# **HEXACHLOROCYCLOHEXANES (Group 2B)**

# A. Evidence for carcinogenicity to humans (inadequate)

Four cases of leukaemia were reported in men exposed to  $\gamma$ -hexachlorocyclohexane (lindane) with or without other chemicals<sup>1,2</sup>. Cases of aplastic anaemia have also been associated with exposure to this compound<sup>1</sup>. Mean tissue levels of hexachlorocyclohexanes were reported to be elevated in two of three studies of autopsy patients; in one of these, in four liver cancer patients, the level of the  $\beta$ -isomer was abnormally high<sup>3-5</sup>. Mean serum levels of  $\beta$ -hexachlorocyclohexane were not appreciably higher in four cancer patients than in three controls<sup>6</sup>. Exposure to  $\gamma$ -hexachlorocyclohexane was recorded in case-control studies of soft-tissue sarcomas and of lymphomas<sup>7,8</sup> but was insufficiently frequent for any conclusion to be drawn. An increase in lung cancer mortality was observed in agricultural

workers who had used hexachlorocyclohexane (unspecified) and a variety of other pesticides and herbicides (standardized mortality ratio, 180 [95% confidence interval, 140-240])<sup>9</sup>.

**B.** Evidence for carcinogenicity to animals (*sufficient* for technical-grade and the  $\alpha$  isomer; *limited* for the  $\beta$  and  $\gamma$  isomers)

Technical-grade,  $\alpha$ - and  $\beta$ -hexachlorocyclohexane and the  $\gamma$  isomer (lindane) produced liver tumours in mice when administered orally<sup>1,10,11</sup>; the technical grade also produced lymphoreticular neoplasms<sup>10</sup>. In two studies in rats, an increased incidence of liver tumours was observed with the  $\alpha$  isomer<sup>1,12</sup>, and in one study in rats a few thyroid tumours were observed with the  $\gamma$  isomer<sup>1</sup>; other studies in rats<sup>11,13-15</sup> were considered to be inadequate. Studies in hamsters<sup>11</sup> and dogs<sup>16</sup> were also inadequate. Technical-grade hexachlorocyclohexane and the  $\gamma$  isomer were tested inadequately by skin application in mice<sup>1,10</sup>.  $\alpha$ -Hexachlorocyclohexane enhanced the incidence of liver neoplasms induced in rats by *N*-nitrosodiethylamine<sup>12</sup>.

## C. Other relevant data

In a single study, chromosomal aberrations were not found in workers involved in the production of  $\gamma$ -hexachlorocyclohexane (lindane)<sup>17</sup>.

Technical-grade hexachlorocyclohexane, but not  $\gamma$ -hexachlorocyclohexane, induced dominant lethal mutations in mice; chromosomal aberrations were not found in bonemarrow cells of mice exposed to technical-grade or  $\gamma$ -hexachlorocyclohexane *in vivo*.  $\gamma$ -Hexachlorocyclohexane did not induce unscheduled DNA synthesis in human cells *in vitro* and did not induce micronuclei or chromosomal aberrations in cultured rodent cells; it induced DNA strand breaks but not unscheduled DNA synthesis. It inhibited intercellular communication in Chinese hamster V79 cells. It did not induce sex-linked recessive lethal mutations in *Drosophila*.  $\alpha$ -Hexachlorocyclohexane was not mutagenic to yeast, but the  $\gamma$ isomer induced gene conversion. Neither  $\gamma$ - nor  $\beta$ -hexachlorocyclohexane was mutagenic to bacteria, and  $\alpha$ - and  $\beta$ -hexachlorocyclohexane did not cause DNA damage in bacteria<sup>17</sup>.

