OESTROGENS, PROGESTINS AND COMBINATIONS

I. INTRODUCTORY REMARKS

IARC Monographs Volume 21¹ should be consulted for a general discussion of sex hormones and cancer. The principles considered in that volume remain applicable. Attention is drawn to specific points previously noted therein as 'General Conclusions on Sex Hormones':

'Steroid hormones are essential for the growth, differentiation and function of many tissues in both animals and humans. It has been established by animal experimentation that modification of the hormonal environment by surgical removal of endocrine glands, by pregnancy or by exogenous administration of steroids can increase or decrease the spontaneous occurrence of tumours or the induction of tumours by applied carcinogenic agents.... The incidence of tumours in humans could be altered by exposure to various exogenous hormones, singly or in combination.'

These statements make explicit the facts that oestrogens and progestins occur naturally, and that the hormonal milieu and dose-effect relationships are generally inextricably involved in the carcinogenic effects of oestrogens and progestins.

In this section, we describe the human epidemiology, carcinogenicity studies in animals, and other relevant data for oestrogens and progestins alone and in combination. The human epidemiological data reflect the patterns of use of oestrogens and progestins and their combinations in medical practice, i.e., the available information concerns specific products used for particular indications. Although many of the products have the same constituents (or a similar class of constituents), doses vary among products and the compounds and doses have changed over time. The operating principle is to determine the ability of the chemical to produce cancer or other genetic and related effects without the strictures of mode of human use or the magnitude of the doses. Thus, there is a basic incongruity between the human data and the animal carcinogenicity data. As noted earlier, however, the effects of these chemicals in humans appear, at least in most cases, to be linked to the hormonal milieu.

In this section, the current status of 'evidence for carcinogenicity to humans' is described only for diethylstilboestrol, oestrogen replacement therapy, medroxyprogesterone acetate, sequential oral contraceptives, combined oral contraceptives and oestrogen-progestin replacement therapy. There is little evidence that various oestrogens and progestins differ in their effects on cancer risk when the effect is an oestrogenic/progestinic effect, and the reader should therefore consult the descriptions of other oestrogens and progestins.

The reader should also be aware that diethylstilboestrol, dienoestrol, hexoestrol and chlorotrianisene are nonsteroidal oestrogens, and their carcinogenic effects may not be due solely to their oestrogenic action.

Reference

¹IARC Monographs, 21, 131-134, 1979

II. OESTROGENS

NONSTEROIDAL OESTROGENS (Group 1*)

Evidence for carcinogenicity to humans (sufficient)

Diethylstilboestrol (Group 1)

A. Evidence for carcinogenicity to humans (sufficient)

Diethylstilboestrol (DES) causes clear-cell adenocarcinoma of the vagina and cervix in women exposed *in utero*. There is sufficient evidence that administration of oestrogens for the control of symptoms of the climacteric is causally related to an increased incidence of endometrial carcinoma; DES is no different from other oestrogens in this respect¹.

There is also clear evidence that administration of DES in large doses during pregnancy increases the subsequent risk of breast cancer and that DES increases the risk of testicular cancer in males exposed *in utero*.

In four follow-up studies²⁻⁵ of exposed and nonexposed groups of women, the possible effects of DES exposure during pregnancy on subsequent breast cancer risk have been evaluated. All have shown an increased risk in exposed women. Two were randomized trials^{2,3}. In one², there were 32 (4.6%) breast cancers among 693 women exposed to an average total dose of 12 g DES, and 21 (3.1%) breast cancers among 668 control (placebo) women. In the other³, there were four (5.0%) breast cancers among 80 women exposed to an average total dose of DES of 16 g (plus ethisterone, average total dose, 14 g), compared to none of 76 controls; all 156 women were diabetic. In two studies, an exposed group and a 'matched' unexposed group were followed up^{4,5}. One⁴ showed 118 (4.4%) breast cancer cases in 2680 women exposed to a mean DES dose of 5 g, and 80 (3.1%) among 2566 control women. The other⁵ similarly showed 38 (2.5%) breast cancer cases among 1531 women exposed to a mean DES dose of 2 g, and 24 (1.7%) cases among the 1404 control women. The other isk from these four studies is 1.5 (p = 0.001).

A further group of 408 DES-exposed women (median dose, 1.5 g) was followed up, and the eight breast cancer cases found were contrasted to the 8.1 cases expected on the basis of

^{*}This evaluation applies to the group of chemicals as a whole and not necessarily to all individual chemicals within the group (see also Methods, p. 38).

local breast cancer incidence rates⁶. If this study is considered together with the four studies described above, the overall relative risk is 1.4 (p = 0.0016).

In all five papers²⁻⁶, the possibility is discussed that there may be a long (15-20 years) 'latent' period before the first 'DES-induced' breast cancer would be seen. Clear evidence was found in a study⁴ in which there was no difference in the breast cancer rates of exposed and nonexposed women until 22 years after exposure, but an increasing difference thereafter. Similarly, in another study³, there was no case in the exposed group in the first 18 years after exposure. In a further study⁵, the relative risk was 1.3 before age 50 and 1.7 thereafter; and, in another⁶, three cases were reported with 5.1 expected before age 50 and five cases *versus* 3.0 expected thereafter. In contrast, however, a randomized study² showed 11 exposed cases and five nonexposed cases during the first 15 years of follow-up, compared to 21 exposed cases and 16 nonexposed cases thereafter. Further data are required to settle this issue.

The four follow-up studies²⁻⁵ of exposed and nonexposed women also included information on other possibly 'hormone-related' cancers. The occurrence of endometrial cancer was not increased in any study. The study² of 693 women exposed to DES and 668 controls showed increases in the occurrence of cancer of the ovary (4 exposed, 1 nonexposed), cancer of the cervix (7 exposed, 3 nonexposed) and cancer of the colonrectum (2 exposed, 1 nonexposed); there was also a risk for cancer at these sites in the study of 1531 women exposed to DES and 1404 controls⁵ (6 exposed, 2 nonexposed; 9 exposed, 6 nonexposed; 11 exposed, 7 nonexposed for the three sites, respectively). A third study⁴ showed, in contrast, no elevation of rates for cancer at any other site, and there were seven deaths from cervical cancer in the control group and none in the exposed group, suggesting that matching in the control group was 'inadequate'; the authors could not identify the matching problem, and, in particular, they found that the two groups were well matched on educational level. The data are too few to draw any firm conclusions.

A greater frequency of abnormalities of the reproductive tract has been found in males exposed prenatally to DES in comparison with nonexposed controls, although the data are few. Cryptorchidism, a major risk factor for testicular cancer, is one of the associated lesions¹. Cancer of the testis has been investigated in five case-control studies of fetal exposure to DES⁷⁻¹¹. One⁷ showed that 5.1% (4/78) of cases and 1% of controls had been exposed to hormones (in all likelihood DES) for bleeding; the second⁸ similarly found that 5.8% (11/190) versus 2.3% (7/304) had had such exposure; the third⁹ found 1.9% (2/108) versus 0 (0/108) exposed to DES; the fourth¹⁰ found 1.0% (2/202) versus 1.0% (2/206) exposed to DES; and the fifth¹¹ found 1.9% (4/211) versus 0.9% (2/214) exposed to DES. The combined relative risk is 2.5 (p = 0.014).

A number of unusual tumours have been reported in women exposed to DES *in utero*: a fatal adenocarcinoma of the endometrium at age 26¹²; a pituitary adenoma at age 18¹³; an invasive squamous-cell carcinoma of the cervix at age 21¹⁴; an invasive adenosquamous-cell carcinoma of the cervix at age 27¹⁵; and an ovarian teratoma at age 12¹⁶.

There has been no further report to add to the six cases of primary breast cancer in males with prostatic cancer treated with DES¹. A case has been reported of a Leydig-cell tumour developing in a man treated with DES at 1 mg per day for 2.5 years¹⁷. There has been a case report of hepatic angiosarcoma in a man treated over a long period with DES for prostatic cancer^{1,18}, and a second case report of a hepatoma in a prostatic cancer patient treated with DES at 3 mg per day for 4.5 years (to diagnosis of hepatoma)^{1,19}. Three renal carcinomas have been reported after exposure to DES for prostatic cancer^{20,21}.

B. Evidence for carcinogenicity to animals (sufficient)

DES has been tested in mice, rats, hamsters, frogs and squirrel monkeys, producing tumours principally in oestrogen-responsive tissues¹. Female newborn mice injected with DES developed epidermoid carcinomas and granular-cell myoblastomas of the cervix and squamous carcinomas of the vagina²². Mice treated prenatally with DES developed adenocarcinomas of the uterus, cervix and vagina, epidermoid carcinomas of the uterine cervix and vagina and ovarian and mammary tumours²³⁻²⁸. Female mice fed diets containing DES developed cervical and endometrial adenocarcinomas, mammary adenocarcinomas, osteosarcomas and mesotheliomas²⁹⁻³³. Mice treated subcutaneously with DES had a slightly increased incidence of lymphomas and subcutaneous fibrosarcomas^{34,35}. Prenatal exposure to DES potentiated mammary tumorigenesis in rats given 7,12-dimethylbenz[a]anthracene at about 50 days of age³⁶. Rats given DES by subcutaneous pellet developed mammary and pituitary tumours. When these animals were also treated with X-rays or neutrons, they developed a higher incidence of mammary tumours³⁷⁻³⁹. In other studies (subcutaneous, transplacental, oral), rats treated with DES developed mammary, hepatic and pituitary tumours⁴⁰⁻⁴⁴. When hamsters were treated prenatally with DES, females developed endometrial adenocarcinoma, squamous-cell papillomas of the cervix and vagina, and a mixed Mullerian tumour of the cervix (myosarcoma); in males, a leiomysarcoma of the seminal vesicles and a Cowper's gland adenoma were found⁴⁵. Male hamsters castrated as adults and given DES subcutaneously developed renal tumours^{46,47}.

C. Other relevant data

No data were available on the genetic and related effects of DES in humans.

DES induced chromosomal aberrations in bone-marrow cells of mice treated *in vivo*, but data on induction of sister chromatid exchanges and micronuclei were equivocal; it induced sister chromatid exchanges in one study in rats. Unusual nucleotides were found in kidney DNA following chronic treatment of hamsters with DES. Aneuploidy was induced in human cells *in vitro*, but data on induction of sister chromatid exchanges, chromosomal aberrations and mutation were inconclusive; it induced DNA strand breaks, but not unscheduled DNA synthesis, except in a single study. Tests for transformation in rat and Syrian hamster embryo cells gave positive results, while results for mouse cells were negative. Aneuploidy and DNA strand breaks were induced in rodent cells *in vitro*, but results for chromosomal aberrations, micronuclei and sister chromatid exchanges were equivocal; DES did not induce mutation or unscheduled DNA synthesis, except in a single study in Syrian hamster embryo cells. It did not inhibit intercellular communication of Chinese hamster V79 cells. It induced aneuploidy in fungi, but, in most studies, it did not induce mutation or gene conversion. It did not induce mutation in a variety

of bacterial and insect systems, but it was mutagenic in plants. DNA damage was not induced in fungi or bacteria. DES induced single-strand breaks in bacteriophage DNA in the presence of a horseradish peroxidase activation system⁴⁸.

References

¹IARC Monographs, 21, 131-134, 173-231, 1979

- ²Bibbo, M., Haenszel, W.M., Wied, G.L., Hubby, M. & Herbst, A.L. (1978) A twenty-five-year follow-up of women exposed to diethylstilbestrol during pregnancy. *New Engl. J. Med.*, 298, 763-767
- ³Beral, V. & Colwell, L. (1980) Randomised trial of high doses of stilboestrol and ethisterone in pregnancy: long-term follow-up of mothers. *Br. med. J.*, 281, 1098-1101
- ⁴Greenberg, E.R., Barnes, A.B., Resseguie, L., Barrett, J.A., Burnside, S., Lanza, L.L., Neff, R.K., Stevens, M., Young, R.H. & Colton, T. (1984) Breast cancer in mothers given diethylstilbestrol in pregnancy. New Engl. J. Med., 311, 1393-1398
- ⁵Hadjimichael, O.C., Meigs, J.W., Falcier, F.W., Thompson, W.D. & Flannery, J.T. (1984) Cancer risk among women exposed to exogenous estrogens during pregnancy. J. natl Cancer Inst., 73, 831-834
- ⁶Brian, D.D., Tilley, B.C., Labarthe, D.R., O'Fallon, W.M., Noller, K.L. & Kurland, L.T. (1980) Breast cancer in DES-exposed mothers. Absence of association. *Mayo Clin. Proc.*, 55, 89-93
- ⁷Henderson, B.E., Benton, B., Jing, J., Yu, M.C. & Pike, M.C. (1979) Risk factors for cancer of the testis in young men. *Int. J. Cancer*, 23, 598-602
- ⁸Schottenfeld, D., Warshauer, M.E., Sherlock, S., Zauber, A.G., Leder, M. & Payne, R. (1980) The epidemiology of testicular cancer in young adults. *Am. J. Epidemiol.*, 112, 232-246
- ⁹Depue, R.H., Pike, M.C. & Henderson, B.E. (1983) Estrogen exposure during gestation and risk of testicular cancer. J. natl Cancer Inst., 71, 1151-1155
- ¹⁰Brown, L.M., Pottern, L.M. & Hoover, R.N. (1986) Prenatal and perinatal risk factors for testicular cancer. Cancer Res., 46, 4812-4816
- ¹¹Moss, A.R., Osmond, D., Bacchetti, P., Torti, F.M. & Gurgin, V. (1986) Hormonal risk factors in testicular cancer. A case-control study. Am. J. Epidemiol., 124, 39-52
- ¹²Barter, J.F., Austin, J.M., Jr & Shingleton, H.M. (1986) Endometrial adenocarcinoma after in utero diethylstilbestrol exposure. Obstet. Gynecol., 67 (Suppl.), 84S-85S
- ¹³Cunningham, J.R., Gidwani, G.P., Gupta, M.S., Duchesneau, P.M. & Schumacher, O.P. (1982) Prolactin-secreting pituitary adenoma: occurrence following prenatal exposure to diethylstilbestrol. *Cleveland Clin. Q.*, 49, 249-254
- ¹⁴Lamb, E.J. (1977) Invasive squamous cell carcinoma of the cervix in a diethylstilbestrol-exposed offspring. Am. J. Obstet. Gynecol., 129, 924-925
- ¹⁵Vandrie, D.M., Puri, S., Upton, R.T. & Demeester, L.J. (1983) Adenosquamous carcinoma of the cervix in a woman exposed to diethylstilbestrol in utero. Obstet. Gynecol., 61 (Suppl.), 84S-87S
- ¹⁶Lazarus, K.H. (1984) Maternal diethylstilboestrol and ovarian malignancy in offspring. Lancet, i, 53
- ¹⁷Deshmukh, A.S. & Hartung, W.H. (1983) Leydig cell tumor in patient on estrogen therapy. Urology, 21, 538-539
- ¹⁸Ham, J.M., Pirola, R.C. & Crouch, R.L. (1980) Hemangioendothelial sarcoma of the liver associated with long-term estrogen therapy in a man. *Dig. Dis. Sci.*, 25, 879-883

