ASBESTOS* (Group 1)

A. Evidence for carcinogenicity to humans (sufficient)

Numerous reports from several countries have described cases or series of pleural and peritoneal mesotheliomas in relation to occupational exposure to various types and mixtures of asbestos (including talc containing asbestos), although occupational exposures have not been identified in all cases¹⁻²¹. Mesotheliomas of the tunica vaginalis testis and of the pericardium have been reported in persons occupationally exposed to asbestos²²⁻²⁴.

Environmental exposure either in the houses of asbestos workers or in the neighbourhood of asbestos mines or factories has been noted in some of the cases^{1,2,4-6,9,11,25,26}. It has been estimated that a third of the mesotheliomas occurring in the USA may be due to nonoccupational exposure²⁷. In a study from Israel, the incidence of mesothelioma was found to be higher among those born in the USA or in Europe relative to those born in Israel⁹.

In some of these case reports and in other studies, asbestos fibres were identified in the lung^{5,6,11,28-32}. Amphibole fibres usually predominated, but in a few cases mainly or only chrysotile fibres were found^{6,28}.

The long latency required for mesothelioma to develop after asbestos exposure has been documented in a number of publications^{11,13,26,28,33-37}. An increasing proportion of cases has been seen with increasing duration of exposure³⁶.

A number of epidemiological studies of respiratory cancer and mesothelioma have been reported in relation to exposure to unspecified or complex mixtures of asbestos in shipyard work³⁸⁻⁴⁵. The risk ratio for lung cancer has usually been moderately increased, both in these studies and in studies on various other occupational groups with similarly job-related but unspecified or complex asbestos exposures^{35,46-54}. Risk ratios of about 2-5 have been reported in some studies, but the ratio was considerably higher in one rather small study⁵⁵ and did not exceed unity in another⁴². In one study, individuals suffering from asbestosis had a considerably greater risk for lung cancer, with a risk ratio of 9.0⁵⁶. In some of the studies referred to, a number of mesotheliomas were also observed^{41,42,44,47,51,53,55}. Abdominal mesotheliomas have sometimes been mistaken for pancreatic cancer⁵⁷. Mesothelioma cases have been observed to have a relatively lower fibre content in the lungs than lung cancer cases³².

^{*}Actinolite, amosite, anthophyllite, chrysotile, crocidolite, tremolite

ASBESTOS

Laryngeal cancer has been considered in two case-control studies, resulting in risk ratios of 2.4 and 2.3 that relate to shipyard work and unspecified exposure, respectively^{40,58}. A cohort study of insulation workers showed a relative risk of 1.9, based on nine cases⁵⁷. A case series indicated a high frequency of exposure to asbestos, especially in low-grade smokers⁵⁹. A risk ratio of 3.2 for laryngeal cancer was reported among chrysotile miners in an area with generally high incidence⁶⁰, but no increased risk was seen in a cohort of workers with exposure to crocidolite⁶¹. Two correlation studies have also indicated a relationship between laryngeal cancer and exposure to asbestos^{39,62}.

Mesotheliomas related to shipyard work and other exposures, including household contact with asbestos workers, have also been subject to epidemiological studies^{36,63-67}, resulting in risk ratios of about 3-15 in comparison with background rates not clearly referable to asbestos exposure.

Some studies have specifically considered environmental exposures with reference to mesotheliomas^{66,67}. Three correlation studies and one case-control study considering exposure to piped drinking-water⁶⁸⁻⁷¹ did not show consistently increased risks for any type of cancer, whereas another study⁷² considering chrysotile contamination mainly from natural sources gave some indication of an increase in the incidence of peritoneal and stomach cancers in persons of each sex, although no other cancer site was consistent in this respect.

Exposure to crocidolite has been studied with regard to risk of lung cancer^{61,73-76}, and risk ratios of about 2-3 have been reported. Three lung cancers and two mesotheliomas occurred in 20 individuals after one year of high exposure to crocidolite; at least 17 of the cases had asbestos-induced lung changes on X-ray films⁷⁷.

