table 4.1 from a bioassay of 1,2-dichlorethane using
female B6C3Fl mice. AlI deaths were due to natural causes except for one accidental
death at 22 weeks in the control group and the 69 deaths at terminal sacrifice after
90 weeks on study. The Kaplan-Meier survival curves for the control, low-dose and
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Fig. 5.1 Kaplan-Meier estimates of survival curves for three groups of female mice (D,

control; 0, low dose; Â, high dose) treated with 1,2-dichloroethane
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high-dose groups are given in Figure 5.1. Although there was only a slight increase in
mortality in the low-dose group compared to the control group, there was a substantial
increase in mortality in the high-dose group. Thus, it is clear that in comparing the
proportions of animais with tumour in the high-dose group to those in the control or
low-dose group, sorne consideration must be given to the possibility of bias due to the
greater mortality in the high-dose group.

It may not always be necessary to test formallyfor differences in mortality patterns,
as any difference in survival can lead to sorne degree of bias in the comparison of
tumour rates and should, irrespective of its significance, be adjusted for. Nonetheless,
formai comparisons can easily be made using generalized rank tests for censored data.
The most widely used statistic for testing for survival differences is the generalized
Savage statistic, often referred to as the log-rank statistic (Mantel, 1966; Cox, 1972),
which is computed using (5.3). The corresponding trend statistic X~, computed using
(5.4), and departure from trend statistic X~, computed using (5.5), were presented by
Tarone (1975).

For the data on female mi ce treated with 1,2-dichloroethane summarized in Figure
5.1, X1=127.8, X~=85.3 and X~=42.5, with degrees of freedom 2, 1 and 1,
respectively. Thus, administration of 1,2-dichloroethane is clearly associated with
increased mortality; however, the relationship is not strictly monotone in dose. The
significance of X~ is due to the poor survival in the high-dose group relative to that in
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the controls, while the survival in the low-dose and control groups is similar
(comparison of the low-dose and control groups yields p = 0.21).

The Wilcoxon rank sum test has also been modified for censored survivaI data, with
two proposed modifications, both based on statisties that can be eomputed using (5.8).
For the modified Wilcoxon test of Breslow (1970), Wk is taken to be n.k; while for the
modified Wilcoxon test of Peto and Peto (1972) and Prentice (1978), Wk is taken to be
S(tk), where S(td is an estimator of the survival function calculated from the pooled
data of aIl 1 + 1 groups. The corresponding trend test statistie Xtvr, computed using
(5.9), and departure from trend statistic XtvQ, computed using (5.10), were presented
by Tarone and Ware (1977) and by Thomas et al. (1977). The modified Wilcoxon
statistics are more sensitive than the generalized Savage statistics to differences in
survival occurring early in an experiment, when a greater number of animaIs are at risk
(Tarone & Ware, 1977; Thomas et al., 1977). For data from experiments with heavy
interim sacrifices, the Peto-Prentice-modified Wilcoxon statistic should be used
(Prentice & Marek, 1979).

For the data on 1,2-dichloroethane, the Breslow-modified Wilcoxon statistics are
Xtv= 110.3, Xtvr= 77.2 and XtvQ = 33.1, with degrees of freedom 2, 1 and 1,

respectively. The Wilcoxon statisties give slightly lower values than the corresponding
Savage statistics because differences in survival are more pronounced at the end of the
experiment.

ln combining results of the above linear rank tests from several strata as suggested in
Section 5.2, the appropriate stratum weights are Yi = 1 for aIl j for the log-rank statistic
and the Peto-Prentice-modified Wilcoxon statistic, and Yi = (N¡ + 1)-1 for the Breslow-
modified Wilcoxon statistic, where N¡ is the total sample size in stratum j.

5.4 Analysis of crude proportions

ln a well-designed and executed experiment in which there is no great disproportion
in survival among the groups, one can usualIy obtain a good first indication of the
possible significance of the results from analysis of the crude proportions of animaIs
with tumour (Gart et aL., 1979). This is, of course, the method traditionally used by
toxicologists and pathologists. Although disproportionate survival may le ad one astray,
and such analyses are insensitive to differences in distributions of tumour occurrence or
observation times, they are an instructive starting point for diseussing the statistical
analysis of tumour data.

Choice of denominator

The proportion consists of a numerator of the number of animaIs with the tumour of
a specifie site and/or type divided by a denominator of the number of animaIs at risk
for that tumour. We consider three alternative ways of choosing the denominator:

(1) The number of animaIs initialIy put on test in each group.
(2) The number initialIy on test, less the numbers of animaIs which were not

subjected to necropsy or for which the organ site in question was not submitted to or
yielded tissue slides unsuitable for pathological examination. Thus, for instance, those
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animais whose lungs were not available for pathological examination would be
excluded from the denominators (and numerators) in the analyses of lung tumours, but
if their livers were so examined, they would be included in the denominators of the
analyses of liver tumours. ln such cases, the denominators may vary from tumour site
to tumour site within the same experiment.

(3) The initial number at risk, less those animais not subjected to necropsy or for
which tissue slides for the organ in question are missing, and less, also, those animais
'dying early'. 'Dying early' may be defined in at least two ways:

(3a) Those dying before a pre-specified time on test, say, one year, before which
time tumours almost never appear. This usualIy can be used only if the experimenter
has reliable prior knowledge of the test animal and the tumour site. Of course, if a
tumour is found before this time, one should use the next option.

(3b) Those dying before the first tumour at a specific site is found in any of the
groups being compared. This again can lead to differing denominators for the various
tumour sites within the same experiment.

The unadjusted denominator, although often used, is based on the tacit assumption
that none of the missing animaIs had the tumour. One could also assume that aIl the
missing animais had the tumour and adjust the numerators, rather th an the

denominators, accordingly. ln sorne cases, these extreme possibilities for accounting
for missing animaIs are analysed to determine if such extraordinary results could
change the interpretation of the experiment. Such analyses have sorne polemic value
but they are not usualIy presented in scientific publications. Therefore, we consider
only the last two alternatives.

Alternatives (2) and (3) imply that the missing animaIs or those dying early are as
likely to have had the tumour during their full lifetime as those that survived to
terminal sacrifice and underwent a necropsy. The net effect of their deletion is to
reduce the sample size, pethaps differentialIy among the groups. The typical outcome,
particularly for the 'early death' correction, is that there is more early mortality among
the higher-dose groups so that their denominators are reduced more th an those of the
control or lower-dose groups. Thus, although none of the numerators are changed, the
proportions in the higher-dose groups are increased proportionately more. This may
le ad to a statisticalIy significant positive dose-response or may erase an otherwise
negative or inverse dose relation.

To illistrate these concepts and introduce sorne notation, consider again the data on
1,2-dichloroethane in Table 4.1, with lung as the target site. The two exposed groups
consisted initially of 50 female animaIs, the design specifying equalIy spaced doses. The
control group consisted initialIy of 40 female animaIs. The tumour under consideration
(alveolar/bronchiolar adenoma) was first found in a high-dose animal dying at 62
weeks. The data may be summarized according to the various criteria in Table 5.2.

As the comparison of crude rates does not involve consideration of the time axis, we
have simplified the notation for this Section 5.4 and use only the index for group
(i = 0, 1, . . . ,1) and suppress the time index (k = 1, . . . ,K), which had been
introduced in the general notation in Section 5.2.

Regardless of the choice of denominator, the statistical analyses may change in
character depending on whether two or more than two groups are being compared and
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Table 5.2 Number of animaIs with lung tumour and at risk (using
different criteria) from data on 1,2-dichloroethane

Coded doses
No. with tumour
No. initially at risk
No. missing
No. at risk (Criterion 2)
No. dying before 62 weeks
No. at risk (Criterion 3b)

~=o
Ya=2
11 = 40
o
no = 40
3
ma = 37

di = 1

Yl = 7
ni = 50
o
n; = 50
2
mi=48

d-=2
Yz = 15
nz = 50
2

ní = 48
12
mz = 36

also on whether a large sample approximation may be legitimately employed rather
th an an exact or conditional analysis. We consider these cases in turn.

Comparison of two groups

Usually, this involves the comparison of a single-dose group and a control group.
Consider the control group and the high-dose group in the data on 1,2-dichloroethane

and lung tumours just presented. We use the denominator from the early-death
criterion (3b). The notation and data are given in 2 x 2 tables in Table 5.3.

Table 5.3 2 x 2 table for comparison of control group and high-dose group from data on
1,2-dichloroethane

Notation Data

Dose ~ d- Total 0 2 Total

Animais with tumour
Ya Yz s 2 15 17

Animais without tumour ma- Ya mz - Yz m.-s 35 21 56

ma mz m 37 36 73

Approximate analyses of two groups

ln our example, we con si der the number of animaIs with tumour in the high-dose
group as the observed quantity, 0 = Y2' Define the expected numbers of animaIs with
tumour under the null hypothesis of no difference in tumour rates to be E = (sm2)/m.
for the high-dose group and E' = (smo)/m. for the control group. Define D = 0 - E.
The variance of D under the null hypothesis is estimated by

V = ts(m. -s)mOm2)-ltm~(m. - 1)).
Alternatively, the reciprocal of this variance may be computed from the table of
expected values,

l/V = Hm. - 1)/mJt1/ E + 1/(m2 - E) + II E' + 1/(mo - E')).
Many authors (Armitage, 1971, pp. 129 ff. and Snedecor & Cochran, 1980, pp. 124 ff.)
use m. in place of m. - 1 in the formula for V. Test statistics based on the above
variance, however, have distributions better approximated by the normal or chi-square
distribution in the unconditional sample space (Upton, 1982). The present formula is
also better if one combines analyses for differing sexes and/or strains of test animaIs.
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The approximately normal deviate test for equality of proportions is then
Z = DI#..