- ¹⁹Brooks, J.J. (1982) Hepatoma associated with diethylstilbestrol therapy for prostatic carcinoma. J. Urol., 128, 1044-1045
- ²⁰Bellet, R.E. & Squitieri, A.P. (1974) Estrogen-induced hypernephroma. J. Urol., 112, 160-161
- ²¹Nissenkorn, I., Servadio, C. & Avidor, I. (1979) Oestrogen-induced renal carcinoma. Br. J. Urol., 51, 6-9
- ²²Dunn, T.B. (1979) Cancer and other lesions in mice receiving estrogens. Recent Results Cancer Res., 66, 175-192
- ²³McLachlan, J.A. (1979) Transplacental effects of diethylstilbestrol in mice. Natl Cancer Inst. Monogr., 51, 67-72
- ²⁴McLachlan, J.A., Newbold, R.R. & Bullock, B.C. (1980) Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. *Cancer Res.*, 40, 3988-3999
- ²⁵Lamb, J.C., IV, Newbold, R.R. & McLachlan, J.A. (1981) Visualization by light and scanning electron microscopy of reproductive tract lesions in female mice treated transplacentally with diethylstilbestrol. *Cancer Res.*, 41, 4057-4062
- ²⁶Newbold, R.R. & MacLachlan, J.A. (1982) Vaginal adenosis and adenocarcinoma in mice exposed prenatally or neonatally to diethylstilbestrol. *Cancer Res.*, 42, 2003-2011
- ²⁷Walker, B.E. (1983) Uterine tumors in old female mice exposed prenatally to diethylstilbestrol. J. natl Cancer Inst., 70, 477-484
- ²⁸Nagasawa, H., Mori, T. & Nakajima, Y. (1980) Long-term effects of progesterone or diethylstilbestrol with or without estrogen after maturity on mammary tumorigenesis in mice. *Eur. J. Cancer*, 16, 1583-1589
- ²⁹Highman, B., Greenman, D.L., Norvell, M.J., Farmer, J. & Shellenberger, T.E. (1980) Neoplastic and preneoplastic lesions induced in female C3H mice by diets containing diethylstilbestrol or 17β-estradiol. J. environ. Pathol. Toxicol., 4, 81-95
- ³⁰Highman, B., Roth, S.I. & Greenman, D.L. (1981) Osseous changes and oesteosarcomas in mice continuously fed diets containing diethylstilbestrol or 17β-estradiol. J. natl Cancer Inst., 67, 653-662
- ³¹Greenman, D.L., Highman, B., Kodell, R.L., Morgan, K.T. & and Norvell, M. (1984) Neoplastic and nonneoplastic responses to chronic feeding of diethylstilbestrol in C3H mice. J. Toxicol. environ. Health, 14, 551-567
- ³²Greenman, D.L., Kodell, R.L., Highman, B., Schieferstein, G.J. & Norvell, M. (1984) Influence of strain and age on the induction of mammary tumours by diethylstilboestrol in C3H mice. Food chem. Toxicol., 22, 871-874
- ³³Greenman, D.L., Highman, B., Chen, J.J., Schieferstein, G.J. & Norvell, M.J. (1986) Influence of age on induction of mammary tumors by diethylstilbestrol in C3H/HeN mice with low murine mammary tumor virus titer. J. natl Cancer Inst., 77, 891-898
- ³⁴Boján, F., Rédai, I. & Gomba, S. (1979) Induction of lymphomas by urethane in combination with diethylstilboestrol in CFLP mice. *Experientia*, 35, 378-379
- ³⁵Ways, S. (1982) Local induction of fibrosarcomas by diethylstilbestrol. Int. Res. Commun. System med. Sci., 10, 796-797

- ³⁶Boylan, E.S. & Calhoon, R.E. (1979) Mammary tumorigenesis in the rat following prenatal exposure to diethylstilbestrol and postnatal treatment with 7,12-dimethylbenz(a)anthracene. J. Toxicol. environ. Health, 5, 1059-1071
- ³⁷Holtzman, S., Stone, J.P. & Shellabarger, C.J. (1979) Synergism of diethylstilbestrol and radiation in mammary carcinogenesis in female F344 rats. J. natl Cancer Inst., 63, 1071-1074
- ³⁸Holtzman, S., Stone, J.P. & Shellabarger, C.J. (1981) Synergism of estrogens and X-rays in mammary carcinogenesis in female ACI rats. J. natl Cancer Inst., 67, 455-459
- ³⁹Shellabarger, C.J., Chmelevsky, D., Kellerer, A.M., Stone, J.P. & Holtzman, S. (1982) Induction of mammary neoplasms in the ACI rat by 430-keV neutrons, X-rays, and diethylstilbestrol. J. natl Cancer Inst., 69, 1135-1146
- ⁴⁰Sumi, C., Yokoro, K. & Matsushima, R. (1983) Induction of hepatic tumors by diethylstilbestrol alone or in synergism with N-nitrosobutylurea in castrated male WF rats. J. natl Cancer Inst., 70, 937-942
- ⁴¹Phelps, C. & Hymer, W.C. (1983) Characterization of estrogen-induced adenohypophyseal tumors in the Fischer 344 rat. *Neuroendocrinology*, 37, 23-31
- ⁴²Rothschild, T.C., Calhoon, R.E. & Boylan, E.S. (1985) Transplacental carcinogenicity of diethylstilbestrol (DES) in female ACI rats (Abstract No. 770). Proc. Am. Assoc. Cancer Res., 26, 195
- ⁴³Inoh, A., Kamiya, K., Fujii, Y. & Yokoro, K. (1985) Protective effects of progesterone and tamoxifen in estrogen-induced mammary carcinogenesis in ovariectomized W/FU rats. Jpn. J. Cancer Res. (Gann), 76, 699-704
- ⁴⁴Wanless, I.R. & Medline, A. (1982) Role of estrogens as promoters of hepatic neoplasia. Lab. Invest., 46, 313-320
- ⁴⁵Rustia, M. (1979) Role of hormone imbalance in transplacental carcinogenesis induced in Syrian golden hamsters by sex hormones. *Natl Cancer Inst. Monogr.*, 51, 77-87
- ⁴⁶Li, J.J., Li, S.A., Klicka, J.K., Parsons, J.A. & Lam, L.K.T. (1983) Relative carcinogenic activity of various synthetic and natural estrogens in the Syrian hamster kidney. *Cancer Res.*, 43, 5200-5204
- ⁴⁷Li, J.J. & Li, S.A. (1984) Estrogen-induced tumorigenesis in hamsters: roles for hormonal and carcinogenic activities. *Arch. Toxicol.*, 55, 110-118

48IARC Monographs, Suppl. 6, 250-256, 1987

Dienoestrol

A. Evidence for carcinogenicity to animals (limited)

Dienoestrol was tested in female guinea-pigs by subcutaneous injection and in female mice by intravaginal administration. Although these experiments indicated induction of 'uterine tumours' in guinea-pigs and of ovarian tumours in mice, they were regarded as inadequate¹. Renal tumours were produced by administration of α -dienoestrol in male namsters castrated as adults^{2,3}. In noninbred rats, dienoestrol given prenatally and neonatally did not increase tumour incidence⁴.

B. Other relevant data

No data were available on the genetic and related effects of dienoestrol in humans.

There are two stable stereoisomers of dienoestrol – Z,Z-dienoestrol (*cis,cis*-dienoestrol, β -dienoestrol) and E,E-dienoestrol (*trans,trans*-dienoestrol, α -dienoestrol). E,E-Dienoestrol is the principal constituent of dienoestrol-containing medications, whereas Z,Z-dienoestrol is a metabolite of diethylstilboestrol. Z,Z-Dienoestrol induced sister chromatid exchanges in human fibroblasts *in vitro*. Z,Z-Dienoestrol, but not E,E-dienoestrol, transformed cultured hamster cells. Z,Z-Dienoestrol produced single-strand breaks in hamster cells in the absence of an exogenous metabolic system, whereas both Z,Z- and E,E-dienoestrol gave weakly positive results in tests for unscheduled DNA synthesis in hamster cells, only in the presence of a metabolic system. Z,Z-Dienoestrol did not induce single-strand breaks in bacteriophage DNA in the presence of a horseradish peroxidase activation system. Z,Z-Dienoestrol and E,E-dienoestrol and E,E-dienoestrol were not mutagenic to bacteria⁵.

References

¹IARC Monographs, 21, 161-171, 1979

- ²Li, J.J., Li, S.A., Klicka, J.K., Parsons, J.A. & Lam, L.K.T. (1983) Relative carcinogenic activity of various synthetic and natural estrogens in the Syrian hamster kidney. *Cancer Res.*, 43, 5200-5204
- ³Li, J.J. & Li, S.A. (1984) Estrogen-induced tumorigenesis in hamsters: roles for hormonal and carcinogenic activities. *Arch. Toxicol.*, 55, 110-118
- ⁴Ird, Y.A. (1983) Blastomogenesis induced in rats by transplacental treatment with estrogens (Russ.). Vopr. Onkol., 29, 61-66
- ⁵IARC Monographs, Suppl. 6, 245-247, 1987

Hexoestrol

A. Evidence for carcinogenicity to animals (sufficient)

Hexoestrol was tested for carcinogenicity in intact male hamsters and in males castrated as adults by subcutaneous implantation as a pellet, producing renal tumours, some of which were described as renal carcinomas, in 85-100% of tested animals¹⁻³.

B. Other relevant data

No data were available on the genetic and related effects of hexoestrol in humans. Unusual nucleotides were found in kidney DNA of hamsters treated with hexoestrol *in vivo*. The compound was not mutagenic to bacteria⁴.

References

¹Li, J.J., Li, S.A., Klicka, J.K., Parsons, J.A. & Lam, L.K.T. (1983) Relative carcinogenic activity of various synthetic and natural estrogens in the Syrian hamster kidney. *Cancer Res.*, 43, 5200-5204

²Li, J.J. & Li, S.A. (1984) Estrogen-induced tumorigenesis in hamsters: roles for hormonal and carcinogenic activities. *Arch. Toxicol.*, 55, 110-118

³Liehr, J.G., Ballatore, A.M., Dague, B.B. & Ulubelen, A.A. (1985) Carcinogenicity and metabolic activation of hexestrol. *Chem.-biol. Interactions*, 55, 157-176
 ⁴IARC Monographs, Suppl. 6, 336-337, 1987

Chlorotrianisene

A. Evidence for carcinogenicity to animals (inadequate)

Chlorotrianisene was tested in only one experiment in rats by oral administration. The data were insufficient to evaluate the carcinogenicity of this compound¹.

B. Other relevant data

No data were available to the Working Group.

Reference

¹IARC Monographs, 21, 139-146, 1979

STEROIDAL OESTROGENS (Group 1*)

Evidence for carcinogenicity to humans (sufficient)

Oestrogen replacement therapy (Group 1)

A. Evidence for carcinogenicity to humans (sufficient)

A number of studies, utilizing a variety of designs, have shown a consistent, strongly positive association between exposure to a number of oestrogenic substances and risk of endometrial cancer, with evidence of positive dose-response relationships both for strength of medication and duration of use¹. Consistent findings have also been seen in more recent studies²⁻¹⁶. The rise and fall of incidence of endometrial cancer in several areas of the USA was compatible with trends in oestrogen use^{1,15}.

Of the 20 epidemiological studies of oestrogen replacement therapy and breast cancer risk¹⁶⁻³⁵, nine show a positive relation between oestrogen use and breast cancer^{17-20,22-24,28,33}. The increased risks tend to be small; for example, a 50% increase was found with 20 years of menopausal oestrogen replacement therapy use²⁴. All except one³³ of the positive studies involved use of population controls (eight of the nine studies with population controls gave positive results), and most showed increased risk after prolonged use or after ten or more years since initial exposure. One study showed a positive association with current oestrogen use²⁸.

^{*}This evaluation applies to the group of chemicals as a whole and not necessarily to all individual chemicals within the group (see also Methods, p. 38).

One possible reason that studies with hospital controls gave negative results and those with population controls positive results is that oestrogen replacement therapy may be used more frequently in hospitalized women than in the general population. However, in two studies involving use of both hospital and population control groups, one giving positive²⁹ and the other largely negative²⁵ results, similar results were obtained when hospital and population controls were used to estimate the relative risk. Three of the studies with negative results^{26,27,34} probably did not permit the authors to address satisfactorily the question of long-term use of oestrogen replacement therapy. The large hospital-based study that showed a positive finding used as controls subjects with a large spectrum of acute conditions unrelated to any of the known or suspected risk factors for breast cancer³³.

One cohort study of 1439 women initially treated for benign breast disease showed increased risk for women who took exogenous oestrogens after biopsy, but not for those who had taken them before biopsy. The increased risk in the former group appeared to be associated with epithelial hyperplasia or calcification in the initial lesion³⁵.