One study⁷⁸ of histological types of lung cancers showed that among persons exposed to crocidolite 45.7% of cases were squamous-cell carcinomas, as compared to 35.2% among unexposed persons. In the context of unspecified and complex exposures, small-cell carcinoma was found to be relatively more prevalent than other forms⁵⁰.

Exposure to chrysotile was found in some studies to result in virtually no increase in risk ratio^{60,79-81}, or a slightly elevated relative risk of lung cancer⁸²⁻⁸⁶. Somewhat higher risk ratios, up to 2.5, 3.5 and 2, respectively, were obtained in one study of chrysotile miners⁸⁷ and in two independent studies from one asbestos [chrysotile] textile plant^{88,89}, the latter being the more comprehensive. With regard to mesotheliomas, one study suggested a particularly high risk of combined exposure to chrysotile and amphiboles (risk ratio, 61), thus almost multiplying the risk ratios (6 and 12, respectively) of exposures to chrysotile and to amphiboles alone⁹⁰. Another study showed no mesothelioma among a large worker population with exposure to chrysotile only⁹¹.

A slight excess of lung cancer and some mesotheliomas appeared in some groups with mixed exposures involving amosite, chrysotile and crocidolite⁹²⁻⁹⁴. Exposure predominantly to amosite, but also to chrysotile, was reported to be the probable cause of at least four of five mesotheliomas (one peritoneal) observed in a UK insulation-board factory⁹⁵. One cohort with exposure to cummingtonite-grunerite, which is closely related to amosite, had no clear excess of lung cancer, although one case of mesothelioma was observed⁹⁶.

Exposure to tremolite and actinolite has been the subject of a few studies in investigations of vermiculite mining and milling^{97,98} and environmental exposure⁹⁹. The studies of miners indicated a risk ratio for lung cancer of up to approximately six fold. Deaths from mesothelioma were found in the occupational studies, whereas the study of environmental exposure showed no increased risk, although pleural plaques were reported. Publication of one case report of a mesothelioma after environmental exposure suggests that tremolite was of etiological importance³¹.

Cancers other than of the lung or mesothelioma have been considered in many studies^{1,17,35,39,41-44,48,51,55,60-62,68-70,72-74,76,83,87,89,92,93,96,97,99-108}. Some indicated an approximately two-fold risk with regard to gastrointestinal cancer in connection with shipyard work^{41,43}, and some increased risk was also seen in association with exposure to both chrysotile and crocidolite¹⁰³, to crocidolite^{61,74} or to chrysotile⁸⁷. Cancer of the colon and rectum was associated with asbestos exposure during chrysotile production, with an approximately two-fold risk⁸⁷; a similar excess was found for unspecified asbestos exposure¹⁰⁴. Some excess of ovarian cancer has been reported in two studies^{73,76} but not in another⁹²; exposure to crocidolite was probably more predominant in the studies that showed excesses. Bile-duct cancer appeared in excess in one study based on record-linking¹⁰⁵, and large-cell lymphomas of the gastrointestinal tract and oral cavity appeared to be strongly related to asbestos exposure in one small study covering 28 cases and 28 controls, giving a risk ratio of 8; however, ten cases and one control also had a history of malaria¹⁰⁶. An excess of lymphopoietic and haematopoietic malignancies has been reported in plumbers, pipe-fitters, sheet-metal workers and others with asbestos exposure^{17,54,107,108}.

The relationship between asbestos exposure and smoking indicates a synergistic effect of smoking with regard to lung cancer¹. Further evaluations indicate that this synergistic effect is close to a multiplicative model^{52,109}. As noted previously¹, the risk of mesothelioma appears to be independent of smoking^{47,66}, and a significantly decreasing trend in risk was observed with the amount smoked in one study⁶⁵.