Large positive values of Z indicate a direct or positive relation with the application of
the compound and tumour production, and large negative values indicate an inverse or
negative relation between application of compound and tumour production. One-tailed
p-values are then read from tables of the normal or Gaussian distribution. Two-tailed
tests are conveniently performed by considering

X2 = Z2 = D2t(m. - 1)/mJ pi E + I/(m2 - E) + ii E' + I/(mo - E')),

which is an approximate chi-square variate with one degree of freedom.
If a continuity correction is used, we have

Zc = (D :f ÐlVV,

where -l is used for a one-tailed test of a positive or direct relationship and +! is used
for a one-tailed test of a negative or inverse relation. Note that the continuity

correction is employed to make the p-value for the approximate test doser to that of
the exact or conditional test, which we discuss later. It has little effect for large
numbers.

The significance test depends not only on the relative magnitude of the differential
effect of the exposure on tumour production in the two groups but also on sample size.
A commonly-used measure of this effect, which does not depend on sample size, is the
odds ratio. This is the ratio of the odds of a tumour in the treated group to the
corresponding odds in the control group. ln the notation of early-death criterion (3b)
this is estimated by the cross-product ratio:

R = tY2. (mo - Yo) Ì 1 tYO(m2 - Y2) J,

where R ? 1 indicates a positive relation, R = 1, no relation, and R 0: i, a negative or
inverse relation of exposure with tumour production. Approximate confidence limits
for this parameter can be computed by the method of Cornfield, which has been
implemented in several computer programs (e.g., Thomas, 1975).
The question arises as to how large the numbers have to be to apply these

approximate methods. The validity of these methods is not determined by the

magnitude of the observed numbers themselves, but by the magnitude of the minimum
of the expected values corresponding to the particular test or confidence interval method
used. Thus, if

minCE, m2 - E, E', mo - E') :: 1,

the Zc-test should give a good approximation to the exact p-values. The accuracy of the
approximate confidence interval also depends on the minimum expected values
consistent with the marginal totals and the values of the odds ratios computed at the
two confidence limits (see, e.g., Gart & Thomas, 1972). Thus, for instance, an
experiment may be large enough to use approximate methods for a p-value but not for
an upper 95% confidence limit.

Returning to our example, we have 0 = 15, and the table of expected values is
shown in Table 5.4.
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Table 5.4 Expected values in comparison of control group and high-dose

group from data on 1,2-dichloroethane

Dose Total

do di

With tumour
Without tumour

E' = 8.62
ma - E' = 28.38

E = 8.38
m2 - E = 27.62

s = 17

m. - s = 56

Total ma = 37 m2 = 36 m.=73

The minimum of the expected values, 8.38, is clearly large enough to apply the
approximate test. Furthermore, we have

v = t(17)(56)(37)(36))/t(73)2(72)) = 3.3049,

or, alternatively,

I/V = (72/73)U/(8.38) + 1/(27.62) + 1/(8.62) + 1/(28.38)) = 0.3026.

Thus,
Z = 6.62/\1(3.3049) = 6.62\1(0.3026) = 3.64,

for which the corresponding one-tailed p = 0.00014, indicating a highly significant
positive difference between the high-dose and the control group. The two-tailed
chi-square test yields

x2 = Z2 = 13.26, p = 0.00028.

The corresponding continuity corrected test is

Zc = (6.12)/\1(3.3049) = 3.37, P = 0.00038.

The cross-product ratio is R = t(15)(35)) / P(21)) = 12.50. The associated approximate
95% limits are (2.35,88.28). Checking the validity of the approximation at the limits,
we compute the expected values in the four-fold tables with fixed marginals for the
lower and upper limIts. These are given in Table 5.5.

Table 5.5 Expected values in tables corresponding to
lower and upper confidence Iimits

Lower limit: Ri = 2.35

5.8998 11.1002
31.1002 24.8998

37 36

Upper limit: Ru = 88.28

0.3569 16.6431
36.6431 19.3569

37 36

17
56

17
56
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ln the table corresponding to the lower limit, the minimal entry 5.8998 is greater

th an 1, whereas in the table corresponding to the upper limit, the minimal entry 0.3569
is less th an 1. Thus, although the significance test and the lower 95% limit would
appear to be approximately correct, the upper limit 95% cannot be relied upon here.

If m. is substituted for m. - 1 in V, then the Zc test wil always agree with the 95%
confidence interval in excluding the odds ratio of R = 1 whenever the one-tailed
p-value is less than 0.025 and vice versa. It wil usually agree, as in this case, with the
computation of Ze-

Exact or conditional analyses of two groups

When the numbers are small, exact or conditional analyses are feasible and may be
necessary. The theoretical basis of such analyses is the initial randomization of the
animais into two groups (Gart et al., 1979). Consider the 73 animais in our example to
be randomly divided into two groups of 37 and 36. If exposure to the chemical does not
change the risk of tumour, then, regardless of the outcome of the randomization, 17
animais are fated to have this tumour. This 'fixing' of 17 as the marginal total is the
reason for callng this analysis 'conditional'. Now consider the actual outcomes of the
experiment, I.e., in this particular randomization, Y2 = 15, and those possible outcomes
'more extreme' in the positive direction, in this case Y2 = 16, and Y2 = 17. It is a simple
combinatorial exercise to count the numbers of ways in which these outcomes can
occur relative to the total number of possible randomizations. The ratio of these
numbers is the precise one-tailed p-value for the Fisher-Irwin exact test.

We put this argument in mathematical notation. The total number of possible
randomizations of m. animaIs having s tumours is given by the binomial coeffcient
(~-) For any integers u and v, for which 0 oe u oe v, (~) is also referred to as the number
of ways of choosing u objects from v objects, is given by

(V) = v(v - 1) . . . (v - u + 1) .u 1.2... u
The number of ways in which there can be y animais with tumour in the dose group
and s - y in the control group is

C mOy)(:2),
y = 0, 1, . . . , s.

The conditional probability that y occurs is th us

Pey Is)= cmOy)(:2)/(~.), y = 0, 1, . . . , s.

The exact one-tailed p-value for a possible increase in tumour incidence in the dose
group is th en

s

p = L P(y 1 s).
Y=Yz
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ln applying this formula, note that Ü) is defined as zero when j ? k.
Two-tailed exact tests are not so simply defined, since 'more extreme' does not have

a unique meaning for unequal sample sizes. A reasonable procedure is to define p by
accumulating aIl y such that P(y 1 s) -c p(Y21 s), where Y2 is the observed outcome.
When the sample sizes are equal, this rule leads to a p-value simply twice that for a
one-tailed test. Otherwise, one may use the special tables of Armsen (1955).

Conditional point estima tes of the odds ratio and exact confidence limits for this
parame ter have been described by Fisher (1935), Cornfield (1956) and Gart (1970),
and their computation usually requires a computer program (see, e.g., Thomas, 1975).
Programs that have been òeveloped for pocket calculators can also be used (Rothman
& Boice, 1979).

Consider again our example. We find

P(15 1 17) = (~7)(~;) / (;~) = 0.00021

P(16/ 17) = (~7)(~:) / (;~) = 0.00002

P(17 1 17) = (~7)(~~) / (;~) = 0.00000

and thus p = 0.00023.

Recall that the approximate one-tailed Zc test yielded a comparable value of
p = 0.00038.

The computer program of Thomas (1975) yields the conditional maximum likelihood
estimator for the odds ratio of 12.08 versus the cross-product ratio of 12.50 noted

previously. Similarly, the exact 95% confidence limits for the odds ratio are
(2.44, 119.33). The lower limit is comparable to the approximate value, 2.35, but the
upper limit is quite different from the approximate upper limit, 88.28. This confirms
the previous finding that the approximate upper limit is not reliable because it depends
on a very small expected value. Note also that the exact limits include the null value of
1 whenever the appropriate one-tailed exact p is greater than 0.025, and wil exclu 

de 1
when p is less th an 0.025.

Comparison of se veral groups

The usual design has one control group and at least two dose groups of a compound
un der test. One is usually interested in testing whether the proportion of animaIs with
tumour increases or decreases monotonically with dose; that is, if p(d¡), i = 0, . . . , 1
are the true proportions of the tumour among the various groups, whether p(d¡) is a
monotonic function of dose. A convenient monotonic function is the logistic,

p(d¡) = exp(æ + ßdJ/U + exp(æ + ßd¡)), i = 0, 1, 2, . . . , l,
. where, typicalIy, do = 0, corresponding to the control group. This may be written in the
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logarithmic scale as
10g(p(di)/q(diH = a + ßdi,

where q(di) = 1 - p(di). This implies that the log odds (or logit) is a linear function of
dose. Alternatively, this means that the odds ratio between two doses di and dj is

Rij = (P(di)q(dJ)Nq(di)p(dj)) = expfß(di - djH.

Thus, if the doses are equally spaced, sayat unit intervals, the model implies that
odds ratios between adjacent doses are equal. This model has properties that enable
the extension of simpler exact tests to more complex situations (Cox, 1958, 1970,

Chapter 5). It should be pointed out, however, that most of the tests based on the
logistic model are robust, that is, they are valid regardless of whether this rnodel holds
exactly, and many can also be justified from completely model-free considerations.

The data are usualIy arrayed in a 2 x (1 + 1) table, as in Table 5.6.

Table 5.6 Notation for data from experiment with 1 + 1 groups

Dose Total

do d, di

With tumour Ya y, Yi 5
Without tumour ma - Ya m,- y, mi- Yi m -5

Total ma m, mi m

Our numerical example, with the elimination of the early-death criterion (3b), IS
given in Table 5.7.