References

¹IARC Monographs, 21, 95-102, 147-159, 1979

- ²Buring, J.E., Bain, C.J. & Ehrmann, R.L. (1986) Conjugated estrogen use and risk of endometrial cancer. Am. J. Epidemiol., 124, 434-441
- ³Ewertz, M., Machado, S.G., Boice, J.D., Jr & Jensen, O.M. (1984) Endometrial cancer following treatment for breast cancer: a case-control study in Denmark. Br. J. Cancer, 50, 687-692
- ⁴Henderson, B.E., Casagrande, J.T., Pike, M.C., Mack, T., Rosario, I. & Duke, A. (1983) The epidemiology of endometrial cancer in young women. Br. J. Cancer, 47, 749-756
- ⁵Hulka, B.S., Fowler, W.C., Jr, Kaufman, D.G., Grimson, R.C., Greenberg, B.G., Hogue, C.J.R., Berger, G.S. & Pulliam, C.C. (1980) Estrogen and endometrial cancer: cases and two control groups from North Carolina. Am. J. Obstet. Gynecol., 137, 92-101
- ⁶Kelsey, J.L., LiVolsi, V.A., Holford, T.R., Fischer, D.B., Mostow, E.D., Schwartz, P.E., O'Connor, T. & White, C. (1982) A case-control study of cancer of the endometrium. Am. J. Epidemiol., 116, 333-342
- ⁷La Vecchia, C., Franceschi, S., Gallus, G., DeCarli, A., Colombo, E., Mangioni, C. & Tognoni, G. (1982) Oestrogens and obesity as risk factors for endometrial cancer in Italy. *Int. J. Epidemiol.*, 11, 120-126
- ⁸La Vecchia, C., Franceschi, S., DeCarli, A., Gallus, G. & Tognoni, G. (1984) Risk factors for endometrial cancer at different ages. J. natl Cancer Inst., 73, 667-671
- ⁹Öbrink, A., Bunne, G., Collén, J. & Tjernberg, B. (1981) Estrogen regimen of women with endometrial carcinoma. A retrospective case-control study at Radiumhemmet. Acta obstet. gynecol. scand., 60, 191-197
- ¹⁰Shapiro, S., Kaufman, D.W., Slone, D., Rosenberg, L., Miettinen, O.S., Stolley, P.D., Rosenshein, N.B., Watring, W.G., Leavitt, T., Jr & Knapp, R.C. (1980) Recent and past use of conjugated estrogens in relation to adenocarcinoma of the endometrium. New Engl. J. Med., 303, 485-489

- ¹¹Shapiro, S., Kelly, J.P., Rosenberg, L., Kaufman, D.W., Helmrich, S.P., Rosenshein, N.B., Lewis, J.L., Jr, Knapp, R.C., Stolley, P.D. & Schottenfeld, D. (1985) Risk of localized and widespread endometrial cancer in relation to recent and discontinued use of conjugated estrogens. New Engl. J. Med., 313, 969-972
- ¹²Spengler, R.F., Clarke, E.A., Woolever, C.A., Newman, A.M. & Osborn, R.W. (1981) Exogenous estrogens and endometrial cancer: a case-control study and assessment of potential biases. Am. J. Epidemiol., 114, 497-506
- ¹³Stavraky, K.M., Collins, J.A., Donner, A. & Wells, G.A. (1981) A comparison of estrogen use by women with endometrial cancer, gynecologic disorders, and other illnesses. Am. J. Obstet. Gynecol., 141, 547-555
- ¹⁴Weiss, N.S., Farewell, V.T., Szekely, D.R., English, D.R. & Kiviat, N. (1980) Oestrogens and endometrial cancer: effect of other risk factors on the association. *Maturitas*, 2, 185-190
- ¹⁵Marrett, L.D., Meigs, J.W. & Flannery, J.T. (1982) Trends in the incidence of cancer of the corpus uteri in Connecticut, 1964-1969, in relation to consumption of exogenous estrogens. Am. J. Epidemiol., 116, 57-67
- ¹⁶Vakil, D.V., Morgan, R.W. & Halliday, M. (1983) Exogenous estrogens and development of breast and endometrial cancer. *Cancer Detect. Prev.*, 6, 415-424
- ¹⁷Hoover, R., Gray, L.A., Sr, Cole, P. & MacMahon, B. (1976) Menopausal estrogens and breast cancer. New Engl. J. Med., 295, 401-405
- ¹⁸Ross, R.K., Paganini-Hill, A., Gerkins, V.R., Mack, T.M., Pfeffer, R., Arthur, M. & Henderson, B.E. (1980) A case-control study of menopausal estrogen therapy and breast cancer. J. Am. med. Assoc., 243, 1635-1639
- ¹⁹Hoover, R., Glass, A., Finkle, W.D., Azevedo, D. & Milne, K. (1981) Conjugated estrogens and breast cancer risk in women. J. natl Cancer Inst., 67, 815-820
- ²⁰Hulka, B.S., Chambless, L.E., Deubner, D.C. & Wilkinson, W.E. (1982) Breast cancer and estrogen replacement therapy. Am. J. Obstet. Gynecol., 143, 638-644
- ²¹Gambrell, R.D., Jr, Maier, R.C. & Sanders, B.I. (1983) Decreased incidence of breast cancer in postmenopausal estrogen-progestogen users. *Obstet. Gynecol.*, 62, 435-443
- ²²Hiatt, R.A., Bawol, R., Friedman, G.D. & Hoover, R. (1984) Exogenous estrogen and breast cancer after bilateral oophorectomy. *Cancer*, 54, 139-144
- ²³McDonald, J.A., Weiss, N.S., Daling, J.R., Francis, A.M. & Polissar, L. (1986) Menopausal estrogen use and the risk of breast cancer. *Breast Cancer Res. Treat.*, 7, 193-199
- ²⁴Brinton, L.A., Hoover, R. & Fraumeni, J.F., Jr (1986) Menopausal oestrogens and breast cancer risk: an expanded case-control study. Br. J. Cancer, 54, 825-832
- ²⁵Nomura, A.M.Y., Kolonel, L.N., Hirohata, T. & Lee, J. (1986) The association of replacement estrogens with breast cancer. *Int. J. Cancer*, 37, 49-53
- ²⁶Sartwell, P.E., Arthes, F.G. & Tonascia, J.A. (1977) Exogenous hormones, reproductive history, and breast cancer. J. natl Cancer Inst., 59, 1589-1592
- ²⁷Ravnihar, B., Seigel, D.G. & Lindtner, J. (1979) An epidemiologic study of breast cancer and benign breast neoplasias in relation to the oral contraceptive and estrogen use. *Eur. J. Cancer*, 15, 395-405

- ²⁸Jick, H., Walker, A.M., Watkins, R.N., D'Ewart, D.C., Hunter, J.R., Danford, A., Madsen, S., Dinan, B.J. & Rothman, K.J. (1980) Replacement estrogens and breast cancer. Am. J. Epidemiol., 112, 586-594
- ²⁹Kelsey, J.L., Fischer, D.B., Holford, T.R., LiVolsi, V.A., Mostow, E.D., Goldenberg, I.S. & White, C. (1981) Exogenous estrogens and other factors in the epidemiology of breast cancer. J. natl Cancer Inst., 67, 327-333
- ³⁰Sherman, B., Wallace, R. & Bean, J. (1983) Estrogen use and breast cancer. Interaction with body mass. Cancer, 51, 1527-1531
- ³¹Kaufman, D.W., Miller, D.R., Rosenberg, L., Helmrich, S.P., Stolley, P., Schottenfeld, D. & Shapiro, S. (1984) Noncontraceptive estrogen use and the risk of breast cancer. J. Am. med. Assoc., 252, 63-67
- ³²Horwitz, R.I. & Stewart, K.R. (1984) Effect of clinical features on the association of estrogens and breast cancer. Am. J. Med., 76, 192-198
- ³³La Vecchia, C., Decarli, A., Parazzini, F., Gentile, A., Liberati, C. & Franceschi, S. (1986) Non-contraceptive oestrogens and the risk of breast cancer in women. Int. J. Cancer, 38, 853-858
- ³⁴Wingo, P.A., Layde, P.M., Lee, N.C., Rubin, G. & Ory, H.W. (1987) The risk of breast cancer in postmenopausal women who have used estrogen replacement therapy. J. Am. med. Assoc., 257, 209-215
- ³⁵Thomas, D.B., Persing, J.P. & Hutchison, W.B. (1982) Exogenous estrogens and other risk factors for breast cancer in women with benign breast diseases. J. natl Cancer Inst., 69, 1017-1025

Conjugated oestrogens

A. Evidence for carcinogenicity to animals (limited)

Conjugated oestrogens were tested inadequately in rats by oral administration in one study¹. In male hamsters castrated as adults, equilin administered as a subcutaneously implanted pellet produced renal tumours in 6/8 treated animals. In contrast, *d*-equilenin administered similarly did not induce renal tumours^{2,3}.

B. Other relevant data

No data were available on the genetic and related effects of conjugated oestrogens in humans.

A commercial preparation of conjugated oestrogens did not induce chromosomal aberrations in human lymphoblastoid cells *in vitro* or in Chinese hamster V79 cells exposed in diffusion chambers implanted into mice after oestrogen treatment. It was not mutagenic to bacteria⁴.

References

¹IARC Monographs, 21, 147-159, 1979

- ²Li, J.J., Li, S.A., Klicka, J.K., Parsons, J.A. & Lam, L.K.T. (1983) Relative carcinogenic activity of various synthetic and natural estrogens in the Syrian hamster kidney. *Cancer Res.*, 43, 5200-5204
- ³Li, J.J. & Li, S.A. (1984) Estrogen-induced tumorigenesis in hamsters: roles for hormonal and carcinogenic activities. *Arch. Toxicol.*, 55, 110-118

4IARC Monographs, Suppl. 6, 187, 1987

Oestradiol-17 β and esters

A. Evidence for carcinogenicity to animals (sufficient)

Oestradiol-17 β and its esters were tested in mice, rats, hamsters and guinea-pigs by oral and subcutaneous administration. Administration to mice increased the incidences of mammary, pituitary, uterine, cervical, vaginal, testicular, lymphoid and bone tumours¹⁻⁵. In rats, there was an increased incidence of mammary and/or pituitary tumours^{1,6}. Oestradiol-17 β produced a nonstatistically significant increase in the incidence of foci of altered hepatocytes and hepatic nodules induced by partial hepatectomy and administration of *N*-nitrosodiethylamine in rats⁷. In hamsters, a high incidence of malignant kidney tumours occurred in intact and castrated males^{1,8-10} and in ovariectomized females, but not in intact females¹. In guinea-pigs, diffuse fibromyomatous uterine and abdominal lesions were observed¹.

B. Other relevant data

No data were available on the genetic and related effects of oestradiol-17 β in humans.

Oestradiol-17 β did not induce chromosomal aberrations in bone-marrow cells of mice treated *in vivo*. Unusual nucleotides were found in kidney DNA of treated hamsters. It induced micronuclei but not aneuploidy, chromosomal aberrations or sister chromatid exchanges in human cells *in vitro*. In rodent cells *in vitro*, it induced aneuploidy and unscheduled DNA synthesis but was not mutagenic and did not induce DNA strand breaks or sister chromatid exchanges. Oestradiol-17 β was not mutagenic to bacteria¹¹.

References

¹IARC Monographs, 21, 279-326, 1979

- ²Huseby, R.A. (1980) Demonstration of a direct carcinogenic effect of estradiol on Leydig cells of the mouse. *Cancer Res.*, 40, 1006-1013
- ³Highman, B., Roth, S.I. & Greenman, D.L. (1981) Osseous changes and osteosarcomas in mice continuously fed diets containing diethylstilbestrol or 17β-estradiol. J. natl Cancer Inst., 67, 653-662

- ⁴Highman, B., Greenman, D.L., Norvell, M.J., Farmer, J. & Shellenberger, T.E. (1980) Neoplastic and preneoplastic lesions induced in female C3H mice by diets containing diethylstilbestrol or 17β-estradiol. J. environ. Pathol. Toxicol., 4, 81-95
- ⁵Nagasawa, H., Mori, T. & Nakajima, Y. (1980) Long-term effects of progesterone or diethylstilbestrol with or without estrogen after maturity on mammary tumorigenesis in mice. *Eur. J. Cancer*, 16, 1583-1589
- ⁶Inoh, A., Kamiya, K., Fujii, Y. & Yokoro, K. (1985) Protective effects of progesterone and tamoxifen in estrogen-induced mammary carcinogenesis in ovariectomized W/FU rats. Jpn. J. Cancer Res. (Gann), 76, 699-704
- ⁷Yager, J.D., Campbell, H.A., Longnecker, D.S., Roebuck, B.D. & Benoit, M.C. (1984) Enhancement of hepatocarcinogenesis in female rats by ethinyl estradiol and mestranol but not estradiol. *Cancer Res.*, 44, 3862-3869
- ⁸Li, J.J., Li, S.A., Klicka, J.K., Parsons, J.A. & Lam, L.K.T. (1983) Relative carcinogenic activity of various synthetic and natural estrogens in the Syrian hamster kidney. *Cancer Res.*, 43, 5200-5204
- ⁹Li, J.J. & Li, S.A. (1984) Estrogen-induced tumorigenesis in hamsters: roles for hormonal and carcinogenic activities. *Arch. Toxicol.*, 55, 110-118
- ¹⁰Liehr, J.G., Stancel, G.M., Chorich, L.P., Bousfield, G.R. & Ulubelen, A.A. (1986) Hormonal carcinogenesis: separation of estrogenicity from carcinogenicity. *Chem.-biol. Interactions*, 59, 173-184

¹¹IARC Monographs, Suppl. 6, 437-439, 1987

Oestriol

A. Evidence for carcinogenicity to animals (limited)

Oestriol was tested by subcutaneous implantation in castrated mice and in rats and hamsters. It increased the incidence and accelerated the appearance of mammary tumours in both male and female mice and produced kidney tumours in hamsters¹.