The studies of the carcinogenic effect of asbestos exposure, including evidence reviewed earlier¹, show that occupational exposure to chrysotile, amosite and anthophyllite asbestos and to mixtures containing crocidolite results in an increased risk of lung cancer, as does exposure to minerals containing tremolite and actinolite and to tremolitic material mixed with anthophyllite and small amounts of chrysotile. Mesotheliomas have been observed after occupational exposure to crocidolite, amosite, tremolitic material and chrysotile asbestos. Gastrointestinal cancers occurred at an increased incidence in groups occupationally exposed to crocidolite, amosite, chrysotile or mixed fibres containing crocidolite, although not all studies are consistent in this respect. An excess of laryngeal cancer has also been observed in some groups of exposed workers. No clear excess of cancer has been associated with the presence of asbestos fibres in drinking-water. Mesotheliomas have occurred in individuals living in the neighbourhood of asbestos factories and mines and in people living with asbestos workers.

B. Evidence for carcinogenicity to animals (sufficient)

Asbestos has been tested for carcinogenicity by inhalation in rats, by intrapleural administration in rats and hamsters, by intraperitoneal injection in mice, rats and hamsters and by oral administration in rats and hamsters. Chrysotile, crocidolite, amosite, anthophyllite and tremolite produced mesotheliomas and lung carcinomas in rats after inhalation^{1,110,111} and mesotheliomas following intrapleural administration^{1,112}. Chrysotile, crocidolite, amosite and anthophyllite induced mesotheliomas in hamsters following intrapleural administration¹. Intraperitoneal administration of chrysotile. crocidolite and amosite induced peritoneal tumours, including mesotheliomas, in mice1,113 and rats^{1,111,114}. Given by the same route, crocidolite produced abdominal tumours in hamsters¹¹⁵, and tremolite and actinolite produced abdominal tumours in rats^{110,116-118}. A statistically significant increase in the incidence of malignant tumours was observed in rats given filter material containing chrysotile orally¹. In more recent studies, tumour incidence was not increased by oral administration of amosite or tremolite in rats¹¹⁹, of amosite in hamsters^{120,121} or of chrysotile in hamsters¹²¹. In two studies in rats, oral administration of chrysotile produced a low incidence of benign adenomatous polyps of the large intestine in males $(9/250 \text{ versus } 3/254 \text{ pooled controls})^{122}$ and of mesenteric haemangiomas $(4/22)^{122}$ versus 0/47 controls)¹²³. Synergistic effects were observed following intratracheal administration of chrysotile and benzo[a]pyrene to rats and hamsters¹ and of intratracheal administration of chrysotile and subcutaneous or oral administration of N-nitrosodiethylamine to hamsters¹²⁴.

C. Other relevant data

Insulation workers exposed to asbestos 'displayed a marginal increase' in the incidence of sister chromatid exchanges in lymphocytes in one study¹²⁵.

Chrysotile did not induce micronuclei in bone-marrow cells of mice or chromosomal aberrations in bone-marrow cells of rhesus monkeys treated *in vivo*. In cultured human cells, conflicting results were reported for the induction of chromosomal aberrations and negative results for the induction of sister chromatid exchanges by chrysotile and crocidolite; amosite and crocidolite did not induce DNA strand breaks, and crocidolite was not mutagenic. Amosite, anthophyllite, chrysotile and crocidolite induced transformation of Syrian hamster embryo cells, chrysotile and crocidolite transformed BALB/c 3T3 mouse cells, and chrysotile transformed rat mesothelial cells. Neither amosite nor crocidolite transformed CH3 10T1/2 cells. In cultured rodent cells, amosite, anthophyllite, chrysotile and crocidolite induced aneuploidy and micronuclei. Chrysotile induced unscheduled DNA synthesis in rat hepatocytes. Amosite, chrysotile and crocidolite were inactive or weakly active in inducing mutation in rodent cells *in vitro*; none was mutagenic to bacteria¹²⁵.