Table 5.7 Data on lung tumour for three groups from study on 1,2-
dichloroethane

Dose Total

o 2

With tumour
Without tumour

2
35

37

7
41

48

15
21

36

24
97

121Total

Approximate analyses of several groups

Let us denote the observed numbers with tumour as Di = Yi, i = 0, 1, . . . , l, and
their corresponding expected values under the null hypothesis of no difference as

E = (sm.)/m1 1..' i = 0, 1, . . . , l,

where m. = r.f=ü mi' Defining Di = Di - Eu the test statistic for possible monotonic
trend with dose is based on

1

T= ¿ diDi.
i=O
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Under the null hypothesis, T has mean zero, and its variance is estimated by

1

VT = Hs(m. -s))/\m.(m. - I))J:¿ m¡(d¡ - d)2,

¡=o

where d = (Lf=o m¡d¡)/m.. The Cochran-Armitage normal deviate test for trend (see,
e.g., Armitage, 1971, pp. 363-365) is then

ZT = T iYV.

If the doses are equally spaced, say, with interval ~, a simple continuity correction

may be easily employed to yield,

ZTc = (T =F ~/2)/vv,

where the minus or plus signs are used for one-tailed testing against a direct and
inverse relation, respectively. ln the case of unequally spaced doses, the continuity
correction is less readily applied (Kendall & Stuart, 1961, p. 508). Although the actual
level of the Cochran-Armitage trend test can deviate from the nominal level for
asymmetric designs (Portier & Hoel, 1984b), this can be remedied by a Cornish-Fisher
skewness correction (Tarone, 1986).

Two-tailed tests may be based on the squared value of ZT, Xt = Zt, which is an
approximate chi-square variate with one degree of freedom. For 1 = l, these tests are
exactly equivalent to the approximate tests for comparing two groups. Although the
eochran-Armitage test follows from the assumption of a logistic model, Tarone and
Gart (1980) showed that it is asymptotically, locally fully effcient for testing the null
hypothesis against any choice of a monotonie, locally linear function. The approximate
tests should be adequate as long as the minimum expected value exceeds one.

The question arises whethera linear relation is an appropriate alternative. Testing
for this possibility is facilitated by first computing the usual chi-square for heteroge-
neity in a 2 x (I + 1) contingency table:

Xi = Hm. - 1)/mJlt,) DfUI E¡ + l/(m¡ - EJ) L (5.11)

which is approximately distributed as a chi-square variate with 1 degrees of freedom if
aIl of the p(dJ are equal. This statistic can also be used for testing for heterogeneity

among groups in which there is no quantitative dose relationship in the treatment
regimens, i.e., differing chemicals and/or vehicles or other differing control groups.
For the dose-relation situation, the approximate chi-square statistic with 1 - 1 degrees
of freedom for departure from linear trend is xt = Xi - Xt.

This computation is usually presented in a table analogous to an analysis-of-variance
table. If 1 = 2, the chi-square statistic xt is the appropriate statistic for testing the
possibility of a quadratic relation (hence, the subscript Q). When l? 3, it is the
statistic for an omnibus test of aIl nonlinear polynomial coeffcients, i.e., quadratic,
cubic, quartic, etc. When 1 = 1, Xt = Xi and thus xt = 0, and no test of departure is
possible.

The strength of the possible effect of dose can be estimated by fiUing the linear
logistic model. We may employ the method of maximum likelihood (see, e.g., Thomas
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& Gart, 1983) to estimate ß by ß. The odds ratio, Ri' between any dose di and the
control do = 0, is then estimated by Ri = exp(ßd¡). Alternatively, a much more simply
computed estimator of Ri is found from the cross-product ratio. These estimators are
Ri = t Di(mo - Do))/ t Do (mi - Di)), i = 1, . . . , I. This appears to be a reasonably good
estimator for l oe Ri oe 3, but is otherwise biased towards unity.

Returning to our example, our preliminary calculations are ilustrated in Table 5.8.

Table 5.8 Expected values for data on 1,2-dichloroethane (Table 5.7)

Dose group Total

d¡ 0 2

No. with tumour Q. 2 7 15 24,

Expected no. £. 7.34 9.52 7.14 24,

mi -E; 29.66 38.48 28.86 97

Total mi 37 48 36 121

O¡-E;=D; -5.34 -2.52 +7.86 0.00

As the mInimum expected value exceeds one, the approximate tests should be
adequate.

T = (-5.34)(0) + (-2.52)(1) + (7.86)(2) = 13.20,

and 2 2 ( 2 )2/
~ mi(di - J? = ~ mid¡ - ~ midi m.

= 192 - (120)2/121 = 72.9917.

Therefore,

VT = H(24)(97))/t(121)(120)))(72.9917) = 11.7028.

The one-taIled test for positive trend yields

ZT = (13.20)/V(I1. 7028)

= 3.86, p = 0.00006,

and the two-tailed chi-square test is

xt= Zt= (3.86)2 = 14.90,
The corresponding continuity corrected test is

ZTc = (12. 70)/V(11. 7028) = 3.71,

p = 0.00011.

p = 0.00010.

Tuming to the question of possible departure from linearity, we compute X~ = 16.33
according to (5.11) and derive Table 5.9. Clearly, there is no evidence that a linear
model does not fit.

If we fit the logistic model by maximum likelihood, we find ß = 1.32:l 0.37. The
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Table 5.9 Summary of analysis of crude proportions for the 1,2-dichloroethane
example

Source of variation Degrees of Chi-square p
freedom

Linear trend 1 X~= 14.90 0.00011
Departure from Iinearity 1 X2 - 1.43 0.23Q-
Total (heterogeneity) 2 X~= 16.33 0.00028

estimates of the odds ratio of the dosed to control groups, using this value and the

cross-product ratios, are given in Table 5.10. The good agreement between these
estimates reflects the fact that the linear logistic model fits these data weIl.

Table 5.10 Estimates of odds ratio from data on 1,2-
dichloroethane

Dose group

ci = i 0 2

il 1.00 3.60 12.501

Ri = exp(ßi) 1.00 3.74 14.01

Exact or conditional analyses for linear trend

When the numbers are smaIl, it may be necessary to use the exact test for trend
(Cox, 1958), which is a generalization of the Fisher-Irwin test. This test statistic can be
derived from the logistic model, but the null hypothesis and the distribution used to
obtain a p-value hold very generaIly. Like the exact test for two groups, its theoretical
basis is the randomization of the animaIs into several groups. U nder the null

hypothesis, it is assumed that the total number of animaIs with tumour in aIl the groups
is fied at s. The conditional distribution is th en

P(yo, Yi, . . . 'Yil s) = (:O)(~il) . . . (~:) / (:.)

where l.f=o Yi = s. The observed statistic for which probabilties of more extreme
outcomes wil be calculated is l.f=o Didi = A. For tests of positive trend, the p value is
computed from

p = ¿ P(yo, Yb . . . , Yi 1 s).
Q

where Q consists of aIl possible values of Yi :; 0 such that l.f=o Yi = sand l.f=o Yidi :; A.
For a test of a negative trend, the sense of the last inequality is reversed. The

application of this test usualIy requires a computer program (see, e.g., Thomas et al.,
1977). For 1 = 1, this test is identical to the exact test for two groups. Cox (1958)
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showed that the Cochran-Armitage test is the normal approximation to the exact
randomization trend test.

It is also possible to perform an exact test for departure from linearity. This requires
further conditioning on the observed value of I: y¡d¡, which results in a more complex
distribution. Bayer and Cox (1979) have published a pro gram that can be used for this
purpose. Conditional maximum likelihood methods can be used in small numbers to
estimate ß, and the se have been implemented, in a somewhat more general context, by
Smith et al. (1981).

Returning briefly to our example, we find that the condition al test for linearity, fixing
s = 24, yields the exact one-tailed p = 0.00007, which is quite close to the value found
from the continuity-corrected Z Tc. specifically, p = 0.00010.

Combination of results over sexes, strains or experiments

The approximate tests for trend can easily be combined over sexes, strains or
experiments. ln each analysis the doses must be uncoded or be coded in the same way.
The combined normal deviate test statistic is calculated simply by adding the
numerators and the squares of the denominators of the individual statistics and dividing
the summed numerators by the square root of the summed squared denominators. Its
mathematical formula is ZT = I: T ¡-\l(I: VT), where the summation is over the different
subexperiments.

The continuity corrected normal deviate test is Z Tc = (I: T :l ti/2)/Y(l. VT), where
the doses are equalIy spaced, ti units apart in aIl experiments, and the minus is used
for testing a direct relation and the plus for an inverse relation. Note that the ti/2
corrections are not summed over the several experiments in combining the test
statistics. This is the so-called Mantel-Haenszel procedure (Mantel & Haenszel, 1959;
Mantel, 1963), which is the optimal procedure for testing the common slope, ß, of a
stratified logistic modeL. For 1 = 1 it essentially reduces to Cochran's (1954) test for the
combination of 2 x 2 tables. Radhakrishna (1965) and Tarone and Gart (1980) showed
the asymptotic effciency of these combined tests to be robust (or insensitive) to modest
departures from this logis tic modeL.

Combined approximate tests for departure from linearity or for homogeneity of
slopes from different experiments, and the maximum likelihood estimation of a
common ß over several experiments, usually require the use of a computer program
(see, e.g., Thomas & Gart, 1983). Exact combined tests also usually require such
programs (for 1 = 1, see, e.g., Thomas, 1975; for 1 ~ 2, see, e.g., Bayer & Cox, 1979),
as does calculation of the conditional maximum likelihood estimate (for 1 = 1, see
Thomas, 1975; for 1 ~ 2, see Smith et al., 1981).