B. Other relevant data

No data were available on the genetic and related effects of oestriol in humans. It did not induce an euploidy in cultured lymphocytes from one pregnant woman; results for induction of sister chromatid exchanges were inconclusive. No effect was seen in lymphocytes from one man².

References

¹IARC Monographs, 21, 327-341, 1979 ²IARC Monographs, Suppl. 6, 440-441, 1987

Oestrone

A. Evidence for carcinogenicity to animals (sufficient)

Oestrone was tested in mice by oral administration, in mice, rats and hamsters by subcutaneous injection and implantation, and in mice by skin painting. Its administration resulted in an increased incidence of mammary tumours in mice, in pituitary, adrenal and mammary tumours in rats, and in renal tumours in both castrated and intact male hamsters¹. Oestrone implanted subcutaneously as a pellet produced renal tumours in 80% of treated male hamsters castrated as adults^{2,3}.

B. Other relevant data

No data were available on the genetic and related effects of oestrone in humans. It was not mutagenic to Chinese hamster cells *in vitro*⁴.

References

¹IARC Monographs, 21, 343-362, 1979

- ²Li, J.J., Li, S.A., Klicka, J.K., Parsons, J.A. & Lam, L.K.T. (1983) Relative carcinogenic activity of various synthetic and natural estrogens in the Syrian hamster kidney. *Cancer Res., 43*, 5200-5204
- ³Li, J.J. & Li, S.A. (1984) Estrogen-induced tumorigenesis in hamsters: roles for hormonal and carcinogenic activities. Arch. Toxicol., 55, 110-118
- 4IARC Monographs, Suppl. 6, 442-443, 1987

Ethinyloestradiol

A. Evidence for carcinogenicity to animals (sufficient)

Ethinyloestradiol was tested in mice, rats, dogs and monkeys by oral administration and in rats by subcutaneous injection. In mice, it increased the incidences of pituitary tumours and of malignant mammary tumours in both males and females and produced malignant tumours of the uterus and cervix in females¹. In rats, it increased the incidence of liver-cell tumours^{1,2}, pituitary chromophobe adenomas² and mammary adenocarcinomas^{2,3}. Ethinyloestradiol administered as a subcutaneous injection of pellets produced a low but increased incidence of renal tumours in hamsters castrated as adults^{4,5}. In rats, it induced foci of altered hepatocytes, a presumed preneoplastic lesion; when administered following initiation of hepatocarcinogenesis with N-nitrosodiethylamine, ethinyloestradiol enhanced the development of foci of altered hepatocytes and of hepatic nodules⁶. In female rats given partial hepatectomy and treated with N-nitrosodiethylamine, ethinyloestradiol potentiated the development of foci of altered hepatocytes and of hepatocellular carcinomas⁷. In N-nitrosodiethylamine-initiated rats, ethinyloestradiol increased the number of γ -glutamyl transpeptidase-positive hepatic foci⁸. Dietary administration of ethinyloestradiol combined with subcutaneous injections of 3,2'-dimethyl-4-aminobiphenyl caused a high incidence of prostatic carcinomas in male rats⁹. In rats, ethinyloestradiol significantly enhanced the development of tumours of the liver and kidneys induced by several agents¹⁰.

B. Other relevant data

No data were available on the genetic and related effects of ethinyloestradiol alone in humans. See, however, the summary of data for combined oral contraceptives (p. 297).

Ethinyloestradiol did not induce chromosomal aberrations in human lymphocytes, chromosomal aberrations or mutation in Chinese hamster cells or unscheduled DNA synthesis in rat hepatocytes *in vitro*. Studies on cell transformation were inconclusive. It was weakly active in an assay for inhibition of intercellular communication in Chinese hamster V79 cells. It did not induce sex-linked recessive lethal mutations in *Drosophila* or mutation in yeast and did not induce mutation or DNA damage in bacteria¹¹.

References

¹IARC Monographs, 21, 233-255, 1979

- ²Schardein, J.L. (1980) Studies of the components of an oral contraceptive agent in albino rats. I. Estrogenic component. J. Toxicol. environ. Health, 6, 885-894
- ³Holtzman, S., Stone, J.P. & Shellabarger, C.J. (1981) Synergism of estrogens and X-rays in mammary carcinogenesis in female ACI rats. J. natl Cancer Inst., 67, 455-459
- ⁴Li, J.J., Li, S.A., Klicka, J.K., Parsons, J.A. & Lam, L.K.T. (1983) Relative carcinogenic activity of various synthetic and natural estrogens in the Syrian hamster kidney. *Cancer Res.*, 43, 5200-5204
- ⁵Li, J.J. & Li, S.A. (1984) Estrogen-induced tumorigenesis in hamsters: roles for hormonal and carcinogenic activities. *Arch. Toxicol.*, 55, 110-118
- ⁶Wanless, I.R. & Medline, A. (1982) Role of estrogens as promoters of hepatic neoplasia. Lab. Invest., 46, 313-320
- ⁷Yager, J.D., Campbell, H.A., Longnecker, D.S., Roebuck, B.D. & Benoit, M.C. (1984) Enhancement of hepatocarcinogenesis in female rats by ethinyl estradiol and mestranol but not estradiol. *Cancer Res.*, 44, 3862-3869
- ⁸Yager, J.D., Roebuck, B.D., Paluszcyk, T.L. & Memoli, V.A. (1986) Effects of ethinyl estradiol and tamoxifen on liver DNA turnover and new synthesis and appearance of gamma glutamyl transpeptidase-positive foci in female rats. *Carcinogenesis*, 12, 2007-2014
- ⁹Shirai, T., Fukushima, S., Ikawa, E., Tagawa, Y. & Ito, N. (1986) Induction of prostate carcinoma in situ at high incidence in F344 rats by a combination of 3,2'-dimethyl-4-aminobiphenyl and ethinyl estradiol. Cancer Res., 46, 6423-6426
- ¹⁰Shirai, T., Tsuda, H., Ogiso, T., Hirose, M. & Ito, N. (1987) Organ specific modifying potential of ethinyl estradiol on carcinogenesis initiated with different carcinogens. Carcinogenesis, 8, 115-119

¹¹IARC Monographs, Suppl. 6, 293-295, 1987

Mestranol

A. Evidence for carcinogenicity to animals (sufficient)

Mestranol was tested in mice, rats, dogs and monkeys by oral administration. It increased the incidence of pituitary tumours and malignant mammary tumours in mice^{1,2} and increased the incidence of malignant mammary tumours in female rats. Studies in monkeys were still in progress; although no tumour had been observed after seven years, no conclusive evaluation could be made¹. Feeding of mestranol to rats following partial hepatectomy and treatment with N-nitrosodiethylamine enhanced the development of foci of altered hepatocytes and of hepatocellular carcinomas^{3,4}. No significant increase in mammary tumour occurrence was seen in dogs treated with mestranol^{5,6}.

B. Other relevant data

No data were available on the genetic and related effects of mestranol alone in humans. See, however, the summary of data for combined oral contraceptives (p. 297).

Mestranol did not induce DNA strand breaks in hepatocytes of rats or chromosomal aberrations in bone-marrow cells of mice treated *in vivo*. It did not induce chromosomal aberrations in human lymphocytes *in vitro*. It was weakly active in an assay for inhibition of intercellular communication in Chinese hamster V79 cells. It did not induce unscheduled DNA synthesis in cultured rat hepatocytes or sex-linked recessive lethal mutations in *Drosophila*. It was not mutagenic to bacteria⁷.

References

1IARC Monographs, 21, 257-278, 1979

- ²El Etreby, M.F. & Neumann, F. (1980) Influence of sex steroids and steroid antagonists on hormonedependent tumors in experimental animals. In: Iacobelli, S., King, R.J.B., Lindner, H.R. & Lippman, M.E., eds, Hormones and Cancer, New York, Raven Press, pp. 321-336
- ³Yager, J.D., Jr & Yager, R. (1980) Oral contraceptive steroids as promoters of hepatocarcinogenesis in female Sprague-Dawley rats. *Cancer Res.*, 40, 3680-3695
- ⁴Yager, J.D., Campbell, H.A., Longnecker, D.S., Roebuck, B.D. & Benoit, M.C. (1984) Enhancement of hepatocarcinogenesis in female rats by ethinylestradiol and mestranol but not estradiol. *Cancer Res.*, 44, 3862-3869
- ⁵El Etreby, M.F. & Gräf, K.-J. (1979) Effect of contraceptive steroids on mammary gland of beagle dog and its relevance to human carcinogenicity. *Pharmacol. Ther.*, 5, 369-402
- ⁶Kwapien, R.P., Giles, R.C., Geil, R.G. & Casey, H.W. (1980) Malignant mammary tumors in beagle dogs dosed with investigational oral contraceptive steroids. J. natl Cancer Inst., 65, 137-144

⁷IARC Monographs, Suppl. 6, 369-371, 1987

III. PROGESTINS (Group 2B)

Evidence for carcinogenicity to humans (inadequate)

Medroxyprogesterone acetate (Group 2B)

A. Evidence for carcinogenicity to humans (*inadequate*)

The results of one cross-sectional study of the development of breast nodules in women given medroxyprogesterone acetate was difficult to interpret because of methodological considerations¹. Two small cohort studies in the USA showed relative risks (and 95% confidence limits) of breast cancer in women exposed to medroxyprogesterone acetate of $0.69 (0.3-1.4)^2$ and $1.1 (0.5-2.4)^3$, but both included only women with short-term exposure and limited duration of follow-up. A case-control study of 30 women with breast cancer and 179 controls⁴ yielded a relative risk of 1.0 (no confidence limits given) for use of medroxyprogesterone acetate at some time. Preliminary analyses of a collaborative case-control study in Thailand, Kenya and Mexico sponsored by the World Health Organization⁵, based on 427 cases (39 'ever' users) and 5951 controls (557 'ever' users), provided estimates of relative risk (and 95% confidence limits) for breast cancer of 1.0 (0.7-1.5) in women who 'ever' used medroxyprogesterone acetate, 1.1 (0.7-1.9) for users for 1-12 months, 1.2 (0.7-2.2) for users for 13-36 months and 0.8 (0.4-1.7) for users for ≥ 37 months.

Medroxyprogesterone acetate causes reversible changes in the endometrium, from proliferative to secretory or suppressed⁴. In one small cohort study, one case of uterine leiomyosarcoma was found, with 0.83 cancers of the uterine corpus expected, giving a relative risk of 1.2 [0.03-6.7]². In the collaborative study⁵, the estimated relative risk for endometrial cancer in 'ever' users of medroxyprogesterone acetate was 0.3 (0.04-2.4), based on 57 cases, only one of which was exposed, and 316 matched controls (30 exposed).

In one small cohort study², one ovarian cancer case occurred in a medroxyprogesterone acetate user, with 1.16 expected, giving a relative risk of 0.86[0.02-4.6]. Preliminary analysis of data from the collaborative study⁵, based on 105 cases (seven exposed) and 637 matched controls (74 exposed) yielded a relative risk for ovarian cancer of 0.7(0.3-1.7) in 'ever' users of medroxyprogesterone acetate.

The results of two cohort studies of dysplasia and of carcinoma *in situ* of the uterine cervix in women given medroxyprogesterone acetate were conflicting and difficult to interpret because of methodological problems¹. Preliminary results from the collaborative study⁵, based on 920 cases of invasive cervical carcinoma (126 exposed to medroxyprogesterone acetate) and 5833 controls (545 exposed) yielded estimated relative risks of 1.2 (0.9-1.5) in 'ever' users, after controlling for parity, history of vaginal discharge, age at first sexual relationship, number of sexual partners, number of prior Pap smears and use of an intrauterine device and oral contraceptives. Relative risks in users for 1-12, 13-24, 25-60 and \geq 61 months were estimated to be 1.4 (1.0-2.0), 1.2 (0.7-2.0), 0.6 (0.4-1.1) and 1.4 (0.9-2.2), respectively.

Preliminary analyses of data from the collaborative study⁵ showed the relative risk for primary liver cancer (all histological types combined) in women who had ever used

medroxyprogesterone acetate to be 1.0(0.4-2.8), based on 57 cases (seven exposed) and 290 controls (34 exposed).

B. Evidence for carcinogenicity to animals (sufficient)

Medroxyprogesterone acetate was tested by intramuscular injection in dogs and by subcutaneous implantation in mice. It induced adenocarcinomas of the mammary gland in one study in female mice⁶, and produced malignant mammary tumours in dogs¹. After four years of intramuscular treatment of dogs with a human contraceptive dose, a dose-related increase in the incidence of mammary nodules was seen; the incidence of mammary-gland nodules at that time was comparable with that seen in dogs given progesterone at 25 times the canine luteal level⁷. Female dogs treated with medroxyprogesterone acetate for at least one year had a significant increase in the incidence of large and small mammary nodules as compared with control animals in one study⁸, and a dose-related increase in the incidence of large mammary nodules was found in another after intramuscular administration⁹.

C. Other relevant data

No data were available on the genetic and related effects of medroxyprogesterone acetate alone in humans. See, however, the summary of data for combined oral contraceptives (p. 297). Medroxyprogesterone acetate induced sister chromatid exchanges in mouse cells *in vitro*¹⁰.