References

¹IARC Monographs, 14, 1977

- ²Armstrong, B.K., Musk, A.W., Baker, J.E., Hunt, J.M., Newall, C.C., Henzell, H.R., Blunsdon, B.S., Clarke-Hundley, M.D., Woodward, S.D. & Hobbs, M.S.T. (1984) Epidemiology of malignant mesothelioma in Western Australia. *Med. J. Aust.*, 141, 86-88
- ³Beck, B. & Irmscher, G. (1979) Extrathoracic mesotheliomas after inhalation of asbestos dust (Ger.). Z. Erkrank. Atm.-Org., 152, 282-293
- ⁴Biava, P.M., Fiorito, A., Canciani, L. & Bovenzi, M. (1983) Epidemiology of mesothelioma of the pleura in the province of Trieste: role of occupational exposure to asbestos (Ital.). *Med. Lav.*, 74, 260-265
- ⁵Edge, J.R. & Choudhury, S.L. (1978) Malignant mesothelioma of the pleura in Barrow-in-Furness. Thorax, 33, 26-30
- ⁶Emonot, A., Marquet, M., Baril, A., Berardj & Braillon (1979) Epidemiology of asbestos mesotheliomas in the region of St Etienne (Fr.). Ann. Med. intern., 130, 71-74
- ⁷Griffiths, M.H., Riddell, R.J. & Xipell, J.M. (1980) Malignant mesothelioma: a review of 35 cases with diagnosis and prognosis. *Pathology*, 12, 591-603
- ⁸Kovarik, J.L. (1976) Primary pleural mesothelioma. Cancer, 38, 1816-1825
- ⁹Lemesch, C., Steinitz, R. & Wassermann, M. (1976) Epidemiology of mesothelioma in Israel. Environ. Res., 12, 255-261
- ¹⁰McDonald, A.D. (1980) Malignant mesothelioma in Quebec. In: Wagner, J.C., ed., Biological Effects of Mineral Fibres (IARC Scientific Publications No. 30), Lyon, International Agency for Research on Cancer, pp. 673-680
- ¹¹Mowé, G. & Gylseth, B. (1986) Occupational exposure and regional variation of malignant mesothelioma in Norway, 1970-79. Am. J. ind. Med., 9, 323-332
- ¹²Paur, R., Woitowitz, H.-J., Rödelsperger, K. & Jahn, H. (1985) Pleural mesothelioma after asbestos exposure in brake repair work in automobile repair workshop: case observations (Ger.). Prax. klin. Pneumol., 39, 362-366
- ¹³Sheers, G. & Coles, R.M. (1980) Mesothelioma risks in a naval dockyard. Arch. environ. Health, 35, 276-282
- ¹⁴Vande Weyer, R., Groetenbriel, C., Lauwers, D. & Yernault, J.C. (1982) Evolution of deaths by bronchial carcinoma and pleural mesothelioma among two groups of Belgian workers who died between 1973 and 1981: the role of asbestosis and coalworkers' pneumoconiosis (Abstract No. 5). *Eur. J. respir. Dis.*, 63 (Suppl. 125), 10
- ¹⁵Xu, Z., Armstrong, B.K., Blundson, B.J., Rogers, J.M., Musk, A.W. & Shilkin, K.B. (1985) Trends in mortality from malignant mesothelioma of the pleura, and production and use of asbestos in Australia. *Med. J. Aust.*, 143, 185-187
- ¹⁶Ben-Dror, G., Suprun, H. & Shkolnik, T. (1985) Peritoneal mesotheliomas and exposure to asbestos (Arabic). Harefuah, 108, 435-437
- ¹⁷Cantor, K.P., Sontag, J.M. & Heid, M.F. (1986) Patterns of mortality among plumbers and pipefitters. Am. J. ind. Med., 10, 73-89
- ¹⁸Gardner, M.J., Jones, R.D., Pippard, E.C. & Saitoh, N. (1985) Mesothelioma of the peritoneum during 1967-82 in England and Wales. Br. J. Cancer, 51, 121-126