The various combined tests may not be appropriate if the relative effect of treatment
varies greatly over the various strata or experiments being combined. Such variation
for logistic models is measured by differences in the odds ratio for one-dose
experiments or by differences in logistic slope for multiple-dose experiments. Statistical
tests for the homogeneity of odds ratios are given by Breslow and Day (1980, pp.
142- 146; see also Tarone, 1985) and tests for homogeneity of logistic slopes by Thomas
and Gart (1983).
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The issue of multiple comparisons among doses

Often, experimenters compare each of the 1 dosed groups in turn with the control
group and report the results of these several tests in addition to the trend test. This
raises the problem of multiple comparisons. If there is a strong direct relationship with
dose, analyses of the results of the high dose and perhaps of some lower doses agree
with the trend test in finding significance. A problem of interpretation develops when
the lower-dose comparison is significant while the high-dose comparison and the trend
test are not. ln such cases, the chi-squares for homogeneity and departure from trend
are usually large, if not significantly so. An adjustment in significance may be
employed to allow for the possibility of finding significance by any one of two or more
statistical tests. The simplest and most widely used correction employs the Bonferroni
inequality (Miler, 1981a, pp. 6-10). If the desired ove raIl significance level for the test
of the chemical compound at 1 doses is (Y, the individual comparison of the ith dose to
control is made at a significance level (Yi, where Ef=i (Yi = (Y. Alternatively, the
observed p-value for comparison of the ith dose to control is multiplied by a / (Yi'
Because greater emphasis should be given to significance at the highest dose, (Yi should
be chosen to be larger th an the remaining (Yi, i = 1, . . . , 1 - 1.

The Bonferroni correction may be used to adjust multiple tests both in the
previously considered survival analyses as weIl as in the following analysis of prevalent
and rapidly lethal (or observable) tumour rates. Unless the target organ for a given test
compound is known in advance, control of the ove raIl experimental error rate is
necessary. This more diffcult question of multiple comparisons over organ sites is
discussed in Section 7.2.

5.5 Prevalence analysis for nonlethal occult tumours

Hoel and Walburg (1972) pointed out the importance, when evaluating data on occult
tumours, of making a distinction between those tumours that are le 

th al and those that
are nonlethal. Nonlethal occult tumours are discovered at necropsy, either after
terminal sacrifice or after an animal has died prior to terminal sacrifice because of
ilness unrelated to the presence of the tumour. ln this section, tests for the equality of
prevalence rates for nonlethal occult tumours are presented. An assumption underlying
the derivation of these prevalence tests is that, at least with regard to the presence or
absence of a nonlethal tumour, death is a random sampling mechanism. This is an
extremely strong assumption, implying that a tumour-bearing animal is, in every way
except for the presence of a tumour, as healthy as a tumour-free animaL. Nonetheless,
such statistical procedures can be useful in evaluating the carcinogenic potential of a
test compound. ln this section it is assumed that aIl tumours of a particular type
observed in the carcinogenesis experiment under consideration are nonlethal.

Suppose the carcinogenesis experiment ex tends from time zero to time T, where T
denotes the time at which the terminal sacrifice is scheduled. Now suppose that the
interval (0, T) is subdivided into J - 1 subintervals, !Jj, where !Jj = (Tj_¡, 1Jl for
j = 1, 2, . . . , J - 2, and !J J-l = (TJ-2, TJ-i), with 1' = 0 and TJ-i = T. Then, let the
number of animaIs dying in group i during subinterval !Jj be denoted bylVj and the
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Table 5.11 Summary of tumour prevalence data for nonlethal tumours in interval 5'j

Dose Total

Gi d, ci ci

No. of animais with tumour YOj Y,j yú Y¡j y.
.1

No. of animais dying in .Ý¡ No¡ Nu N.. N1¡ N.Il .1

number of these animais in which a tumour is çliscovered at necropsy be denoted by
Yij, i = 0, 1, . . . , I. Then, for each subinterval .fj, the tumour prevalence data may be
summarized in a 2 x (1 + 1) table su ch as Table 5.1l.

ln addition, the tumour prevalence of the animaIs killed at terminal sacrifice can be
summarized in a similar table, indexed by J, where Nu denotes the number of animaIs
in group i surviving to terminal sacrifice, and Yu denotes the number of these animaIs
in which a tumour is found at necropsy. Note that, if there are any planned interim
sacrifices, each time of such a sacrifice is treated as a distinct subinterval and
contributes a separate 2 x (I + 1) table of tumour prevalence data. Once the tumour
prevalence data have been stratified into J strata, as described above, tests for equality
of tumour prevalence rates can be derived using standard contingency table methods.

The prevalence test statistics can be computed using (5.3), (5.4) and (5.5), where Di
and Vhi are calculated as in (5.1) and (5.2), after substituting J for K, j for k, Yij for Xik

and N¡j for nik' Let XiH denote the test for equality of tumour prevalence rates in the
1 + 1 groups using (5.3) (Armitage, 1966), XiT denote the corresponding trend test
statistic computed using (5.4) (Mantel, 1963), and X~Q denote the corresponding
departure from trend statistic computed using (5.5).

eonsider now the data given in Table 4.1 on alveolar/bronchiolar adenomas in the
experiment with 1,2-dichloroethane in female mice. ln the opinion of a pathologist

involved in evaluating this experiment, it was extremely unlikely that any of these
adenomas contributed to the deaths of tumour-bearing animaIs. This claim is supported
by the fact that, in the two groups (control and low-dose) with good survival,

alveolar/bronchiolar adenomas were found only in animais surviving until terminal
sacrifice. To demonstrate the prevalence methods for nonlethal tumours, let us first
assume that the 90-week experiment was divided (prior to evaluation of the data) into
three subintervals, (0,52), (53, 72) and (73,90), with terminal sacrifice planned at 90
weeks. No tumour was found in animaIs dying in the first 52 weeks, and, hence, the
prevalence analysis is based on the 2 x 3 contingency tables presented in Table 5.12.

Applying the above methods, we find X~H= 15.10, X~T= 13.51 and X~Q= 1.59,
with 2, 1 and 1 degrees of freedom, respectively. Thus, administration of 1,2-
dichloroethane is associated with increased tumour prevalence, and the increase is
clearly dose-related.

The method of subdividing the length of the experiment into subintervals warrants
further discussion. ln the above analysis it was assumed that subdivisions were chosen a
priori, without reference to the data on tumour prevalence. Peto et al. (1980) suggest
an adaptive interval selection method in which subintervals are determined by the
tumour prevalence data. This method is ilustrated using the tutorial example of Peto et
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Table 5.12 Contingency tables for preselected time intervals for
prevalence analysis of data on 1,2-dichloroethane

al. (1980) (Table 5.13), and is then applied to the data on 1,2-dichloroethane and lung
adenoma.

The first step in the adaptive interval selection method, shown in row 1 of Table
5.13, is to list, in increasing order, the times of death of aIl animaIs (pooling times of
death from aIl 1 + 1 exposure groups) for which necropsies were performed. The list
starts with the first time at which an animal died and was subjected to necropsy - week
50. The times of death for animaIs in which a tumour was found are underlined. ln the
case of ties (i.e., times at which sorne animais had tumours but others did not), the
animaIs with tumours are listed first. The second row of the table con 

tains asterisks
which separate the times into what Peto et al. refer to as 'ad-hoc runs'. Each ad-hoc
run is a sequence of consecutive underlined times folIowed by a sequence of

consecutive times without underlining. The times before that at which the first animal
with a tumour was found do not play any further role in the analysis, as the prevalence
is zero for that period. The third row gives the proportion of underlined times in each
run; that is, this row gives the estimated tumour prevalence within each time interval

Table 5.13 Calculation of subintervals for prevalence analysis using the adaptive method of
Peto et al. (1980)

(1) 50 67 67 67 67 94 97 105 110 110 115 115 120 121 124 124 128 130 134 137 139(2) * * * - - *- - * * - - *
(3) 0.25 0.50 0.67 0.67 0.20 0.67(4) * * * * * *(5) 0.25 0.50 0.67 0.375 0.67(6) * * * * *(7) 0.25 0.50 0.455 0.67(8) * * * *(9) 0.25 0.462 0.67
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defined by a run. The remaining rows summarize the process of merging adjacent runs
for which the estimated prevalence rates decrease with increasing time, and deleting
asterisks separating merged runs. This process of 'pooling adjacent violators' is
equivalent to maximum likelihood estimation of prevalence rates assuming non de-
creasing prevalence (Ayer et al., 1955). For the data in the table, the first decrease in
row 3 occurs between the fourth run (estimated prevalence, 0.67) and the fifth run
(estimated prevalence, 0.20). Merging of these runs forms a new fourth interval with
an estimated prevalence of 0.375 (row 5). The first decrease in row 5 occurs between
the third run (estimated prevalence, 0.67) and the new fourth interval. Merging of the
third run and the fourth interval results in a new third interval with an estimated

prevalence 0.455 (row 7). The first decrease in row 7 occurs between the second run
(estimated prevalence, 0.50) and the new third intervaL. Merging of the second run with
the third interval results in three intervals with increasing estimated prevalence rates
(row 9). Thus, the adaptive method gives a subdivision into three time intervals: the
first subinterval consists of week 67, with an estimated prevalence of 0.25; the second
subinterval consists of weeks 94-130, with an estimated prevalence of 0.462; and the
third subinterval consists of weeks 134-139, with an estimated prevalence of 0.67.

For the data on the effects of 1,2-dichloroethane in female mice on adenoma
incidence, the above adaptive method leads to a single interim subinterval from 62
weeks (when the first adenoma was found) to 88 weeks. Thus, the prevalence tests
using the adaptive interval selection method are based on the 2 x 3 contingency tables
in Table 5.14.

For these tables, X~H = 14.49, X~T= 13.23 and X~Q = 1.25, with degrees of freedom
2, 1 and 1, respectively. These values are smalIer, but quite similar, to the values

obtained previously using the prevalence analysis after a-priori subdivision into three
subintervals.

Whatever the method of interval selection, it is possible to find subintervals in which
deaths are observed in only one exposure group. Tumours found in such subintervals
wil be ignored in calculating the prevalence test statistics. AlI such subintervals
occurring after the first tumour has been observed may be merged with adjacent
intervals containing deaths in additional exposure groups, although care should be

Table 5.14 Contingency tables after time partition by ad-hoc runs for
prevalence analysis of data on 1,2-dichloroethane

.11 = (62,90) d 0 1 21

Yí,

1

0

1

0

1

14

1

N¡, - Yí, 4 13 21

.12: terminal sacrifice

1 1 1 1

Yí2 2 7

Ni2 - Yí2 31 28 0
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taken not to merge intervals with widely disparate base line prevalence rates. One
instance in the adaptive interval selection method in which this situation wil arise
routinely is when the last animal dying prior to terminal sacrifice has a tumour but the
penultimate animal dying has no tumour. ln this case, the last subinterval wil contain
only the animal which died last. Accordingly, the last time of death should be included
in the immediately preceding .subinterval, provided this preceding subinterval includes
deaths from another exposure group.