### References

#### <sup>1</sup>IARC Monographs, 20, 195-239, 1979

- <sup>2</sup>Sidi, Y., Kiltchevsky, E., Shaklai, M. & Pinkhas, J. (1983) Acute myeloblastic leukemia and insecticide. N.Y. State J. Med., 83, 161
- <sup>3</sup>Hoffman, W.S., Adler, H., Fishbein, W.I. & Bauer, F.C. (1967) Relation of pesticide concentrations in fat to pathological changes in tissues. Arch. environ. Health, 15, 758-765
- <sup>4</sup>Radomski, J.L., Deichmann, W.B., Clizer, E.E. & Rey, A. (1968) Pesticide concentrations in the liver, brain and adipose tissue of terminal hospital patients. *Food Cosmet. Toxicol.*, 6, 209-220
- <sup>5</sup>Kasai, A., Asanuma, S. & Nakamura, S. (1972) Studies on organochlorine pesticide residues in human organs. Part III (Jpn.). Nippon Noson Igakkai Zasshi, 21, 296-297
- <sup>6</sup>Caldwell, G.G., Cannon, S.B., Pratt, C.B. & Arthur, R.D. (1981) Serum pesticide levels in patients with childhood colorectal carcinoma. *Cancer*, 48, 774-778

- <sup>7</sup>Eriksson, M., Hardell, L., Berg, N.O., Möller, T. & Axelson, O. (1981) Soft-tissue sarcomas and exposure to chemical substances: a case-referent study. Br. J. ind. Med., 38, 27-33
- <sup>8</sup>Hardell, L., Eriksson, M., Lenner, P. & Lundgren, E. (1981) Malignant lymphoma and exposure to chemicals, especially organic solvents, chlorophenols and phenoxy acids: a case-control study. Br. J. Cancer, 43, 169-176
- <sup>9</sup>Barthel, E. (1981) Increased risk of lung cancer in pesticide-exposed male agricultural workers. J. Toxicol. environ. Health, 8, 1027-1040
- <sup>10</sup>Kashyap, S.K., Nigam, S.K., Gupta, R.C., Karnik, A.B. & Chatterjee, S.K. (1979) Carcinogenicity of hexachlorocyclohexane (BHC) in pure inbred Swiss mice. J. environ. Sci. Health, B14, 305-318
- <sup>11</sup>Munir, K.M., Soman, C.S. & Bhide, S.V. (1983) Hexachlorocyclohexane-induced tumorigenicity in mice under different experimental conditions. *Tumori*, 69, 383-386
- <sup>12</sup>Schulte-Hermann, R. & Parzefall, W. (1981) Failure to discriminate initiation from promotion of liver tumors in a long-term study with the phenobarbital-type inducer *alpha*-hexachlorocyclohexane and the role of sustained stimulation of hepatic growth and monooxygenases. *Cancer Res.*, 41, 4140-4146
- <sup>13</sup>Angsubhakorn, S., Bhamarapravati, N., Romruen, K., Sahaphong, S. & Thamavit, W. (1977) Alpha benzene hexachloride inhibition of aflatoxin B<sub>1</sub>-induced hepatocellular carcinoma. A preliminary report. *Experientia*, 34, 1069-1970
- <sup>14</sup>Hiasa, Y., Ohshima, M., Ohmori, T. & Murata, Y. (1978) Effect of *alpha*-benzene hexachloride on 2-fluorenylacetamide carcinogenesis in rats. *Gann*, 69, 423-426
- <sup>15</sup>Angsubhakorn, S., Bhamarapravati, N., Romruen, K., Sahaphong, S., Thamavit, W. & Miyamoto, M. (1981) Further study of *alpha* benzene hexachloride inhibition of aflatoxin B<sub>1</sub> hepatocarcinogenesis in rats. *Br. J. Cancer*, 43, 881-883
- <sup>16</sup>Rivett, K.F., Chesterman, H., Kellett, D.N., Newman, A.J. & Worden, A.N. (1978) Effects of feeding lindane to dogs for periods of up to 2 years. *Toxicology*, 9, 273-289

<sup>17</sup>IARC Monographs, Suppl. 6, 333-335, 1987