- ¹⁹Mancuso, T.F. (1983) Mesothelioma among machinists in railroad and other industries. Am. J. ind. Med., 4, 501-513
- ²⁰Newhouse, M.L., Oakes, D. & Woolley, A.J. (1985) Mortality of welders and other craftsmen at a shipyard in NE England. Br. J. ind. Med., 42, 406-410
- ²¹Sera, Y. & Kang, K.-Y. (1981) Asbestos and cancer in the Sennan district of Osaka. *Tohoku J. exp. Med.*, 133, 313-320
- ²²Fligiel, Z. & Kaneko, M. (1976) Malignant mesothelioma of the tunica vaginalis propria testis in a patient with asbestos exposure. *Cancer*, 37, 1478-1484
- ²³Beck, B., Konetzke, G., Ludwig, V., Röthig, W. & Sturm, W. (1982) Malignant pericardial mesotheliomas and asbestos exposure: a case report. Am. J. ind. Med., 3, 149-159
- ²⁴Kahn, E.I., Rohl, A., Barrett, E.W. & Suzuki, Y. (1980) Primary pericardial mesothelioma following exposure to asbestos. *Environ. Res.*, 23, 270-281
- ²⁵Arul, K.J. & Holt, P.F. (1977) Mesothelioma possibly due to environmental exposure to asbestos in childhood. *Int. Arch. occup. environ. Health*, 40, 141-143
- ²⁶Bignon, J., Sébastien, P., di Menza, L., Nebut, M. & Payan, H. (1979) French registry of mesotheliomas 1965-1978 (Fr.). Rev. fr. Mal. respir., 7, 223-242
- ²⁷Enterline, P.E. (1983) Cancer produced by nonoccupational asbestos exposure in the United States. J. Air Pollut. Control Assoc., 33, 318-322
- ²⁸Greenberg, M. & Davies, T.A.L. (1974) Mesothelioma register 1967-68. Br. J. ind. Med., 31, 91-104
- ²⁹Chen, W.-J. & Mottet, N.K. (1978) Malignant mesothelioma with minimal asbestos exposure. *Hum. Pathol.*, 9, 253-258
- ³⁰Gylseth, B., Mowé, G. & Wannag, A. (1983) Fibre type and concentration in the lungs of workers in an asbestos cement factory. Br. J. ind. Med., 40, 375-379
- ³¹Magee, F., Wright, J.L., Chan, N., Lawson, L. & Churg, A. (1986) Malignant mesothelioma caused by childhood exposure to long-fiber low aspect ratio tremolite. *Am. J. ind. Med.*, 9, 529-533
- ³²Wagner, J.C., Moncrieff, C.B., Coles, R., Griffiths, D.M. & Munday, D.E. (1986) Correlation between fibre content of the lungs and disease in naval dockyard workers. Br. J. ind. Med., 43, 391-395
- ³³Browne, K. (1983) Asbestos-related mesothelioma: epidemiological evidence for asbestos as a promoter. Arch. environ. Health, 38, 261-266
- ³⁴Churg, A., Warnock, M.L. & Bensch, K.G. (1978) Malignant mesothelioma arising after direct application of asbestos and fiber glass to the pericardium. Am. Rev. respir. Dis., 118, 419-424
- ³⁵Beck, E.G. & Schmidt, P. (1985) Epidemiological investigations of deceased employees of the asbestos cement industry in the Federal Republic of Germany. Zbl. Bakt. Hyg., I. Abt. Orig. B, 181, 207-215
- ³⁶Hughes, J.M., Hammad, Y.Y. & Weill, H. (1986) Mesothelioma risk in relation to duration and type of asbestos fiber exposure (Abstract). Am. Rev. respir. Dis., 133 (Suppl. 4), A33
- ³⁷Selikoff, I.J., Hammond, E.C. & Seidman, H. (1980) Latency of asbestos disease among insulation workers in the United States and Canada. *Cancer*, 46, 2736-2740
- ³⁸Blot, W.J., Harrington, J.M., Toledo, A., Hoover, R., Heath, C.W., Jr & Fraumeni, J.F., Jr (1978) Lung cancer after employment in shipyards during World War II. New Engl. J. Med., 299, 620-624