For both methods of interval selection described above, when applied to the data
for 1,2-dichloroethane, the resulting prevalence method chi-squared statistIcs for the
effect of exposure on tumour prevalence are smaIler than the corresponding chi-

squared statistics based on the crude tumour rates after eliminating animais dying prior
to observation of the first tumour (Table 5.9). For an experiment the size of that with
1,2-dichloroethane, such a finding is not unusuaL. Regardless of the interval selection
method, sorne effciency may be lost because of the smaIl number of animais dying in
control (and sometimes low-dose) groups prior to terminal sacrifice. This is better
ilustrated by considering what would have happened if there had been no low-dose
group in the 1,2-dichloroethane experiment. ln order to compare the control group and
the high-dose group, the prevalence test using the adaptive interval selection method is
based on the 2 x 2 contingency tables in Table 5.15.
The prevalence test for equality of tumour rates gives X~H = X~T = 6.23. The

analysis of crude tumour rates after eliminating animaIs dying prior to observation of
the first tumour (see Section 5.4) gave an approximate chi-squared test statistic for
equality of tumour rates of X2 = 13.26. Even though survival in the high-dose group is
quite poor, the simpler analysis of adjusted cru de tumour rates gives a much more
significant result than the prevalence analysis. This is because only four control animais
died prior to terminal sacrifice when aIl but one of the high-dose animais died, while
only one high-dose animal survived to terminal sacrifice when the majority of the

Table 5.15 Contingency tables for comparison of control
group and high-dose group from data on 1,2-dichloroethane

!J1 = (62, 79) q 0 2

'r1 0 13

N¡1 - 'r, 3 21

5'2 = (80,85)

'r2 0 1

N¡2 - 'r2 1 0

5'3: terminal sacrifice

'r3 2 1

N¡3 - 'r3 31 0
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control animais contribute to the prevalence analysis. For larger experiments, the

effciency of the prevalence analysis should improve relative to the crude tumour rate
analysis. It is important to note that the ineffciency of the interval prevalence method
in this example is due to the large difference in intercurrent mortality rates. If
intercurrent mortality rates are equal in aIl groups, then the interval prevalence

method wil, in general, be more effcient th an the crude tumour rate analysis
(McKnight, 1981).

Dinse and Lagakos (1983) proposed a logistic regression method for analysing
nonlethal tumour data. Their method does not require selection of time intervals but,
rather, makes use of the time of death of each animaL. Dinse and Lagakos assume that
the tumour prevalence rate at time t for animais in the group exposed to dose level di
of the test compound is given by

P(di; t) = expr y(t) + DJ/(1 + expr y(t) + DJ)' (5.11)
where y(t) = ßo + ßit + ß2t2 + . . . + ßrtr. The carcinogenic potential of the test com-
pound is assessed by testing the null hypothesis Ho: Ö = 0, where Ö' = (Do, Di, . . . , Di)
is a vector of group-specific parameters. The validity of the test of Ho rests on the
assumption that the prevalence function under Ho can be represented adequately by
the logistic function

pet) = expr y(t)) /(1 + expr y(t))). (5.12)

The polynomial y(t) wilI be referred to as the prevalence log-odds function. As in
Section 5.3, denote the kth time at which animal deaths are observed by tb and let Xik
denote the number of deaths observed in group i at time tb k = 1, . . . , K; i =
0, 1, . . . , i. Similarly, let Yik denote the number of animaIs in which a tumour is found
at necropsy among the Xik animais from group i dying at tk. Let y(t) = ßo + ßit +
ß2t2 + . . . + ßr(, where ~ denotes the maximum likelihood estimator of ~ =
(ßo, ßi, . . . , ßr)' un 

der Ho: Ö = O. It follows that score tests of Ho can be based on the

(1 + 1) statistics
K

Di = :¿ (Yik - XikPk),
k=i

where Pk = expr y(tk)) /(1 + expr y(td)). Note that Di can be written as Di - Êi, where

Di is the observed number of animaIs in group i in which tumours were discovered, and
Êi is the expected number calculated on the basis of the estimated polynomial

prevalence log-odds function. The covariance matrix V of the vector Ô =

(Do, Di, . . . , Di)' can be obtained using standard score test methodology, and a test of
Ho:Ö = 0 can be based on

XiH = Ô'V-Ô,

which wil have an asymptotic chi-squared distribution with 1 degrees of freedom under
Ho, provided the prevalence function under Ho can be described by (5.12) with y(t)
an r degree polynomial in time. Similarly, writing Di = ljdi for aIl i, a test for
monotone trend in response can be derived as a score test of Ho: lj = 0, which leads to
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the test statistic

XiT= (d'D)2/(d'Vd).
Provided the nuIl prevalence function can be described by (5.12) with y(t) an r degree
polynomial, the statistic x¡T wil be asymptotically distributed, under Ho, as a
chi-squared random variable with one degree of freedom.

Although the method of Dinse and Lagakos (1983) does not require selection of time
intervals, an appropriate degree polynomial must be selected to estimate the
prevalence function. The importance of the choice of r is ilustrated by the data from
the 1,2-dichloroethane experiment. Using the data from aIl three exposure groups and
assuming a linear prevalence log-odds function (i.e., r = 1 in y(t)), one finds that
XiT= 17.67. For the same data, assuming a quadratic prevalence log-odds function
(i.e., r = 2 in y(t)), one finds that XiT= 9.93. Similarly, when comparing the high-dose
group to the control group, deleting the data from the low-dose group, one finds

XiT= 17.44 with a linear prevalence log-odds function and XiT= 6.04 with a
quadratic prevalence log-odds function. It should be noted that the disparity in the

results obtained with linear and quadratic prevalence log-odds functions in this

ex ample is due primarily to the large differences in intercurrent mortality rates among
groups. ln such a situation, different choices of interval can similarly lead to widely
disparate results using analysis based on XiT' McKnight (1985) has noted that, in cases
of extreme differences in intercurrent mortality rates, aIl methods of time ad 

just me nt
eventuaIly break down.

This ex ample raises the important issue of the need for further research on methods
for choosing the degree of the polynomial, y(t). Using aIl three exposure groups and
fitting (5.12) to the 1,2-dichloroethane data, the model with parameters ßo, ßi and ß2
provides a significantly better fit than the model with only parameters ßo and ßi
(p = 0.0023). Thus, selection of the best fitting polynomial, in the absence of
information on exposure level, would lead to selection of a quadratic prevalence

log-odds function. Letting Di = o.di for aIl i and fitting (5'.11) to the 1,2-dichloroethane
data, the model based on ßo, ß i, ß2 and O. provides little improvement in fit over the
model based on ßo, ßi and O. (p = 0.65). Thus, selection of the best fitting polynomial,
in the presence of information on exposure level, would le ad to selection of the linear
prevalence log-odds function, and to the corresponding finding of a stronger associa-
tion between exposure to the test compound and tumour prevalence.

ln a simulation study comparing XiT with linear and quadratic prevalence log-odds
functions to ..T with a variety of interval selection methods, Dinse (1985) simulated
tumour prevalence functions based on WeibuIl distributed times to tumour. These
prevalence functions are clearly not linear in time on the logis tic scale. Under the nuIl
hypothesis, results of the test based on XiT with a quadratic prevalence log-odds
function agreed more closely with those of tests based on XiT using the various interval
selection methods than did those of the test based on XiT using a linear prevalence
function. AlI tests considered in the simulation study tended to reject too often in cases
when mortality increased with dose level, the test based on XiT with a linear

prevalence log-odds function rejecting most often. Hence, on the basis of the above
examples and of limited simulation results, it would seem prudent to select the degree
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of the polynomial, y(t), by fitting the model in (5.11) with b = 0, and to test the
significance of successively higher-degree polynomials at a moderate significance level,
say 10-20%.

Although the availability of a method for nonlethal tumours which avoids the need
for interval selection is desirable, unqualified recommendation of the method of Dinse
and Lagakos (1983) must await further investigation of issues related to polynomial
selection. Hitchcock (1966) showed that logistic regression tests such as that based on
XiT usualIy offer only slight gains in effciency over comparable stratification methods
such as tests based on Xin and Gart (1977) verified this finding in a specific
application. The simulation study of Dinse (1985) offers further verification. Whatever
the slight gain in effciency of the test based on Xin it may be offset by the invalidity
of the test when the assumed logistic relation over time does not ho Id (see Cox, 1966).
Provided that the tumour prevalence does not change rapidly in any of the selected
time intervals, the test based on XiT wil be valid regardless of whether a linear
relation or sorne higher polynomial in time ho Ids for tumour prevalence rates.
Nevertheless, the logistic regression method of Dinse and Lagakos provides an
attractive alternative to interval-based methods, particularly since it provides a
statistical framework within which the potential ambiguities introduced by the need to
choose intervals or polynomials can be resolved. A recently proposed method based on
weighted prevalence estimators (Selwyn et aL., 1985) requires neither interval nor
polynomial selection, and thus warrants further investigation.

5.6 Analysis of rapidly le th al occult tumours and of observable tumours

ln this section we consider statistical methods that use the information on times to
tumour, or times to death because of tumour, more precisely. We discuss two kinds of
experiments:

(1) studies in which the specific tumour under study is found at necropsy, i.e., is
occult, but is assumed to be rapidly lethal, and

(2) studies of easily. observable tumours in living animaIs, such as those in
skin-painting experiments, or experiments in which the endpoint is a palpable tumour.