References

¹IARC Monographs, 21, 417-429, 1979

- ²Liang, A.P., Levenson, A.G., Layde, P.M., Shelton, J.D., Hatcher, R.A., Potts, M. & Michelson, M.J. (1983) Risk of breast, uterine corpus, and ovarian cancer in women receiving medroxyprogesterone injections. J. Am. med. Assoc., 249, 2909-2912
- ³Danielson, D.A., Jick, H., Hunter, J.R., Stergachis, A. & Madsen, S. (1982) Nonestrogenic drugs and breast cancer. Am. J. Epidemiol., 116, 329-332
- ⁴Greenspan, A.R., Hatcher, R.A., Moore, A., Rosenberg, M.J. & Ory, H.W. (1980) The association of depo-medroxyprogesterone acetate and breast cancer. *Contraception*, 21, 563-569
- ⁵Special Programme of Research, Development and Research Training in Human Reproduction (1986) Depot-medroxyprogesterone acetate (DMPA) and cancer. Memorandum from a WHO meeting. WHO Bull., 64, 375-382
- ⁶Lanari, C., Molinolo, A.A. & Pasqualini, C.D. (1986) Induction of mammary adenocarcinomas by medroxyprogesterone acetate in BALB/c female mice. *Cancer Lett.*, 33, 215-223
- ⁷Frank, D.W., Kirton, K.T., Murchison, T.E., Quinlan, W.J., Coleman, M.E., Gilbertson, T.J., Feenstra, E.S. & Kimball, F.A. (1979) Mammary tumors and serum hormones in the bitch treated with medroxyprogesterone acetate or progesterone for four years. *Fertil. Steril.*, 31, 340-346
- ⁸van Os, J.L., van Laar, P.H., Oldenkamp, E.P. & Verschoor, J.S.C. (1981) Oestrus control and the incidence of mammary nodules in bitches, a clinical study with two progestogens. Vet. Q., 3, 46-56

⁹Concannon, P.W., Spraker, T.R., Casey, H.W. & Hansel, W. (1981) Gross and histopathologic effects of medroxyprogesterone acetate and progesterone on the mammary glands of adult beagle bitches. *Fertil. Steril.*, 36, 373-387

¹⁰IARC Monographs, Suppl. 6, 359-360, 1987

Chlormadinone acetate

A. Evidence for carcinogenicity to animals (limited)

Chlormadinone acetate was tested in mice, rats and dogs by oral administration. In dogs, it produced mammary tumours in one study¹ and increased the incidence of mammary-gland hyperplasia and mammary nodules in another².

B. Other relevant data

No data were available on the genetic and related effects of chlormadinone acetate alone in humans. See, however, the summary of data for combined oral contraceptives (p. 297). Chlormadinone acetate did not induce chromosomal aberrations in cultured human lymphocytes and was not mutagenic to bacteria³.

References

¹IARC Monographs, 21, 365-375, 1979

²El Etreby, M.F. & Gräf, K.-J. (1979) Effect of contraceptive steroids on mammary gland of beagle dog and its relevance to human carcinogenicity. *Pharmacol. Ther.*, 5, 369-402

³IARC Monographs, Suppl. 6, 148-149, 1987

Dimethisterone

A. Evidence for carcinogenicity to animals (*inadequate*)

Dimethisterone was reported to have been tested in monkeys in one study. No increase in tumour incidence was found¹.

B. Other relevant data

aller .

No data were available on the genetic and related effects of dimethisterone in humans. It did not induce chromosomal aberrations in cultured human lymphocytes².

References

¹Weikel, J.H., Jr & Nelson, L.W. (1977) Problems in evaluating chronic toxicity of contraceptive steroids in dogs. J. Toxicol. environ. Health, 3, 167-177

²IARC Monographs, Suppl. 6, 260-261, 1987

Ethynodiol diacetate

A. Evidence for carcinogenicity to animals (limited)

Ethynodiol diacetate was tested in mice and rats by oral administration. It increased the incidence of benign liver tumours in male mice and of mammary tumours in castrated male mice, and produced benign mammary tumours in male rats¹.

B. Other relevant data

No data were available on the genetic and related effects of ethynodiol diacetate alone in humans. See, however, the summary of data for combined oral contraceptives (p. 297). Ethynodiol diacetate did not induce sex-linked recessive lethal mutations in *Drosophila*².

References

¹IARC Monographs, 21, 387-398, 1979 ²IARC Monographs, Suppl. 6, 308-309, 1987

17α -Hydroxyprogesterone caproate

A. Evidence for carcinogenicity to animals (inadequate)

 17α -Hydroxyprogesterone caproate was tested in rabbits by repeated intramuscular injection, giving inconclusive results¹. It was reported to have accelerated the growth of a transplantable cervical tumour line in mice².

B. Other relevant data

No data were available to the Working Group.

References

¹IARC Monographs, 21, 399-406, 1979

²Umancheeva, A.F., Novikova, A.I. & Anisomov, V.N. (1981) Stimulating effect of pregnancy on the growth of cervical cancer (Russ.). *Akush. Ginekol.*, 1, 53-55

Lynoestrenol

A. Evidence for carcinogenicity to animals (inadequate)

Lynoestrenol was tested by oral administration in mice and rats. It induced a slight increase in the incidence of benign liver-cell tumours in male mice and of malignant mammary tumours in female mice. In female rats, a slight but nonsignificant increase in the incidence of malignant mammary tumours was observed after administration of lynoestrenol¹.

B. Other relevant data

No data were available to the Working Group.

References

¹IARC Monographs, 21, 407-415, 1979

Megestrol acetate

A. Evidence for carcinogenicity to animals (limited)

Megestrol acetate was tested by oral administration in mice, rats, dogs and monkeys. It produced nodular hyperplasia, and benign and malignant mammary tumours in dogs¹. No tumour was reported in monkeys².

B. Other relevant data

No data were available on the genetic and related effects of megestrol acetate alone in humans. See, however, the summary of data for combined oral contraceptives (p. 297). Megestrol acetate did not induce chromosomal aberrations in cultured human lymphocytes³.

References

¹IARC Monographs, 21, 431-439, 1979

²Weikel, J.H., Jr & Nelson, L.W. (1977) Problems in evaluating chronic toxicity of contraceptive steroids in dogs. J. Toxicol. environ. Health, 3, 361-362, 1987

³IARC Monographs, Suppl. 6, 361-362, 1987

Norethisterone

A. Evidence for carcinogenicity to animals (sufficient)

Norethisterone and its acetate were tested by oral administration in mice and rats, and by subcutaneous implantation in mice. In mice, norethisterone and its acetate increased the incidence of benign liver-cell tumours in males; norethisterone increased the incidence of pituitary tumours in females and produced granulosa-cell tumours in the ovaries of females. Norethisterone increased the incidence of benign liver-cell tumours and benign and malignant mammary tumours in male rats¹. Rats fed 3-4 mg/kg bw per day norethisterone acetate (about 100 times the daily human dose) for two years had an increased incidence of neoplastic nodules of the liver; an increase in the incidence of uterine polyps was seen in females². In rats given weekly intramuscular injections for 104 weeks of norethisterone enanthate at doses of 10, 30 and 100 mg/kg bw (20, 60 and 200 times the daily human contraceptive dose), there was a dose-related increase in pituitary-gland tumours in males, whereas in females no effect on pituitary glands was observed with the lowest dose and a reduction in pituitary tumours was observed with the highest dose. Benign mammary tumours were observed in males at all doses, but there was little effect in females; the incidence of malignant mammary tumours was greatly increased in both males and females given the two higher dose levels and was dose-related. A dose-related increase in the incidence of liver tumours was also seen in animals of each sex³.

B. Other relevant data

No data were available on the genetic and related effects of norethisterone alone in humans. See, however, the summary of data for combined oral contraceptives (p. 297).

Aneuploidy was observed in oocytes of mice treated with high doses of norethisterone acetate. In a test for dominant lethal mutations in which female mice were exposed orally to norethisterone acetate, no increase was seen in one strain of mice, and a second strain showed an increase only when females were mated within two weeks after treatment. The compound did not induce aneuploidy or chromosomal aberrations in cultured human lymphocytes. Neither norethisterone nor its acetate was mutagenic to bacteria⁴.

References

¹IARC Monographs, 21, 441-460, 1979

- ²Schardein, J.L. (1980) Studies on the components of an oral contraceptive agent in albino rats. II. Progestogenic component and comparison of effects of the components and the combined agent. J. Toxicol. environ. Health, 6, 895-906
- ³El Etreby, M.F. & Neumann, F. (1980) Influence of sex steroids and steroid antagonists on hormonedependent tumors in experimental animals. In: Iacobelli, S., King, R.J.B., Lindner, H.R. & Lippman, M.E., eds, Hormones and Cancer, New York, Raven Press, pp. 321-336

4IARC Monographs, Suppl. 6, 427-429, 1987

Norethynodrel

A. Evidence for carcinogenicity to animals (limited)

Norethynodrel was tested by oral administration in mice and rats and by subcutaneous implantation in mice. It increased the incidence of pituitary tumours in mice of each sex and that of mammary tumours in castrated males of one strain. It also increased the incidence of benign and malignant liver-cell, pituitary and mammary (benign and malignant) tumours in male rats¹. Feeding of norethynodrel to rats following partial hepatectomy and treatment with N-nitrosodiethylamine increased the number of γ -glutamyl transpeptidase-positive hepatic foci at four months, but there was no significant difference by nine months².

B. Other relevant data

No data were available on the genetic and related effects of norethynodrel alone in humans. See, however, the summary of data for combined oral contraceptives (p. 297). Norethynodrel did not induce aneuploidy in human cells in culture or unscheduled DNA synthesis in rat hepatocytes *in vitro*. It inhibited intercellular communication in Chinese hamster V79 cells. The compound was not mutagenic to bacteria³.

References

¹IARC Monographs, 21, 461-477, 1979

²Yager, J.D., Jr & Yager, R. (1980) Oral contraceptive steroids as promoters of hepatocarcinogenesis in female Sprague-Dawley rats. *Cancer Res.*, 40, 3680-3685

³IARC Monographs, Suppl. 6, 430-431, 1987

Norgestrel

A. Evidence for carcinogenicity to animals (*inadequate*)

Norgestrel was tested by oral administration in mice and rats. No increase in the incidence of tumours was observed in either species¹.

B. Other relevant data

No data were available on the genetic and related effects of norgestrel alone in humans. See, however, the summary of data for combined oral contraceptives (p. 297). Norgestrel gave inconclusive results in tests for sex-linked recessive lethal mutations in *Drosophila*. It was not mutagenic to bacteria².

References

¹IARC Monographs, 21, 479-490, 1979 ²IARC Monographs, Suppl. 6, 432-433, 1987

Progesterone

A. Evidence for carcinogenicity to animals (sufficient)

Progesterone was tested by subcutaneous and by intramuscular injection in mice, rabbits and dogs, and by subcutaneous implantation in mice. It increased the incidences of ovarian, uterine and mammary tumours in mice. Neonatal treatment with progesterone enhanced the occurrence of precancerous and cancerous lesions of the genital tract and increased mammary tumorigenesis in female mice¹. Dogs treated with progesterone for four years at one to 25 times the luteal-phase levels for that species developed a dose-related incidence of mammary-gland nodules².

B. Other relevant data

No data were available on the genetic and related effects of progesterone in humans.

Progesterone did not induce dominant lethal mutations in mice or chromosomal aberrations in rats treated *in vivo*. It did not induce chromosomal aberrations or sister chromatid exchanges in cultured human cells, nor chromosomal aberrations or DNA strand breaks in rodent cells. Studies on transformation of rodent cells *in vitro* were inconclusive: a clearly positive result was obtained for rat embryo cells, a weakly positive result for mouse cells and a negative result for Syrian hamster embryo cells. Progesterone was not mutagenic to bacteria³.

References

¹IARC Monographs, 21, 491-515, 1979

²Frank, D.W., Kirton, K.T., Murchison, T.E., Quinlan, W.J., Coleman, M.E., Gilbertson, T.J., Feenstra, E.S. & Kimball, F.A. (1979) Mammary tumors and serum hormones in the bitch treated with medroxyprogesterone acetate or progesterone for four years. *Fertil. Steril.*, 31, 340-346

³IARC Monographs, Suppl. 6, 479-481, 1987

IV. OESTROGEN-PROGESTIN COMBINATIONS

SEQUENTIAL ORAL CONTRACEPTIVES (Group 1)

A. Evidence for carcinogenicity to humans (sufficient)

Case reports of endometrial cancer occurring at an unusually young age in users of sequential oral contraceptives provide evidence that these preparations can cause endometrial cancer¹. Three case-control studies have provided the following estimates of the relative risk (and 95% confidence intervals) for endometrial cancer in women who had used sequential oral contraceptives: 2.2 (0.6-7.3)², 2.1 (0.8-5.8)³ and [1.9 (0.7-5.3)]⁴. One study²

showed a relative risk of 7.3 (1.4-38.8) in users of a preparation that contained a relatively large amount of a potent oestrogen (0.1 mg ethinyloestradiol) and only a weak progestin (25 mg dimethisterone); another⁴ showed a relative risk of 4.6 in users of more than two years' duration. The finding of an increased risk for endometrial cancer in relation to sequential oral contraceptives is in contrast with a reduction in risk for endometrial cancer found in association with the use of combined oral contraceptives (see below).

B. Evidence for carcinogenicity to animals (*inadequate* for dimethisterone in combination with ethinyloestradiol)

Dimethisterone and oestrogen

When dimethisterone and ethinyloestradiol were given sequentially to female dogs by oral administration, a few palpable mammary nodules were reported to have occurred in treated (4/16) and in untreated animals $(2/16)^5$.

C. Other relevant data

No adequate data were available on the genetic and related effects of sequential oral contraceptives in humans. See, however, the summaries of data on individual compounds commonly found in sequential oral contraceptives: chlormadinone acetate (p. 291), dimethisterone (p. 291), ethinyloestradiol (p. 286) and mestranol (p. 288).

References

¹IARC Monographs, 21, 111-112, 133, 1979

- ²Weiss, N.S. & Sayvetz, T.A. (1980) Incidence of endometrial cancer in relation to the use of oral contraceptives. *New Engl. J. Med.*, 302, 551-554
- ³Centers for Disease Control Cancer and Steroid Hormone Study (1983) Oral contraceptive use and the risk of endometrial cancer. J. Am. med. Assoc., 249, 1600-1604
- ⁴Henderson, B.E., Casagrande, J.T., Pike, M.C., Mack, T., Rosario, I. & Duke, A. (1983) The epidemiology of endometrial cancer in young women. Br. J. Cancer, 47, 749-756
 ⁵IARC Monographs, 21, 233-255, 377-385, 1979

COMBINED ORAL CONTRACEPTIVES (Group 1)

A. Evidence for carcinogenicity to humans (sufficient)

There is sufficient evidence that combined oral contraceptives cause benign and malignant liver tumours. There is also conclusive evidence that these agents protect against cancers of the ovary and endometrium.