- ³⁹Blot, W.J., Stone, B.J., Fraumeni, J.F., Jr & Morris, L.E. (1979) Cancer mortality in US counties with shipyard industries during World War II. *Environ. Res.*, 18, 281-290
- ⁴⁰Blot, W.J., Morris, L.E., Stroube, R., Tagnon, I. & Fraumeni, J.F., Jr (1980) Lung and laryngeal cancers in relation to shipyard employment in coastal Virginia. J. natl Cancer Inst., 65, 571-575
- ⁴¹Kolonel, L.N., Yoshizawa, C.N., Hirohata, T. & Myers, B.C. (1985) Cancer occurrence in shipyard workers exposed to asbestos in Hawaii. *Cancer Res.*, 45, 3924-3928
- ⁴²Rossiter, C.E. & Coles, R.M. (1980) HM Dockyard, Devonport: 1947 mortality study. In: Wagner, J.C., ed., Biological Effects of Mineral Fibres (IARC Scientific Publications No. 30), Lyon, International Agency for Research on Cancer, pp. 713-721
- ⁴³Sandén, Å., Näslund, P.-E. & Järvholm, B. (1985) Mortality in lung and gastrointestinal cancer among shipyard workers. Int. Arch. occup. environ. Health, 55, 277-283
- ⁴⁴Lumley, K.P.S. (1976) A proportional study of cancer registrations of dockyard workers. Br. J. ind. Med., 33, 108-114
- ⁴⁵Nicholson, W.J., Lilis, R., Frank, A.L. & Selikoff, I.J. (1980) Lung cancer prevalence among shipyard workers. Am. J. ind. Med., 1, 191-203
- ⁴⁶Alies-Patin, A.M. & Valleron, A.J. (1985) Mortality of workers in a French asbestos cement factory 1940-82. Br. J. ind. Med., 42, 219-225
- ⁴⁷Berry, G., Newhouse, M.L. & Antonis, P. (1985) Combined effect of asbestos and smoking on mortality from lung cancer and mesothelioma in factory workers. Br. J. ind. Med., 42, 12-18
- ⁴⁸Hodgson, J.T. & Jones, R.D. (1986) Mortality of asbestos workers in England and Wales. Br. J. ind. Med., 43, 158-164
- ⁴⁹Coggon, D., Pannett, B. & Acheson, E.D. (1984) Use of job-exposure matrix in an occupational analysis of lung and bladder cancers on the basis of death certificates. J. natl Cancer Inst., 72, 61-65
- ⁵⁰Kjuus, H., Skjaerven, R., Langård, S., Lien, J.T. & Aamodt, T. (1986) A case-referent study of lung cancer, occupational exposures and smoking. II. Role of asbestos exposure. Scand. J. Work Environ. Health, 12, 203-209
- ⁵¹Newhouse, M.L., Berry, G. & Wagner, J.C. (1985) Mortality of factory workers in East London 1933-80. Br. J. ind. Med., 42, 4-11
- ⁵²Hilt, B., Langård, S., Andersen, A. & Rosenberg, J. (1985) Asbestos exposure, smoking habits, and cancer incidence among production and maintenance workers in an electrochemical plant. Am. J. ind. Med., 8, 565-577
- ⁵³Woitowitz, H.-J., Lange, H.-J., Beierl, L., Rathgeb, M., Schmidt, K., Ulm, K., Giesen, T., Woitowitz, R.H., Pache, L. & Rödelsperger, K. (1986) Mortality rates in the Federal Republic of Germany following previous occupational exposure to asbestos dust. Int. Arch. occup. environ. Health, 57, 161-171
- ⁵⁴Zoloth, S. & Michaels, D. (1985) Asbestos disease in sheet metal workers: the results of a proportional mortality analysis. Am. J. ind. Med., 7, 315-321
- ⁵⁵Elmes, P.C. & Simpson, M.J.C. (1977) Insulation workers in Belfast. A further study of mortality due to asbestos exosure (1940-75). Br. J. ind. Med., 34, 174-180
- ⁵⁶Huuskonen, M.S. (1980) Asbestos and cancer in Finland. J. Toxicol. environ. Health, 6, 1261-1265
- ⁵⁷Selikoff, I.J. & Seidman, H. (1981) Cancer of the pancreas among asbestos insulation workers. Cancer, 47 (Suppl.), 1469-1473