For such studies, we show how to calculate the curves for survival without apparent
tumour and give methods for comparing such curves.

ln the first kind of study, the tumour when found at death is usually assumed to
cause the death, even if the animal died accidentally or was sacrificed because it was

moribund. It may be questioned whether animais found with a tumour at scheduled

sacrifice should also be assumed to have a lethal tumour. If the tumour is truly rapidly
lethal, very few should be found at sacrifice. However, for the terminal sacrifice the
fatal/incidental distinction is not essential, since aIl animaIs that are kiled at this
terminal sacrifice were the only ones at risk of dying of a le th al tumour, and
considering these tumours as either lethal or incidental wil not alter the results. Such
questions are discussed more fulIy in the next section. ln any case, the analyses require
knowledge of the times of death of aIl the animaIs and a categorization of animais into
those bearing the tumour of interest and those not bearing the tumour of interest.
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Studies in which the tumour is directly observable are simpler to analyse. Here, it is
necessary to know the time at which the tumour is first seen in any animal; the times of
any subsequent appearance, disappearance, reappearance, appearance of additional
tumours, or death are not required for analyses of this type. We do require knowledge
of the times of death of aIl animaIs that die without ever getting the tumour.

The data are usually recorded in time units of days or weeks and are divided into sets
labelled 'uncensored or 'censored' for animaIs with and without tumours, respectively.
Our analyses require specification of aIl time points at which tumours are found in any
group, denoted, as in Section 5.2, by ti, . . . , tb . . . , tK. The number of animaIs with
tumour found at tk in group i is denoted by Yik' The total number of animaIs with
tumour found over the course of the experiment is then Yi. = l:f=i Yik' Note that Yi.
corresponds to Yi from Section 5.4, where the time index was suppressed. ln general,

the number at risk at tk for group i is mik' Thus, mil corresponds to mi in Section 5.4.
Successive values of mi,k+1 are found to be mik - Yik less the number dying in group i in
the interval (tb tk+i). That is, those dying at tk+i are stil included in mi,k+l' Note that
for experiments on lethal tumours, mik consists of aIl animaIs alive at the beginning of
tb while for observable tumours mik excludes those living animaIs that already have a
tumour.

We ilustrate this notation by considering the data from Section 4.2 on observable
tumours induced by painting cigar-smoke condensate in groups D, E and F from Table
4.2. No untreated control group, which would naturally be indexed with 0, is present in
this example. We therefore index the three groups 0, 1 and 2, for increasing dose,
giving index 0 to the group receiving 59 mg cigar-smoke condensate per week (group
F). For numerical convenience, we subtract 59 from the actual doses and code them as
0, 19 and 44. Note that 1 = 2 in this example. Table 5.16 gives a partial listing of the
data that have K = 37 distinct time points with tumour.

Calculation of the Kaplan-Meier estimator of the survival function without known
tumour follows easily from the formulae given in Section 5.3. (It is interesting to note
that this procedure was originally used in the same framework for analysing the
occurrence of tumours in skin-painting experiments by Miescher et al., 1941.) If Yik Is
substituted for Xik and mik for nib the formulae for .5i(t) and V (Si(t)J apply to the

Table 5.16 Summary of ages at detection of observable tumours
in data on cigar-smoke condensate

Tumour time ¥;kl mik Total
point (weeks)

i: 0 1 2
k t¡ ci : 0 19 44 Y.k1m.k

1 24 1/83 0/81 0/79 1/243
2 31 1/79 0/77 0/73 1/229
3 38 1/76 1/74 1/69 3/219

36 99 0/19 1/9 1/3 2/31
37 100 0/18 0/9 1/2 1/29

Total: Yi. 21 31 37 y.. =89
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Fig. 5.2 Kaplan-Meier estimates of tumour-free survival curves for three groups of female
mice (D, 59 mg/week; 0, 78 mg/week; .., 103mg/week) painted with cigar-smoke
condensate

1.0

0.9
i-
:J
0
E 0.8:J-
c:
~ 0.70
c:.:- 0.6:J
0£-
~ 0.5
01
c:
:; 0.4:;i-
:J
CI

c: 0.3
0-..
0

0.2c.
0i-
n.

0.1

0
10 20 30

present analysis. The curves are plotted similarly. (See Figure 5.2 for the plot of the
cigar-smoke condensate study.)

The statistical tests for possible differences in these curves of survival without known
tumour are also analogous to the tests of survival curves and of prevalent tumour rates.
Log-rank test statistics may be computed using (5.3), (5.4) and (5.5), where Di and Vhi
are calculated as in (5.1) and (5.2) after substituting Yik for Xik and mik for nik' Let XLH
denote the test statistic for equality of tumour mortality or incidence rates in the 1 + 1
groups computed using (5.3) (Mantel, 1966; Cox, 1972), XiT denote the corresponding
trend test statistic computed using (5.4) (Tarone, 1975), and XLQ denote the
corresponding departure from the trend statistic computed using (5.5) (Tarone, 1975).
Furthermore, ZLT may denote the corresponding one-tailed normal deviate for trend.

Alternatively, modified Wilcoxon rank sum tests can be employed. Wilcoxon test
statistics may be computed using (5.8), (5.9) and (5.10), where DiW and VhiW are
calculated as in (5.6) and (5.7) after substituting Yik for Xik and mik for nik' As discussed
previously, the modified Wilcoxon test is more sensitive for detecting differences in the
curves early in the experiment. For experiments with heavy intercurrent mortality, the
Peto-Prentice-modified Wilcoxon statistics should be used (Prentice & Marek, 1979).

We turn now to the estimation of the strength of association of tumour effect with
dose. First, consider the assumptions that Cox (1972) made in deriving the log-rank
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test. Let Åi(t), the hazard rate function in group i, be the (instantaneous) probabilty of
a tumour in the time interval (t, t + ~t). eox assumed proportional hazard rates, i.e.,
Åi(t)/ Åo(t) = Pi for aIl t and i = 1, . . . , 1. That is, the incidence of tumours may vary
over time, but the pairwise relative risks among aIl the groups are constant. The
homogeneity chi-square tests whether Pi = 1 for aIl i, while the trend test is sensitive to
log-linear alternatives of the form Pi = exp(ßdi). Various estimators have been
suggested for Pi' The simplest to use is the ratio of ratios of observed and expected
values (Pike, 1972),

fi = (O)EiL)/(Oo/Ed, i = 1, 2, . . . , l,

where EiL (i = 0, 1, . . . , 1) is the expected number of lethal or observable tumours,
calculated as described in general terms in Section 5.2.

Breslow (1975) and Bernstein et al. (1981) found that this estimator is valid for
! -= P -= 2, but that it may be biased towards unit y for other values. Another rather
simply applied estimator is the so-called Mantel-Haenszel estimator, which is

essentially a weighted combination of the cross-product ratios:

ï; = t~i Ylk(mOk - YOk)/m.k J/t~i YOk(mlk - Ylk)/m.k J.

The results of Bernstein et al. (1981) indicate that this estimator has small bias away
from unit y for l -= Pi -= 3, but may have large bias otherwise.

FinaIly, as suggested by Gart (1972), the methods of logistic regression for
contingency tables can be applied to either the 2 x 2 x K or 2 x (1 + 1) x K
table. From the former, an estimator of Pi for each i = 1, 2, . . . ,1 can be found from
the maximum likelihood estimator, Pi of the odds ratio (see, e.g., Thomas, 1975).
Alternatively, we can fit a stratified logistic model to the 2 x (1 + 1) x K table and
obtain the maximum likelihood estimator of the common slope, ß (see, e.g., Thomas
& Gart, 1983). The estimators of Pi based on the linear logistic model are then
Pi = exp(ßdi). Either of the se estimators tends to be biased away from unit y with small
sample sizes.

Let us return now to the example of painting with cigar-smoke condensate. We find

the one-tailed test for trend is ZLT = 4.49, P = 0.000004. The comparable test statistic
using the Wilcoxon form of the test yields a normal deviate ZLT of 3.46 with
p = 0.00027. The Wilcoxon form is less significant, as it gives greater weight to the
comparisons early in the experiment, where the curve of survival without tumour of
the control group is actualIy lower than that of the dosed groups.

The fulI set of chi-square analyses by both tests is given in Table 5.17. Chi-squares
for heterogeneity are highly significant by both methods. Almost aIl of this variation is
accounted for by the linear trend chi-squares. Thus, neither method finds anyevidence
of departure from linearity.

Consider now the question of estimating the strength of association between dose
and tumour effect, ilustratedfor this example in Table 5.18. For thIs example,

ß = 0.0271:: 0.0062. The good agreement between Pi' which assumes linearity on the
logistic scale, and the other estimates, which do not, reflects the low chi-squares for
departure from linearity.
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Table 5.17 Summary of analysis of observable tumours from data on cigar-smoke
condensate

Source of Degrees of Log-rank test Wilcoxon test
variation freedom

Chi-square p Chi-square p

Unear trend 20.15 0.0000 11.96 0.0005
Departure from 0.01 0.9187 0.06 0.8124

linearity

Total 2 20.16 0.0000 12.02 0.0025
(heterogeneity)

Table 5.18 Estimates of odds ratios from data on cigar-smoke

condensate

Dose cf

0 19 44

0; = Yi. 21 31 37
EL 37.92 29.74 21.35
0;/ EL 0.554 1.042 1.733
ri 1.00 1.88 3.13
ri 1.00 1.88 3.12
Pi 1.00 1.91 3.34

Pi = exp(ßd¡ ) 1.00 1.67 3.29

Comparison of life-table analyses and analyses of cru de proportions

It is not uncommon for analyses of crnde proportions to yield substantialIy the same
interpretation as that reached by the more elaborate analyses using the life-table
techniques we have just described. If there is more intercurrent mortality among the
high-dose groups (see Chapter 2, Table 2.2), the more sophisticated analyses wil
probably yield a more significant positive or direct association with dose than wil the
cru de analysis. Under the se circumstances, existing relationships not foundby the
crude analysis may become apparent in the life-table analysis.