Liver cancer

Numerous case reports and series of hepatic-cell adenomas occurring almost exclusively in women who had used combined oral contraceptives strongly suggest that such benign tumours may result from exposure to these products¹. Two case-control studies¹ have shown that risk of hepatic-cell adenomas increases strongly with duration of use and have provided estimates of the relative risk in users for more than seven and nine years duration of 500² and 25³, respectively. The many reports of focal nodular hyperplasia occurring in users of oral contraceptives could also represent a causal relationship, but these lesions also occur in men and older women, and no case-control study on these populations has been conducted.

Reports of hepatocellular carcinomas occurring in conjunction with liver-cell adenomas in users of oral contraceptives have been published¹. In addition, three case-control studies of hepatocellular carcinomas, one in the USA⁴ and two in the UK^{5,6}, have shown strong trends of increasing risk with duration of use. Relative risks (95% confidence limits) in the three studies in users of more than five, eight and eight years' duration, respectively, were estimated to be $[13.5 (1.2-152.2)]^4$, 7.2 (2.0-25.7)⁵ and 20.1 (2.3-175.7)⁴, respectively. When data for all three studies are combined, relative risks of 2.5 (1.1-5.5) and 10.0 (3.7-27.2) in 'ever' users and users for more than five to eight years (depending on the study) were derived by the Working Group. Although all three case-control studies of liver cancers and oral contraceptives are small and have methodological deficiencies that could have resulted in biased results, the magnitude of the relative risks and the consistency of the results provide strong evidence that the results are not spurious. Case reports of cholangiocarcinoma in users of oral contraceptives have also been published, but one case-control study of 11 cases⁶ showed no association with use of oral contraceptives [(relative risk, 0.3 in women who ever used oral contraceptives; 0.9 in users of four or more years)].

Ovarian cancer

Ten case-control studies have provided the following estimates of the relative risk (95% confidence limits) for ovarian cancer in women who had ever used combined oral contraceptives: $0.6[0.3-1.1]^7$, $[0.7 (0.4-1.1)]^8$, $0.8 (0.4-1.5)^9$, $0.5 (0.2-1.5)^{10}$, $0.6 [0.4-1.0]^{11}$, $0.7 (0.4-1.1)^{12}$, $0.4 (0.2-1.0)^{13}$, $0.6 (0.4-0.9)^{14}$, $0.6 (0.4-0.9)^{15}$ and $0.6 (0.4-1.0)^{16}$. Six of these studies assessed risk in relation to duration of use, and five provide at least some evidence that the risk declines with years of exposure, although this trend is less striking than that for endometrial cancer (see below). Relative risks in women who had used combined oral contraceptives for up to or more than five, five, seven and nine years were found in four different studies to be $0.3 (0.1-0.8)^{14}$, $0.4 (0.2-0.6)^{15}$, $0.6 [0.3-1.4]^8$ and $0.4 (0.2-1.3)^{11}$.

Endometrial cancer

Five case-control studies have provided the following estimates of the relative risk (95% confidence limits) for endometrial cancer in women who had ever used combined oral contraceptives: $0.5 \ (0.1-1.0)^{17}$, $0.4 \ (0.2-0.8)^{18}$, $0.4 \ [0.2-1.2]^{19}$, $0.5 \ (0.3-0.8)^{20}$ and $0.6 \ (0.2-1.3)^{16}$. Three of these¹⁸⁻²⁰, and two others^{21,22}, assessed risk in relation to duration of use, and all showed a decline in risk with duration of exposure. Relative risks in users of five or more years' duration were estimated in two studies to be $0.3 \ (0.1-1.3)^{19}$ and $0.6 \ (0.4-0.9)^{20}$, and one study showed a relative risk of 0.1^{22} in women with six or more years of use.

Cervical cancer

Four case-control studies²³⁻²⁶ of cervical squamous dysplasia provide estimates of relative risk in women who had ever used combined oral contraceptives ranging from 1.2 to 3, and the lower limit of the 95% confidence limits of two of the estimates was greater than 1.0. Relative risks (95% confidence limits) from three cohort studies were $[5.0 (1.2-20.8)]^1$, $1.5 [(0.8-2.6)]^{27}$ and $1.1 [(0.8-1.7)]^{28}$. Relative risks for squamous dysplasia were found to increase with duration of use in two^{24,26} of three case-control studies in which risk in relation to length of exposure was considered, and those for women who had used oral contraceptives for more than four years were found in two cohort studies to be $[4.9 (1.1-21.8)^1]$ and $2.0 [(1.1-3.6)]^{27}$.

Four case-control studies of cervical carcinoma *in situ*^{1,23-25} provide estimates of relative risk in women who had ever used combined oral contraceptives ranging from 0.6 to 1.1^{25} , with 95% confidence limits that include 1.0; but one additional such study yielded an estimated relative risk of $[1.6 (1.2-2.0)]^1$, and estimates from three cohort studies were $[3.7 (1.5-9.0)]^1$, $1.6 [(0.8-3.0)]^{27}$ and $1.2 (0.8-1.7)^{28}$. One case-control study showed a strong increase in risk for carcinoma *in situ* with duration of use²⁴, but two others did not^{1,25}. Relative risks in users of more than four years' duration were estimated in two cohort studies to be $[5.4 (2.1-13.7)]^1$ and $1.7 [(0.9-3.2)]^{27}$. Another cohort study¹ showed the risk of progression from dysplasia to carcinoma *in situ* to be six times greater in users than in nonusers of oral contraceptives.

Three case-control studies of invasive cervical cancer yielded relative risks in women who had ever used combined oral contraceptives of $1.2 (1.0-1.4)^{29}$, $1.5 (1.1-2.1)^{30}$ and $1.7 (0.8-3.6)^{16}$; and three cohort studies gave incidence rates of invasive cervical cancer per 1000 women years in users and nonusers of oral contraceptives of 0.20 and 0^{27} , 0.15 and 0.07^{31} and 0.12 and 0^{28} . All three case-control studies also showed that risk increased with duration of use; and the two in which relative risks were assessed in women who had used oral contraceptives for more than five years gave values of $1.5 (1.1-2.1)^{29}$ and $[1.9 (1.3-2.7)]^{30}$.

There is evidence that one or more sexually transmitted, infective agents play an important role in the development of cervical cancer. Since this agent(s) has not been unequivocally identified, and, in particular, was not considered in the studies under review, surrogate measures were used to reflect degree of sexual activity and to adjust for this. Any observed effect of oral contraceptives on risk of cervical cancer may therefore be confounded by an association of oral contraceptive use with exposure to the putative infective agent. Since the specific factor by which the analysis should be adjusted is not known, the Working Group considered that adjusting for age at first intercourse and number of sexual partners may not be sufficient to remove the confounding and, therefore, that they could not regard a causal association of oral contraceptives and cervical cancer as proven.

Breast cancer

Relative risks for breast cancer in women who had ever used combined oral contraceptives have been assessed in 18 case-control studies^{1,16,32-43} and in seven cohort studies^{1,44-47}. All provide point estimates of relative risk close to unity, with 95% confidence

intervals that include 1.0. Six case-control studies have provided estimates of the relative risk in women who had used combined oral contraceptives for more than a decade: four^{36,39,40,43} yield relative risks between 0.7 and 1.1 with 95% confidence limits that included 1.0 in users of ten or more years' duration; another⁴⁸ provides a relative risk estimate of 2.2 (1.2-4.0) in users of 12 or more years' duration; and one⁴² gives a relative risk of 0.6 (0.4-0.9) in women who had used oral contraceptives for 15 or more years. Eight case-control studies^{16,36-38,40,42,43,48} and two cohort studies^{44,45} give estimated relative risks for breast cancer ten or more to 20 or more years after initial exposure to combined oral contraceptives, and all are close to 1.0, with 95% confidence intervals that include unity. Eleven case-control studies have assessed risk for breast cancer among women who had used combined oral contraceptives before their first full-term pregnancy. The results are inconsistent, six studies^{39,40,43,47,49,50} showing no significant elevation in risk, three^{34,37,51} showing a significant trend of increasing risk with duration of use, and two48,52 showing an increased risk without a significant trend. The reasons for these discrepant findings have not been identified. Five case-control studies have assessed risk in women who had used combined oral contraceptives before 25 years of age. The initial study of this issue showed a strong trend of increasing risk with years of use before age 2553. A subsequent study from Sweden⁵⁴ showed a relative risk of 3.3 in women who had ever used oral contraceptives at age 20-24, but ascertainment of prior use was not comparable for cases and controls, rendering this finding suspect. Another study from Norway and Sweden⁴⁸ gave a relative risk of 2.7 in women who had used oral contraceptives for eight or more years before the age of 25, but the confidence limits for this included 1.0 (0.7-11.0), and no consistent trend of increasing risk with duration of use was observed. The fourth study, from New Zealand⁴³, showed a nonsignificant (p = 0.4) trend of declining risk with duration of use before age 25 and estimated the relative risk in users of six or more years to be 0.6. The fifth study⁵⁰ gave relative risks of 1.0 to 1.3 in six categories of duration of use (<12, 13-48 and >48 months in women less than 20 and in women 20-24 years of age) but no trend of increasing risk with duration of use. Risk was also initially reported to be particularly enhanced by use before age 2553 of oral contraceptives with a high progestogen potency, but the authors' classification has been disputed; and results from a large collaborative study in the USA do not confirm their findings⁵⁰.

Other tumours

The relative risk for malignant melanoma in women who had ever taken oral contraceptives has been estimated in eight case-control^{1,55-61} and three cohort^{55,62,63} studies. Values from all the case-control studies were close to unity, with 95% confidence limits that included 1.0. Values from the three cohort studies were $0.3[0.1-0.8]^{55}$, $1.5(0.7-2.9)^{62}$ and $3.5(1.4-9.0)^{63}$. The reasons for these widely discrepant results are unknown. Trends of increasing risk with duration of use have been observed in some investigations but not in others. The two case-control studies in which analyses were performed to estimate the relative risk in users of more than two⁵⁶ and five⁵⁹ years' duration, ten or more years after initial exposure, showed elevated risks of 2.3 (0.8-6.9) and 1.5 (1.0-2.1), respectively. Two case-control studies of increasing risk specifically for superficial spreading

melanoma with increasing duration of use^{57,60}, although a third did not⁶³. Also, two studies have shown relative risks for superficial spreading-type melanoma to be increased in users of five or more years' duration after latent periods of over ten⁵⁹ and 12⁵⁷ years: [1.6 (1.0-2.6)] and 4.4 (2.0-9.7), respectively.

Two case-control studies and two prospective studies have shown no increase in risk for pituitary adenomas^{1,64,65}.

Women who took oral contraceptives after evacuation of a hydatidiform mole were reported in one study¹ subsequently to have developed trophoblastic tumours more frequently than women who had used other methods of contraception after a molar evacuation, but this was not confirmed in another investigation⁶⁶.

A single case-control study showed a reduction in risk for carcinomas of the colon and rectum with duration of use of combined oral contraceptives⁶⁷, but two cohort studies showed no alteration in risk for these neoplasms in users^{63,68}.

A protective effect of combined oral contraceptives against both fibroadenoma and fibrocystic disease of the breast has been found in many investigations^{1,63,69-72}, although a single recent study found an increase in risk for the latter condition in postmenopausal women⁷³. One study showed no protective effect of oral contraceptives against fibrocystic disease with atypical histological features¹, but one subsequent investigation did⁷⁰.

A reduction in risk for retention cysts of the ovary has been documented in two cohort studies and in one case-control study¹. A reduction in risk for uterine leiomyoma has been documented in one case-control study⁷⁴.

B. Evidence for carcinogenicity to animals (*sufficient* for norethynodrel in combination with mestranol; *limited* for chlormadinone acetate in combination with mestranol or ethinyloestradiol, for ethynodiol acetate in combination with mestranol or ethinyloestradiol, for megestrol acetate in combination with ethinyloestradiol, for norethisterone in combination with mestranol or ethinyloestradiol, for progesterone in combination with oestradiol-17 β , and for investigational contraceptives; *inadequate* for lynoestrenol in combination with mestranol and for norgestrel in combination with ethinyloestradiol)

Chlormadinone acetate and oestrogens

Chlormadinone acetate, in combination with mestranol, was tested for carcinogenicity by oral administration to mice; an increased incidence of pituitary tumours was observed in animals of each sex. Oral administration of chlormadinone acetate in combination with ethinyloestradiol to mice resulted in an increased incidence of mammary tumours in intact and castrated males⁷⁵.

Ethynodiol diacetate and oestrogens

Following oral administration of ethynodiol diacetate plus mestranol to mice, increased incidences of pituitary tumours were observed in animals of each sex. Ethynodiol diacetate plus ethinyloestradiol was tested for carcinogenicity by oral administration to mice and rats.

In mice, it induced increased incidences of pituitary tumours in animals of each sex and of malignant tumours of connective tissues of the uterus. In rats, malignant mammary tumours were produced in animals of each sex⁷⁶.

Lynoestrenol and oestrogens

Lynoestrenol, in combination with mestranol, was tested in mice and female rats by oral administration. A slight, nonsignificant increase in the incidence of malignant mammary tumours was observed in female mice⁷⁷.

Megestrol acetate and oestrogens

Megestrol acetate plus ethinyloestradiol was tested for carcinogenicity by oral administration to mice and rats. In mice, increased incidences of malignant mammary tumours were observed in animals of each sex. No increase in tumour incidence was observed in rats⁷⁸.

