2-NAPHTHYLAMINE

2-NAPHTHYLAMINE (Group 1)

A. Evidence for carcinogenicity to humans (sufficient)

Case reports and epidemiological studies conducted independently in the 1950s and 1960s showed that occupational exposure to 2-naphthylamine, either alone or as an impurity in other compounds, is causally associated with the occurrence of bladder cancer¹.

Two studies in the USA examined cancer incidence and mortality in a group of chemical workers exposed mainly to 2-naphthylamine. In one, a remarkable and significantly increased incidence of bladder cancer was found (13 observed, 3.3 expected), which was not explained by smoking habits². Investigation of mortality failed to pinpoint this increased risk and suggested an excess of oesophageal cancer, which, however, was not considered to be associated with the occupational exposure³. Two reports on one occupational population at a dyestuffs plant in Italy documented a very high bladder cancer risk linked specifically to 2-naphthylamine production (6 deaths observed, 0.04 expected) and a clear exposureresponse relationship of the risk to exposures in the plant^{4,5}. Incidence studies from Japan dealing with exposure to both 2-naphthylamine and benzidine (see p. 123) showed apparently increased risks of cancer of the urinary tract and bladder and, possibly, an increased occurrence of second primary cancers at several sites, including the liver⁶⁻⁸. Case reports and ecological studies also documented the relationship between exposure to 2-naphthylamine, as well as to benzidine, and bladder cancer risk9,10. 2-Naphthylamine was most probably involved in the exposure to aryl amines reported in a UK study as producing a significantly increased bladder cancer risk, which was not accounted for by smoking habits¹¹.

B. Evidence for carcinogenicity to animals (sufficient)

2-Naphthylamine was tested for carcinogenicity by oral administration in many animal species and by the mouse-lung adenoma bioassay. Following its oral administration, it induced bladder neoplasms in hamsters¹, dogs^{1,12-14} and nonhuman primates¹, and liver tumours in mice¹. A low incidence of bladder carcinomas was observed in rats after its oral administration¹⁵. In a lung-adenoma bioassay in mice by intraperitoneal injection, 2-naph-thylamine produced positive results¹⁶.

C. Other relevant data

No data were available on the genetic and related effects of 2-naphthylamine in humans.

Mice and rabbits treated with 2-naphthylamine had increased incidences of sister chromatid exchanges; micronuclei were not induced in bone-marrow cells of mice treated *in vivo*. 2-Naphthylamine was mutagenic in the mouse spot test and induced DNA strand breaks in hepatocytes of treated rats. It formed DNA adducts in bladder and liver cells of dogs *in vivo*. It induced unscheduled DNA synthesis in human cells *in vitro* and chromosomal aberrations, sister chromatid exchanges, DNA strand breaks and unscheduled DNA synthesis in rodent cells *in vitro*. Equivocal results were obtained for mutation, but it caused morphological transformation in Syrian hamster embryo and virus-infected rat cells. 2-Naphthylamine induced aneuploidy in *Drosophila*, but equivocal results were found for sex-linked recessive lethal mutations. It caused aneuploidy, mutation and mitotic recombination in yeast and was mutagenic to plants and bacteria¹⁷.

References

¹IARC Monographs, 4, 97-111, 1974

- ²Schulte, P.A., Ringen, K., Hemstreet, G.P., Altekruse, E.B., Gullen, W.H., Patton, M.G., Allsbrook, W.C., Jr, Crosby, J.H., West, S.S., Witherington, R., Koss, L., Bales, C.E., Tillet, S., Rooks, S.C.F., Stern, F., Stringer, W., Schmidt, V.A. & Brubaker, M.M. (1985) Risk assessment of a cohort exposed to aromatic amines. Initial results. J. occup. Med., 27, 115-121
- ³Stern, F.B., Murthy, L.I., Beaumont, J.J., Schulte, P.A. & Halperin, W.E. (1985) Notification and risk assessment for bladder cancer of a cohort exposed to aromatic amines. III. Mortality among workers exposed to aromatic amines in the last beta-naphthylamine manufacturing facility in the United States. J. occup. Med., 27, 495-500
- ⁴Rubino, G.F., Scansetti, G., Piolatto, G. & Pira, E. (1982) The carcinogenic effect of aromatic amines: an epidemiological study on the role of *o*-toluidine and 4,4'-methylene bis(2-methyl-aniline) in inducing bladder cancer in man. *Environ. Res.*, 27, 241-254
- ⁵Decarli, A., Peto, J., Piolatto, G. & La Vecchia, C. (1985) Bladder cancer mortality of workers exposed to aromatic amines: analysis of models of carcinogenesis. *Br. J. Cancer*, 51, 707-712
- ⁶Tsuchiya, K., Okubo, T. & Ishizu, S. (1975) An epidemiological study of occupational bladder tumours in the dye industry of Japan. Br. J. ind. Med., 32, 203-209
- ⁷Nakamura, J., Takamatsu, M., Doi, J., Ohkawa, T., Fujinaga, T., Ebisuno, S. & Sone, M. (1980) Clinical study on the occupational urinary tract tumor in Wakayama. *Jpn. J. Urol.*, 71,945-951
- ⁸Morinaga, K., Oshima, A. & Hara, I. (1982) Multiple primary cancers following exposure to benzidine and beta-naphthylamine. *Am. J. ind. Med.*, *3*, 243-246
- ⁹Budnick, L.D., Sokal, D.C., Falk, H., Logue, J.N. & Fox, J.M. (1984) Cancer and birth defects near the Drake Superfund site, Pennsylvania. Arch. environ. Health, 39, 409-413
- ¹⁰Segnan, N. & Tanturri, G. (1976) A study on the geographical pathology of laryngeal, bladder and children cancer in the Province of Turin (Ital.). *Tumori*, 62, 377-386
- ¹¹Boyko, R.W., Cartwright, R.A. & Glashan, R.W. (1985) Bladder cancer in dye manufacturing workers. J. occup. Med., 27, 799-803
- ¹²Romanenko, A.M. & Martynenko, A.G. (1972) Morphological peculiarities of vesical tumours induced by beta-naphthylamine in dogs (Russ.). Vopr. Onkol., 18, 70-75
- ¹³Radomski, J.L., Krischer, C. & Krischer, K.N. (1978) Histologic and histochemical preneoplastic changes in the bladder mucosae of dogs given 2-naphthylamine. J. natl Cancer Inst., 60, 327-333
- ¹⁴Purchase, I.F.H., Kalinowski, A.E., Ishmael, J., Wilson, J., Gore, C.W. & Chart, I.S. (1981) Lifetime carcinogenicity study of 1- and 2-naphthylamine in dogs. *Br. J. Cancer*, 44, 892-901
- ¹⁵Hicks, R.M., Wright, R. & Wakefield, J.St J. (1982) The induction of rat bladder cancer by 2-naphthylamine. Br. J. Cancer, 46, 646-661

¹⁶Theiss, J.C., Shimkin, M.B. & Weisburger, E.K. (1981) Pulmonary adenoma response of strain A mice to sulfonic acid derivaties of 1- and 2-naphthylamines. J. natl Cancer Inst., 67, 1299-1302

¹⁷IARC Monographs, Suppl. 6, 410-414, 1987