If the intercurrent mortality is minimal or roughly equal in the various groups, the
cru de proportion and life-table analyses wil often be quite similar. Cuzick (1982)
confirmed this impression theoretically. He found that crude proportion analysis is over
95% effcient relative to Cox's life-table analysis when less than 50% of the animaIs
have tumours.

It is instructive to compare the results of the crude proportion analysis for the
ex ample of cigar-smoke condensate. Note that the first tumour occurred at 24 weeks
and the last at 100 weeks. The summary of the data on early and intercurrent mortality
is given in Table 5.19. We see that, ev en after adjusting for early mortality, there
remain substantial differences in the percentages of intercurrent mortality among the
groups of those at risk at 24 weeks and not getting a tumour subsequently. These range
from 74% to 98%.
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Table 5.19 Summary of mortality from data on cigar-smoke condensate

Dose el Total

0 19 44

n 100 100 100 n = 300J

Death before t = 24 17 19 21 57

mil 83 81 79 m.i = 243
Interim deaths (24-100 weeks) 46 46 41 133

Yi 21 31 37
mil - Yi 62 50 42
Interim deaths (% of mil - Yi) 74% 92% 98%

For both the life table and the crude proportions tests, we use the identical total
observed numbers of animais with tumours, but the expected values are calculated
differently (see Section 5.4). Table 5.20 presents the results.

Table 5.20 Observed and expected values calculated by two methods
(lie-table and crude proportions) from data on cigar-smoke
condensate.

Dose el

0 19 44

q = Yi 21 31 37
E;L 37.42 29.74 21.35
q-EiL -16.92 1.26 15.65
E; = (miiYJ/m.i 30.40 29.67 28.93
q -E; -9.40 1.33 8.07

Total

y =89
89
o
89
o

Because of the high intercurrent mortality in the high-dose group, its expectation is
much lower in the life-table analyses th an it is in the crude proportion analysis, which
do es not take the differential mortality into account. The inverse relation holds for the
low-dose group, which has lower intercurrent mortality. Thus, deviations of the
expected from the observed values are larger in the lie-table analysis. The results of
the crude proportion analysis are shown in Table 5.21.

Table 5.21 Summary of crude proportion analysis of data on cigar-smoke
condensate

Source of Degrees of Crude proportion tests
variation freedom

Chi-square p

Linear trend 1 7.88 0.0050
Departure from linearity 1 0.31 0.5771

Total (heterogeneity) 2 8.19 0.0166
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Table 5.22 Estimates of odds ratio fram crude proportion
analysis of data on cigar-smoke condensate

Dose ci o 19 44

Odds ratio
R-i
R-i

1.00
1.00

1.83
1.49

2.60
2.52

The trend and homogeneity tests are stil significant but less so than by either of the
life-table analyses. Recallng the discussion of Section 5.4, the associated measures of
association are shown in Table 5.22. For this analysis, we found that ß = 0.0210:l
0.0075. These estimates are somewhat lower, particularly at the high dose, than the
estimates found from the life-table analysis. Thus, although both analyses imply simIlar
qualitative interpretations, the life-table analyses yield more highly significant tests
with larger measures of association. This is a quite common result and represents an
example of outcome type A of Table 2.2.

Alternative life-table and exact tests

When the experiment is smalI, the question arises whether the life-table tests are
valid. Simulations performed by Tarone (1975) and Latta (1981) indicate that the fit of
the test statistics to the appropriate chi-square distributions is quite good in large
sample sizes. However, when the numbers are small, these tests may reject the null
hypothesis too often. For small expected values, say, the minimum of EiL 00 5, a
conservative version of the life-table chi-square tests has been suggested (Peto & Pike,
1973). However, Gart (1975) and Haybittle and Freedman (1979) point out cir-
cumstances in which application of the conservative test must be used with caution. If
only one of the groups, say, i, has animais at risk beyond time t', then this should be
made the final time, tK, for the analyses based on the conservative test. If tumours
occur for t? t in the ith group, then their time points are omitted from calculation of

the observed and expected. Thus, Qi 00 Yi. in such instances.
For very smalI numbers, exact versions of these tests can, in principle, be done.

However, this involves an additional assumption requiring that the hazard rate for
deaths without tumour in each group be proportionally related to its hazard rate for
tumour incidence. Such tests are described by Tarone (1975) and Cox (1959).

A test for acceleration (as defined in Section 2.2) has been developed by Breslow et
al. (1984). Their test statistic is of the form given in equation (5.6), with Wk taken to be
the estimated cumulative hazard function (using the pooled data from control and
exposed groups) at tb the kth ordered time of death due to tumour. Because

acceleration is unlikely in experiments with inbred strains, this test should be used in
conjunction with a test such as the log-rank test which has power against more general
alternatives. Accordingly, appropriate adjustment for multiple comparisons is required
in those cases in which the acceleration test is employed (Breslow et al., 1984).
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Combination of tests

The approximate test for trend can easily be combined over experiments, as with the
analysis of cru de proportions. One simply adds the numerators of the Zn and divides
by the square root of the sums of squares of the individual denominators. The resulting
statistic is an approximate normal deviate. Combination of the homogeneity and
departure chi-squares usualIy requires a computer pro gram (see, e.g., Thomas & Gart,
1983).

Issues of multiple comparisons

When the statistical analysis is do ne by comparing in turn each dose group, di' to the
control, do, the question of multiple testing can be handled by the Bonferroni inequality,
as it was for the analysis of cru de proportions (see Section 5.4). ln addition, because
we have suggested two life-table adjusted tests for trend, another question of multiple
testing arises. It is invalid to compute routinely both tests and report only the one that
yields the higher significance. Tarone (1981) has given a method for adjusting the
p-value for the more extreme of these two tests. The adjustment method is derived
explicitly for the Breslow-modified Wilcoxon; however, the method applies also to the
Peto-Prentice-modified Wilcoxon, after substituting the Peto-Prentice weights for the
Breslow weights throughout.

5.7 Analysis of occult tumour data when contexts of observation are known

Although the analysis described in Section 5.5 is valid if aIl tumours of a particular
type are nonlethal and the analysis described in Section 5.6 is valid if aIl tumours of a
particular type are rapidly lethal, the relationship between the presence of a tumour
and death of host animais often lies between these two extremes. Sorne tumours of a
particular type may be, for aIl practical purposes, nonlethal, while other tumours of the
same type may contribute to the death of their host animaIs. As noted in ehapter 2,
differences among exposure groups with respect to intercurrent mortality can cause
serious bias in tests for equality of tumour rates. For data on occult tumours, analysis
assuming that aIl tumours are lethal when, in fact, some are nonlethal, and analysis

assuming that aIl tumours are nonlethal when, in fact, sorne are lethal, can lead to
incorrect inferences if intercurrent mortality rates differ among exposure groups (Peto
et aL., 1980; Lagakos, 1982). ln the common situation in which intercurrent mortality
rates increase with increasing dose level, the tumorigenic effect wil be overstated in
the first case (Le., assuming aIl tumours are lethal when sorne are nonlethal) and
understated in the second case (i.e., assuming aIl tumours are nonlethal when sorne are
lethal).

ln order to avoid biases due to differences in intercurrent mortality and at the same
time to make sorne use of data on time of death, Peto (1974) and Peto et al. (1980)
recommended that pathologists assign a context of observation to each observed
tumour (Section 2.10). A tumour that either directly or indirectly kils its host is said to
be observed in a fatal context. A tumour that is observed at necropsy of an animal that
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died of sorne cause unrelated to the tumour is said to be observed in an incidental
context. Although it may be diffcult to determine the contexts of observation for sorne
tumours, it is assumed in this section that aIl tumours of a particular type have been
classified as either fatal or incidentaL.

The analysis of data on occult tumours using contexts of observation is based on the
methods given in Sections 5.5 and 5.6. The analysis of incidental tumours is a
straightforward modification of the analysis of nonlethal tumours presented in Section
5.5. A modification is necessary, because those animaIs kilIed by the tumour in
question (i.e., animaIs for which the tumour is observed in a fatal context) should not
enter into the analysis of incidental tumours. As in the analysis of Section 5.5, the
length of the experiment is subdivided into distinct time intervals. Within each tirne
interval, the data on incidental tumours may be summarized in a table such as Table
5.3, with Nij corresponding to the number of animaIs in group i dying during interval j
from causes unrelated to the presence of the tumour in question, and ~j corresponding
to the number of these animaIs in which the tumour was observed in the incidental
context, for i = 0, 1, 2, . . . ,land j = 1, 2, . . . ,J. AlI tumours found in animaIs kiled
in planned sacrifices are classified as incidentaL. Using the methods of Section 5.3, we
form a vector D p of differences of expected from observed values for the data on
incident al tumours and corn pute the corresponding covariance matrix V p.

Analysis of tumours observed in the fatal context is based on the methods in Section
5.6. At each time tk at which the tumour in question is observed in the fatal context, a
contingency table like Table 5.16 can be formed, where Yik corresponds to the number
of animais in group i for which the tumour was observed in the fatal context at tb and
mik corresponds to the number of animais in group i surviving (and thus stil at risk of
being kiled by a tumour) to time tk. Note that, in the analysis of fatal tumours, animaIs
in which the tumour is observed in the incident al context are treated exactly as aIl
other animais not kiled by the tumour. As in Section 5.6, a vector DL of differences of
expected from observed values is formed using the fatal tumour data, and the

corresponding covariance matrix V L is computed.
The analysis of data on occult tumours using contexts of observation is based on the

vector De = Dp + DL' with covariance matrix Ve = V p + V L' Test statistics for
heterogeneity X7:H, trend X7:r. and departure from trend (X7:Q) may be calculated as
in (5.3), (5.4) and (5.5), respectively, with De substituted for D and Ve substituted
for V.