Norethisterone and oestrogens

Norethisterone acetate plus ethinyloestradiol was tested for carcinogenicity by oral administration to mice, rats and monkeys. In mice, pituitary tumours were observed in animals of each sex. In rats, increased incidences of benign mammary tumours were found in males in one study and of benign liver-cell and mammary tumours in animals of each sex in the other⁷⁹. Norethisterone acetate plus ethinyloestradiol administered orally to rats induced endometrial carcinomas⁸⁰. Oral administration of norethisterone acetate plus ethinyloestradiol to female rats for 12 months resulted in hyperplastic nodules of the liver in all animals and a hepatocellular carcinoma in one (preliminary results)⁸¹. Norethisterone acetate and ethinyloestradiol given orally to monkeys for ten years did not produce malignant tumours⁸².

Norethisterone plus mestranol was tested for carcinogenicity in mice and rats by oral administration. In mice, pituitary tumours developed in animals of each sex. In rats, an increased incidence of malignant mammary tumours was found in females. Norethisterone plus ethinyloestradiol, tested in mice by oral administration, induced an increased incidence of pituitary tumours in females⁷⁹.

Norethynodrel and oestrogens

Norethynodrel in combination with mestranol was tested for carcinogenicity in mice, rats, hamsters and monkeys orally and by subcutaneous implantation. Increased incidences of pituitary, mammary, vaginal and cervical tumours were found in female mice and of pituitary tumours in male mice. In castrated male mice, the combined treatment resulted in an increase in the incidence of mammary tumours. In rats, benign liver-cell tumours were observed in males and pituitary tumours and malignant mammary tumours in animals of each sex. A study of hamsters was of too short a duration to be considered for evaluation. The combined treatment given to *Macaca mulatta* monkeys for five years did not increase the incidence of mammary tumours⁸³.

Norgestrel and oestrogens

Norgestrel plus ethinyloestradiol was tested for carcinogenicity in mice and rats by oral administration. No increase in the incidence of tumours was observed in either species⁸⁴.

Progesterone and oestrogen

Neonatal exposure of mice to progesterone plus oestradiol-17 β resulted in an increased incidence of mammary tumours⁸⁵.

Investigational oral contraceptives

Three investigational oral contraceptives (ethynerone, chloroethynyl norgestrel or anagestone acetate plus mestranol) were tested for carcinogenicity by oral administration to dogs. An increased incidence of malignant mammary tumours was observed after treatment with chloroethynyl norgestrel plus mestranol or with anagestone acetate plus mestranol; no difference in the total number of mammary-gland nodules was observed with these two contraceptives. One dog given ethynerone plus mestranol had 14 malignant mammary fibrosarcomas⁸⁶.

C. Other relevant data

The results reported in the available studies relate to a variety of different oral contraceptives.

Several studies showed no increase in the incidence of structural chromosomal changes in lymphocytes taken from women after oral contraceptive use (norethisterone with mestranol or ethynodiol diacetate with mestranol). In contrast to an earlier report, no increase in the incidence of sister chromatid exchanges was observed in 52 women taking oral contraceptives as compared with 63 controls when results were adjusted for smoking⁸⁷.

No significant difference in the frequency of abnormal karyotypes or in sex ratio was seen in a study of spontaneous abortuses of women who had taken oral contraceptives; the contraceptives used were norgestrel, norethisterone acetate or medroxyprogesterone acetate in combination with ethinyloestradiol; or ethynodiol diacetate, megestrol acetate or lynoestrenol in combination with mestranol. Similarly, a large cohort study showed no increase in risk for chromosomal anomalies in live births and abortuses of oral contraceptive users⁸⁷.

High doses of one oral contraceptive (lynoestrenol and mestranol) administered to two strains of female mice induced dominant lethal mutations, whereas high doses of another (norethisterone and ethinyloestradiol) did not. In a later report using even higher doses of the oral contraceptive that induced dominant lethal mutations and another (norethisterone acetate and ethinyloestradiol), the same authors reported no increase in the incidence of dominant lethal, recessive lethal or visible mutations in mice. Combinations of progestins (norethynodrel and ethynodiol diacetate) and oestrogens (mestranol and ethinyloestradiol) did not induce sex-linked recessive lethal mutations in *Drosophila*⁸⁷.

References

- ¹IARC Monographs, 21, 103-129, 133-134, 1979
- ²Rooks, J.B., Ory, H.W., Ishak, K.G., Strauss, L.T., Greenspan, J.R. & Tyler, C.W., Jr (1977) The association between oral contraception and hepatocellular adenoma — a preliminary report. *Int.* J. Gynaecol. Obstet., 15, 143-144
- ³Edmondson, H.A., Henderson, B. & Benton, B. (1976) Liver-cell adenomas associated with use of oral contraceptives. New Engl. J. Med., 294, 470-472
- ⁴Henderson, B.E., Preston-Martin, S., Edmondson, H.A., Peters, R.L. & Pike, M.C. (1983) Hepatocellular carcinoma and oral contraceptives. Br. J. Cancer, 48, 437-440
- ⁵Neuberger, J., Forman, D., Doll, R. & Williams, R. (1986) Oral contraceptives and hepatocellular carcinoma. *Br. med. J.*, 292, 1355-1357
- ⁶Forman, D., Vincent, T.J. & Doll, R. (1986) Cancer of the liver and the use of oral contraceptives. Br. med. J., 292, 1357-1361
- ⁷Newhouse, M.L., Pearson, R.M., Fullerton, J.M., Boesen, E.A.M. & Shannon, H.S. (1977) A case control study of carcinoma of the ovary. *Br. J. prev. soc. Med.*, 31, 148-153
- ⁸Casagrande, J.T., Pike, M.C., Ross, R.K., Louie, E.W., Roy, S. & Henderson, B.E. (1979) 'Incessant ovulation' and ovarian cancer. *Lancet*, *ii*, 170-173
- ⁹Willett, W.C., Bain, C., Hennekens, C.H., Rosner, B. & Speizer, F.E. (1981) Oral contraceptives and risk of ovarian cancer. *Cancer*, 48, 1684-1687
- ¹⁰Hildreth, N.G., Kelsey, J.L., LiVolsi, V.A., Fischer, D.B., Holford, T.R., Mostow, E.D., Schwartz, P.E. & White, C. (1981) An epidemiologic study of epithelial carcinoma of the ovary. Am. J. Epidemiol., 114, 398-405
- ¹¹Weiss, N.S., Lyon, J.L., Liff, J.M., Vollmer, W.M. & Daling, J.R. (1981) Incidence of ovarian cancer in relation to the use of oral contraceptives. *Int. J. Cancer*, 28, 669-671
- ¹²Franceschi, S., La Vecchia, C., Helmrich, S.P., Mangioni, C. & Tognoni, G. (1982) Risk factors for epithelial ovarian cancer in Italy. Am. J. Epidemiol., 115, 714-719
- ¹³Cramer, D.W., Hutchison, G.B., Welch, W.R., Scully, R.E. & Knapp, R.C. (1982) Factors affecting the association of oral contraceptives and ovarian cancer. New Engl. J. Med., 307, 1047-1051
- ¹⁴Rosenberg, L., Shapiro, S., Slone, D., Kaufman, D.W., Helmrich, S.P., Miettinen, O.S., Stolley, P.D., Rosenshein, N.B., Schottenfeld, D. & Engle, R.L., Jr (1982) Epithelial ovarian cancer and combination oral contraceptives. J. Am. med. Assoc., 247, 3210-3212
- ¹⁵Centers for Disease Control Cancer and Steroid Hormone Study (1983) Oral contraceptive use and the risk of ovarian cancer. J. Am. med. Assoc., 249, 1596-1599
- ¹⁶La Vecchia, C., Decarli, A., Fasoli, M., Franceschi, S., Gentile, A., Negri, E., Parazzini, F. & Tognoni, G. (1986) Oral contraceptives and cancers of the breast and of the female genital tract. Interim results from a case-control study. Br. J. Cancer, 54, 311-317
- ¹⁷Weiss, N.S. & Sayvetz, T.A. (1980) Incidence of endometrial cancer in relation to the use of oral contraceptives. New Engl. J. Med., 302, 551-554

- ¹⁸Kaufman, D.W., Shapiro, S., Slone, D., Rosenberg, L., Miettinen, O.S., Stolley, P.D., Knapp, R.C., Leavitt, T., Jr, Watring, W.G., Rosenshein, N.B., Lewis, J.L., Jr, Schottenfeld, D. & Engle, R.L., Jr (1980) Decreased risk of endometrial cancer among oral-contraceptive users. New Engl. J. Med., 303, 1045-1047
- ¹⁹Hulka, B.S., Chambless, L.E., Kaufman, D.G., Fowler, W.C., Jr & Greenberg, B.G. (1982) Protection against endometrial carcinoma by combination-product oral contraceptives. J. Am. med. Assoc., 247, 475-477
- ²⁰Centers for Disease Control Cancer and Steroid Hormone Study (1983) Oral contraceptive use and the risk of endometrial cancer. J. Am. med. Assoc., 249, 1600-1604
- ²¹Kelsey, J.L., LiVolsi, V.A., Holford, T.R., Fischer, D.B., Mostow, E.D., Schwartz, P.E., O'Connor, T. & White, C. (1982) A case-control study of cancer of the endometrium. Am. J. Epidemiol., 116, 333-342
- ²²Henderson, B.E., Casagrande, J.T., Pike, M.C., Mack, T., Rosario, I. & Duke, A. (1983) The epidemiology of endometrial cancer in young women. Br. J. Cancer, 47, 749-756
- ²³Thomas, D.B. (1972) Relationship of oral contraceptives to cervical carcinogenesis. Obstet. Gynecol., 40, 508-518
- ²⁴Ory, H.W., Conger, S.B., Naib, Z., Tyler, C.W., Jr & Hatcher, R.A. (1977) Preliminary analysis of oral contraceptive use and risk for developing premalignant lesions of the uterine cervix. In: Garattini, S. & Berendes, H.W., eds, Pharmacology of Steroid Contraceptive Drugs, New York, Raven Press, pp. 211-218
- ²⁵Fasal, E., Simmons, M.E. & Kampert, J.B. (1981) Factors associated with high and low risk of cervical neoplasia. J. natl Cancer Inst., 66, 631-636
- ²⁶Clarke, E.A., Hatcher, J., McKeown-Eyssen, G.E. & Lickrish, G.M. (1985) Cervical dysplasia: association with sexual behavior, smoking, and oral contraceptive use? Am. J. Obstet. Gynecol., 151, 612-616
- ²⁷Vessey, M.P., McPherson, K., Lawless, M. & Yeates, D. (1983) Neoplasia of the cervix uteri and contraception: a possible adverse effect of the pill. Lancet, ii, 930-934
- ²⁸Andolšek, L., Kovaćic, J., Koźuh, M. & Litt, B. (1983) Influence of oral contraceptives on the incidence of premalignant and malignant lesions of the cervix. *Contraception*, 28, 505-519
- ²⁹WHO Collaborative Study of Neoplasia and Steroid Contraceptives (1985) Invasive cervical cancer and combined oral contraceptives. Br. med. J., 290, 961-965
- ³⁰Brinton, L.A., Huggins, G.R., Lehman, H.F., Mallin, K., Savitz, D.A., Trapido, E., Rosenthal, J. & Hoover, R. (1986) Long-term use of oral contraceptives and risk of invasive cervical cancer. Int. J. Cancer, 38, 339-344
- ³¹Kay, C.R. (1983) Oral contraceptives and cancer. Lancet, ii, 1018
- ³²Henderson, B.E., Powell, D., Rosario, I., Keys, C., Hanisch, R., Young, M., Casagrande, J., Gerkins, V. & Pike, M.C. (1974) An epidemiologic study of breast cancer. J. natl Cancer Inst., 53, 609-614
- ³³Ravnihar, B., Seigel, D.G. & Lindtner, J. (1979) An epidemiologic study of breast cancer and benign breast neoplasias in relation to the oral contraceptive and estrogen use. Eur. J. Cancer, 15, 395-405
- ³⁴Pike, M.C., Henderson, B.E., Casagrande, J.T., Rosario, I. & Gray, G.E. (1981) Oral contraceptive use and early abortion as risk factors for breast cancer in young women. *Br. J. Cancer*, 43, 72-76