As noted earlier, it may be diffcult to de termine the contexts of observation of sorne
tumours. Accordingly, Peto et aL. (1980) suggest that tumours be classified on an
ordinal scale, namely, 1 if a tumour is definitely incidental, 2 if a tumour is probably
incidental, 3 if a tumour is probably fatal and 4 if a tumour is definitely fataL.
UsualIy, the above analysis would be performed with tumours classified as 1 or 2
taken to be incidental and tumours classified as 3 or 4 taken to be fataL. With the
ordinal classification, however, the analysis can be repeated using different eut points
(e.g., classifications 1, 2 and 3 taken as incidental and classification 4 taken as fatal) to
determine if inferences are inftuenced by possible misclassification of tumour context.
For further discussions of the problems associated with the assignment of causes of
death, see Lagakos (1982) and KodelI et aL. (1982b).
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Consider the data on pituitary tumours given in Table 4.3 for 16 groups of male
Colworth rats exposed to increasing dose levels of N-nitrosodimethylamine. As noted
by Peto et aL. (1980), treatment-induced, fatal liver tumours caused a marked,
dose-related increase in mortality. Pituitary tumours were observed in both fatal and
incidental contexts and were classified on the ordinal scale described in the preceding
paragraph. The first part of Table 5.23 gives the observed and expected numbers of
animais with tumours found in a fatal context; these are tumours recorded as fatal, or
probably fatal, with the codes 4 or 3 in Table 4.3. The observed and expected numbers
were derived using the methods of Section 5.6, and the vector of their difference is DL'
the corresponding covariance matrix V L not being displayed.

The code -3 in Table 4.3 was used for animaIs that were totally cannibalized or
autolysed; their cause of death was not ascertainable. These animais were considered
in the analysis of fatal tumours as if they had died on day 1 without a tumour and were
excluded from the incidental tumour analysis.

The code -2 in Table 4.3 was used for animais who se head was cannibalized or
autolysed so that the presence or absence of a pituitary tumour was not ascertainable
but death was known not to be caused by a pituitary tumour. These animais were
considered with their respective time to death as having no fatal pituitary tumour in the
analysis of fatal tumours but were excluded from the analysis of incidental tumours.

For the prevalence analysis, the adaptive method of determining subintervals of the
time axis, outlined in Section 5.5, was used and resulted in the following ten intervals:

(87,591), (596,680), (681, 796), (797,891), (892, 905), (908, 964),

(965, 1028), (1029, 1030), (1033, 1071), (1073, 1234).

The 17 animaIs with codes -2 and -3 were, as explained above, excluded from the

prevalence analysis. Thus, the number of animaIs considered in each group for the
analysis of incident al tumours is not always equal to the number of animaIs considered
in the analysis of fatal tumours less the number of fatal tumours observed.

The second part of Table 5.23 gives the calculated observed and expected numbers
for each group in the prevalence analysis. Their difference is the vector D p, the
corresponding covariance matrix V p not being displayed.

ln the third part of Table 5.23, the numbers of tumours observed and expected in
either context are summed for each group. The difference is the vector De, the
corresponding covariance matrix being V c = V L + V p.

The chi-square statistic for heterogeneity calculated according to (5.3) for the
combined situation is X~H = 12.11. Because aIl animais in the highest dose group died
before any pituitary tumour was observed in the experiment, the observed and
expected numbers are zero. The expected number of tumours in group 15 is virtuaIly
zero (E15 = 0.02), and thus group 15 was also deleted prior to the computation of test

statistics. The rank of the matrix V c is therefore 13 rather th an 15. Comparison of the
computed X~H to the percentiles of a chi-square distribution with 13 degrees of
freedom gives a p-value of 0.52.

Using the scores 0, 1, . . . , 12, 13 as dose levels, corresponding roughly to a
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Table 5.23 Pituitary tumours in male Colworth rats: observed and expected numbers of
tumours by context of observation and experimental group

Group Tumours observed in a Tumours observed in an Combined
fatal context incidental context

No. of Observed Expected No. of Observed Expected Observed Expected
animais events events animais events events events events

1 192 26 32.24 159 24 24.12 50 56.36
2 48 10 9.44 38 6 6.44 16 15.88
3 48 8 8.11 40 6 5.96 14 14.07
4 48 5 8.45 41 9 6.63 14 15.08
5 48 8 7.77 39 3 5.46 11 13.23
6 48 10 9.48 38 8 6.82 18 16.30
7 48 9 7.14 39 3 5.14 12 12.28
8 48 11 5.92 36 6 4.76 17 10.68
9 48 5 7.09 43 7 6.22 12 13.31

10 48 6 3.43 40 5 3.41 11 6.83
11 48 5 2.70 43 1 2.71 6 5.41
12 48 1 1.85 47 1 2.33 2 4.18
13 48 0 0.23 48 2 0.59 2 0.82
14 48 0 0.14 48 0 0.41 0 0.55
15 48 0 0.02 47 0 0.00 0 0.02
16 48 0 0.00 45 0 0.00 0 0.00

logarithmic transformation of the actual dose levels (see Section 4.3), gives, according
to (5.4), a trend statistic X~T = 1.66 with a two-sided p-value of 0.20.

Thus, it appears that N-nitrosodimethylamine does not induce pituitary tumours in
male Colworth rats.

This data set is of particular interest since, if one did not use the information on the
context of observation but considered aIl the pituitary tumours to be found either in a
fatal context or in an incidental context, different conclusions would be derived.

Considering aIl pituitary tumours as fatal would give, with the life-table methods of
Section 5.6, a chi-square statistic for heterogeneity xiH= 28.34 with 13 degrees of
freedom (p = 0.008). The one-degree-of-freedom chi-square statistic for trend would
be xi T = 7.38 (p = 0.007), indicating a positive trend in the occurrence of pituitary
tumours with increasing dose. Considering aIl tumours as incidental would give, using
the preval en ce methods of Section 5.5, a heterogeneity statistic X~H = 18. 04 with 13
degrees of freedom (p = 0.156). The one-degree-of-freedom chi-square statistic for
trend would be X~T= 2.85 (p = 0.091), suggesting a negative trend in occurrence of
pituitary tumours with increasing dose.

As noted in Chapter 2, the combination of two analyses, one based on tumour death
rates and the other based ostensibly on tumour prevalence rates, may seem somewhat
contrived. ln fact, it is diffcult to justify this analysis rigorously. The tests based on
X~H and X~T can be shown to test the nulI hypothesis of interest, that is, that the
underlying tumour onset rates are equal in aIl exposure groups, only under rigid
assumptions (Lagakos, 1982; McKnight & Crowley, 1984). Nevertheless, this analysis
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is a useful attempt to solve the diffcult problem of using data on age at death in
evaluating data on occult tumours. Because the underlying tumour onset rates are not
identifiable (Lagakos, 1982; McKnight & Crowley, 1984), any test for equality of onset
rates wil be only approximate, and efforts to improve upon the analyses in this section
are likely to require changes in experimental design. For example, McKnight and
Crowley (1984) have shown that tumour onset rates are approximately identifiable in
experiments with frequent planned sacrifices. Thus, it is likely that better tests can be
developed, but only at the cost of addition al animais. Methods of testing for differences
in tumour incidence rates using data from planned sacrifices are now available
(McKnight & Crowley, 1984; Dewanji & Kalbfleisch, 1986), and research in this area is
progressing rapidly.

number of experimental groups (i = 0, 1, . . . , 1)
dose level (do = 0, di -: . . . -: di)
time of observation of an event (death, occurrence of tumour) (k =

1, . . . , K)
number of events in group i at time tk
number of animaIs at risk (to experience event) in group i at time tk
proportion of animaIs at risk in group i compared to total of aIl groups at
time tk
expected number of events in group i at time tk
total number of events in group i
total number of expected events in group i
difference between Qi and Ei
vector of D/s
covariance matrix of vector D
element of V (h, i = 0, 1, . . . , 1)
test statistic for heterogeneity (chi-squared distribution with 1 degrees of
freedom)
two-sided test statistic for linear trend (chi-squared distribution with 1
degree of freedom)
test statistic for departure from linear trend (chi-squared distribution with
1 - 1 degrees of freedom)

(N.B.: A subscript W to the ab ove quantities Di, D, V, VhZ1 X~, X~ and X~ indicates
their derivation using non-negative weights Wk (k = 1, . . . , K))
Si(t) Kaplan-Meier estimate of survival function in group i

V t Si(t) J variance of Si(t)
Yi number of animaIs with tumour in group i (i = 0, 1, . . . ,1)
mi number of animaIs at risk in group i (i = 0, 1, . . . , 1)
Ri ratio of odds of a tumour in group i to corresponding odds in control group

Z one-tailed test statistic for difference of two proportions (normal distribu-
tion); subscript c when used with continuity correction

1 + 1

d.i
tk

Xik

nik
Aik

Eik

Q.i
E-l
D.1
D
V
Vhi

X~

xt
x2Q

LIST OF ESSENTIAL SYMBOLS - CHAPTER 5 (in order of appearance)
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R.1
T
,1.)
y.1)

one-tailed test statistic for monotone trend (normal distribution); subscript c
wh en used with continuity correction
odds ratio estimate from regression model
duration of experiment
subinterval of experimental time spanning from 0 to T (j = 1, . . . ,J)
number of animais with tumour among those that died or were kiled in
group i in interval j

Nij number of animaIs that died or were kiled in group i in interval j
(N.B.: Subscript P, Land C given to quantities X't, Xt and Xb when derived in
prevalence analysis (Section 5.5), lie-table analysis (Section 5.6) or analysis using

context of observation (Section 5.7))
Åi(t) hazard rate function in group i

Pi ratio of hazard rates between group i and control group: Å¡(t)/ Åo(t)
ri estimate of Pi by ratio of observed and expected values (i = 1, . . . ,1)

f¡ estimate of Pi by weighted odds ratios (i = 1, . . . ,1)
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