- ³⁵Kelsey, J.L., Fischer, D.B., Holford, T.R., LiVolsi, V.A., Mostow, E.D., Goldenberg, I.S. & White, C. (1981) Exogenous estrogens and other factors in the epidemiology of breast cancer. J. natl Cancer Inst., 67, 327-333
- ³⁶Brinton, L.A., Hoover, R., Szklo, M. & Fraumeni, J.F., Jr (1982) Oral contraceptives and breast cancer. Int. J. Epidemiol., 11, 316-322
- ³⁷Harris, N.V., Weiss, N.S., Francis, A.M. & Polissar, L. (1982) Breast cancer in relation to patterns of oral contraceptive use. Am. J. Epidemiol., 116, 643-651
- ³⁸Vessey, M., Baron, J., Doll, R., McPherson, K. & Yeates, D. (1983) Oral contraceptives and breast cancer: final report of an epidemiological study. *Br. J. Cancer*, 47, 455-462
- ³⁹Hennekens, C.H., Speizer, F.E., Lipnick, R.J., Rosner, B., Bain, C., Belanger, C., Stampfer, M.J., Willett, W. & Peto, R. (1984) A case-control study of oral contraceptive use and breast cancer. J. natl Cancer Inst., 72, 39-42
- ⁴⁰Rosenberg, L., Miller, D.R., Kaufman, D.W., Helmrich, S.P., Stolley, P.D., Schottenfeld, D. & Shapiro, S. (1984) Breast cancer and oral contraceptive use. Am. J. Epidemiol., 119, 167-176
- ⁴¹Talamini, R., La Vecchia, C., Franceschi, S., Colombo, F., Decarli, A., Grattoni, E., Grigoletto, E. & Tognoni, G. (1985) Reproductive and hormonal factors and breast cancer in a northern Italian population. *Int. J. Epidemiol.*, 14, 70-74
- ⁴²The Cancer and Steroid Hormone Study of the Centers for Disease Control and the National Institute of Child Health and Human Development (1986) Oral-contraceptive use and the risk of breast cancer. New Engl. J. Med., 315, 405-411
- ⁴³Paul, C., Skegg, D.C.G., Spears, G.F.S. & Kaldor, J.M. (1986) Oral contraceptives and breast cancer: a national study. Br. med. J., 293, 723-726
- ⁴⁴Vessey, M.P., McPherson, K. & Doll, R. (1981) Breast cancer and oral contraceptives: findings in Oxford-Family Planning Association contraceptive study. Br. med. J., 282, 2093-2094
- ⁴⁵Trapido, E.J. (1981) A prospective cohort study of oral contraceptives and breast cancer. J. natl Cancer Inst., 67, 1011-1015
- ⁴⁶Royal College of General Practitioners (1981) Breast cancer and oral contraceptives: findings in Royal College of General Practitioners' study. Br. med. J., 282, 2089-2093
- ⁴⁷Lipnick, R.J., Buring, J.E., Hennekens, C.H., Rosner, B., Willett, W., Bain, C., Stampfer, M.J., Colditz, G.A., Peto, R. & Speizer, F.E. (1986) Oral contraceptives and breast cancer. A prospective cohort study. J. Am. med. Assoc., 255, 58-61
- ⁴⁸Meirik, O., Adami, H.-O., Christoffersen, T., Lund, E., Bergström, R. & Bergsjö, P. (1986) Oral contraceptive use and breast cancer in young women. A joint national case-control study in Sweden and Norway. *Lancet*, *ii*, 650-654
- ⁴⁹Vessey, M.P., McPherson, K., Yeates, D. & Doll, R. (1982) Oral contraceptive use and abortion before first term pregnancy in relation to breast cancer risk. *Br. J. Cancer*, 45, 327-331
- ⁵⁰Stadel, B.V., Webster, L.A., Rubin, G.L., Schlesselman, J.J. & Wingo, P.A. (1985) Oral contraceptives and breast cancer in young women. *Lancet*, *ii*, 970-973
- ⁵¹McPherson, K., Neil, A., Vessey, M.P. & Doll, R. (1983) Oral contraceptives and breast cancer. Lancet, ii, 1414-1415
- ⁵²Paffenbarger, R.S., Jr, Kampert, J.B. & Chang, H.-G. (1980) Characteristics that predict risk of breast cancer before and after the menopause. Am. J. Epidemiol., 112, 258-268

- ⁵³Pike, M.C., Krailo, M.D., Henderson, B.E., Duke, A. & Roy, S. (1983) Breast cancer in young women and use of oral contraceptives: possible modifying effect of formulation and age at use. *Lancet*, *ii*, 926-930
- ⁵⁴Olsson, H., Olsson, M.L., Möller, T.R., Ranstam, J. & Holm, P. (1985) Oral contraceptive use and breast cancer in young women in Sweden. Lancet, i, 748-749
- ⁵⁵Adam, S.A., Sheaves, J.K., Wright, N.H., Mosser, G., Harris, R.W. & Vessey, M.P. (1981) A case-control study of the possible association between oral contraceptives and malignant melanoma. Br. J. Cancer, 44, 45-50
- ⁵⁶Bain, C., Hennekens, C.H., Speizer, F.E., Rosner, B., Willett, W. & Belanger, C. (1982) Oral contraceptive use and malignant melanoma. J. natl Cancer Inst., 68, 537-539
- ⁵⁷Holly, E.A., Weiss, N.S. & Liff, J.M. (1983) Cutaneous melanoma in relation to exogenous hormones and reproductive factors. J. natl Cancer Inst., 70, 827-831
- ⁵⁸Helmrich, S.P., Rosenberg, L., Kaufman, D.W., Miller, D.R., Schottenfeld, D., Stolley, P.D. & Shapiro, S. (1984) Lack of an elevated risk of malignant melanoma in relation to oral contraceptive use. J. natl Cancer Inst., 72, 617-620
- ⁵⁹Beral, V., Evans, S., Shaw, H. & Milton, G. (1984) Oral contraceptive use and malignant melanoma in Australia. Br. J. Cancer, 50, 681-685
- ⁶⁰Holman, C.D.J., Armstrong, B.K. & Heenan, P.J. (1984) Cutaneous malignant melanoma in women: exogenous sex hormones and reproductive factors. Br. J. Cancer, 50, 673-780
- ⁶¹Gallagher, R.P., Elwood, J.M., Hill, G.B., Coldman, A.J., Threlfall, W.J. & Spinelli, J.J. (1985) Reproductive factors, oral contraceptives and risk of malignant melanoma: Western Canada melanoma study. *Br. J. Cancer*, 52, 901-907
- ⁶²Kay, C.R. (1981) Malignant melanoma and oral contraceptives. Br. J. Cancer, 44, 479
- ⁶³Ramcharan, S., Pellegrin, F.A., Ray, R. & Hsu, J.-P. (1981) The Walnut Creek Contraceptive Drug Study. A Prospective Study of the Side Effects of Oral Contraceptives (NIH Publ. No. 81-564), Bethesda, MD, National Institutes of Health, pp. 49, 53-55
- ⁶⁴Wingrave, S.J., Kay, C.R. & Vessey, M.P. (1980) Oral contraceptives and pituitary adenomas. Br. med. J., i, 685-686
- ⁶⁵Shy, K.K., McTiernan, A.M., Daling, J.R. & Weiss, N.S. (1983) Oral contraceptive use and the occurrence of pituitary prolactinoma. J. Am. med. Assoc., 249, 2204-2207
- ⁶⁶Berkowitz, R.S., Marean, A.R., Goldstein, D.P. & Bernstein, M.R. (1980) Oral contraceptives and post-molar trophoblastic tumours. *Lancet*, *ii*, 752
- ⁶⁷Potter, J.D. & McMichael, A.J. (1983) Large bowel cancer in women in relation to reproductive and hormonal factors: a case-control study. J. natl Cancer Inst., 71, 703-709
- ⁶⁸Weiss, N.S., Daling, J.R. & Chow, W.H. (1981) Incidence of cancer of the large bowel in women in relation to reproductive and hormonal factors. J. natl Cancer Inst., 67, 57-60
- ⁶⁹Brinton, L.A., Vessey, M.P., Flavel, R. & Yeates, D. (1981) Risk factors for benign breast disease. Am. J. Epidemiol., 113, 203-214
- ⁷⁰Pastides, H., Kelsey, J.L., LiVolsi, V.A., Holford, T.R., Fischer, D.B. & Goldenberg, I.S. (1983) Oral contraceptive use and fibrocystic breast disease with special reference to its histopathology. J. natl Cancer Inst., 71, 5-9
- ⁷¹Hsieh, C.-C., Crosson, A.W., Walker, A.M., Trapido, E.J. & MacMahon, B. (1984) Oral contraceptive use and fibrocystic breast disease of different histologic classifications. J. natl Cancer Inst., 72, 285-290

- ⁷²Hislop, T.G. & Threlfall, W.J. (1984) Oral contraceptives and benign breast disease. Am. J. Epidemiol., 120, 273-280
- ⁷³Berkowitz, G.S., Kelsey, J.L., LiVolsi, V.A., Holford, T.R., Merino, M.J., Ort, S., O'Connor, T.Z., Goldenberg, I.S. & White, C. (1984) Oral contraceptive use and fibrocystic breast disease among pre-and postmenopausal women. Am. J. Epidemiol., 120, 87-96
- ⁷⁴Ross, R.K., Pike, M.C., Vessey, M.P., Bull, D., Yeates, D. & Casagrande, J.T. (1986) Risk factors for uterine fibroids: reduced risk associated with oral contraceptives. Br. med. J., 293, 359-362
- ⁷⁵IARC Monographs, 21, 233-255, 257-278, 365-375, 1979
- ⁷⁶IARC Monographs, 21, 233-255, 257-278, 387-395, 1979
- ¹⁷IARC Monographs, 21, 233-255, 407-415, 1979
- ⁷⁸IARC Monographs, 21, 257-278, 431-439, 1979
- ⁷⁹IARC Monographs, 21, 233-255, 257-278, 441-460, 1979
- ⁸⁰El Etreby, M.F. & Neumann, F. (1980) Influence of sex steroids and steroid antagonists on hormone-dependent tumors in experimental animals. In: Iacobelli, S., King, R.J.B., Lindner, H.R. & Lippman, M.E., eds, Hormones and Cancer, New York, Raven Press, pp. 321-336
- ⁸¹Higashi, S., Tomita, T., Mizumoto, R. & Nakakuki, K. (1980) Development of hepatoma in rats following oral administration of synthetic oestrogen and progesterone. *Gann*, 71, 576-577
- ⁸²Fitzgerald, J., de la Iglesia, F. & Goldenthal, E.I. (1982) Ten-year oral toxicity study with norlestin in rhesus monkeys. J. Toxicol. environ. Health, 10, 879-896
- 83 IARC Monographs, 21, 233-255, 461-477, 1979
- 84 IARC Monographs, 21, 257-278, 479-490, 1979
- ⁸⁵IARC Monographs, 21, 279-326, 491-515, 1979
- ⁸⁶Kwapien, R.P., Giles, R.C., Gell, R.G. & Casey, H.W. (1980) Malignant mammary tumors in beagle dogs dosed with investigational oral contraceptive steroids. J. natl Cancer Inst., 65, 137-144
 ⁸⁷LADG Manual Contracement of the task of the task.

87 IARC Monographs, Suppl. 6, 444, 1987

OESTROGEN-PROGESTIN REPLACEMENT THERAPY (Group 3)

A. Evidence for carcinogenicity to humans (inadequate)

Progestins, when administered for at least ten days per 28-day oestrogen replacement therapy cycle, prevent adenomatous hyperplasia, a precursor of endometrial carcinoma, and cause regression of pre-existing adenomatous hyperplasia in some patients¹. When administered alone, progestins are effective in the treatment of carcinoma *in situ* of the endometrium² and of more advanced disease^{3,4}.

Progestins increase the conversion of oestradiol-17 β to oestrone, a biologically less active oestrogen⁵, and they reduce the concentration of oestrogen receptors⁶. Maximal mitotic activity in the endometrium occurs during the follicular phase of the cycle; luteal-phase progesterone effectively stops mitotic activity and causes differentiation of endometrial cells to a secretory state⁷.

Support for a protective effect of progestins against endometrial cancer risk is obtained from the results of studies of the effects of oral contraceptives on endometrial cancer risk (see p. 298). Case-control studies have consistently shown that, whereas ingestion of sequential oral contraceptives containing an oestrogen alone throughout most of the menstrual cycle increases risk, ingestion of combined oral contraceptives, in which each pill contains an oestrogen and a progestin, substantially decreases risk.

The effect of progestins on the breast is markedly different from that on the endometrium. Endometrial cancer risk is considerably reduced with combined oral contraceptives (see p. 298), but there is no evidence of a reduced risk of breast cancer, even after long periods of combined oral contraceptive use⁸. Maximal mitotic activity in breast tissue occurs during the luteal phase of the normal menstrual cycle in the face of maximal progesterone levels⁹. These results concerning the effects of combined oral contraceptives suggest strongly that progestins do not have an antioestrogen, anticancer effect on the breast. A number of studies¹⁰⁻¹² have addressed the relationship between oestrogen-progestin replacement therapy and cancer, but in each instance either the small size of the study or apparently inadequate study design or data analysis prevent conclusions from being drawn.

B. Other relevant data

No data were available to the Working Group.

References

- ¹Gambrell, R.D., Jr (1982) Clinical use of progestins in the menopausal patient. Dosage and duration. J. reprod. Med., 27, 531-538
- ²Kohorn, E.I. (1976) Gestagens and endometrial carcinoma. Gynecol. Oncol., 4, 398-411
- ³Thornton, J.G., Brown, L.A., Wells, M. & Scott, J.S. (1985) Primary treatment of endometrial cancer with progestogen alone. *Lancet*, *ii*, 207-208
- ⁴Mackillop, W.J. & Pringle, J.F. (1985) Stage III endometrial carcinoma: a review of 90 cases. Cancer, 56, 2519-2523
- ⁵Tseng, L. & Gurpide, E. (1975) Induction of human endometrial estradiol dehydrogenase by progestins. *Endocrinology*, 97, 825-833
- ⁶Hsueh, A.J.W., Peck, E.J., Jr & Clark, J.H. (1975) Progesterone antagonism of the oestrogen receptor and oestrogen-induced uterine growth. *Nature*, 254, 337-339
- ⁷Novak, E.R. & Woodruff, J.D. (1979) Novak's Gynecologic and Obstetric Pathology with Clinical and Endocrine Relations, Philadelphia, PA, W.B. Saunders, pp. 171-184
- ⁸Kelsey, J.L. (1979) A review of the epidemiology of human breast cancer. *Epidemiol. Rev.*, 1, 74-109
 ⁹Anderson, T.J., Ferguson, D.J.P. & Raab, G.M. (1982) Cell turnover in the 'resting' human breast: influence of parity, contraceptive pill, age and laterality. *Br. J. Cancer*, 46, 376-382
- ¹⁰Gambrell, R.D., Jr, Massey, F.M., Castaneda, T.A., Ugenas, A.J. & Ricci, C.A. (1979) Reduced incidence of endometrial cancer among postmenopausal women treated with progestogens. J. Am. Geriatr. Soc., 27, 389-394

- ¹¹Nachtigall, L.E., Nachtigall, R.H., Nachtigall, R.D. & Beckman, E.M. (1979) Estrogen replacement therapy. II. A prospective study in the relationship to carcinoma and cardiovascular and metabolic problems. *Obstet. Gynecol.*, 54, 74-79
- ¹²Gambrell, R.D., Jr, Maier, R.C. & Sanders, B.I. (1983) Decreased incidence of breast cancer in postmenopausal estrogen-progestogen users. *Obstet. Gynecol.*, 62, 435-443