- ⁵⁸Burch, J.D., Howe, G.R., Miller, A.B. & Semenciw, R. (1981) Tobacco, alcohol, asbestos, and nickel in the etiology of cancer of the larynx: a case-control study. J. natl Cancer Inst., 67, 1219-1224
- ⁵⁹von Bittersohl, G. (1977) On the problem of asbestos-induced carcinoma of the larynx (Ger.). Z. ges. Hyg., 23, 27-30
- ⁶⁰Rubino, G.F., Piolatto, G., Newhouse, M.L., Scansetti, G., Aresini, G.A. & Murray, R. (1979) Mortality of chrysotile asbestos workers at the Balangero mine, Northern Italy. Br. J. ind. Med., 36, 187-194
- ⁶¹Musk, A.W., de Klerk, N., Hobbs, M.S.T. & Armstrong, B.K. (1986) Mortality in crocidolite miners and millers from Wittenoom, Western Australia (Abstract). Am. Rev. respir. Dis., 133 (Suppl. 4), A34
- ⁶²Graham, S., Blanchet, M. & Rohrer, T. (1977) Cancer in asbestos-mining and other areas of Quebec. J. natl Cancer Inst., 59, 1139-1145
- ⁶³Chiappino, G., Riboldi, L., Todaro, A. & Schulz, L. (1985) Survey of mesotheliomas in Lombardy in the period 1978-1982 (Ital.). *Med. Lav.*, 76, 454-465
- ⁶⁴Mowé, G., Gylseth, B., Hartveit, F. & Skaug, V. (1984) Occupational asbestos exposure, lung-fiber concentration and latency time in malignant mesothelioma. Scand. J. Work Environ. Health, 10, 293-298
- ⁶⁵Tagnon, I., Blot, W.J., Stroube, R.B., Day, N.E., Morris, L.E., Peace, B.B. & Fraumeni, J.F., Jr (1980) Mesothelioma associated with the shipbuilding industry in coastal Virginia. *Cancer Res.*, 40, 3875-3879
- ⁶⁶Thériault, G.P. & Grand-Bois, L. (1978) Mesothelioma and asbestos in the province of Quebec, 1969-1972. Arch. environ. Health, 33, 15-19
- ⁶⁷Vianna, N.J. & Polan, A.K. (1978) Non-occupational exposure to asbestos and malignant mesothelioma in females. *Lancet*, *i*, 1061-1063
- ⁶⁸Meigs, J.W., Walter, S.D., Heston, J.F., Millette, J.R., Craun, G.F., Woodhull, R.S. & Flannery, J.T. (1980) Asbestos cement pipe and cancer in Connecticut 1955-1974. J. environ. Health, 42, 187-191
- ⁶⁹Wigle, D.T. (1977) Cancer mortality in relation to asbestos in municipal water supplies. Arch. environ. Health, 32, 185-190
- ⁷⁰Harrington, J.M., Craun, G.F., Meigs, J.W., Landrigan, P.J., Flannery, J.T. & Woodhull, R.S. (1978) An investigation of the use of asbestos cement pipe for public water supply and the incidence of gastrointestinal cancer in Connecticut, 1935-1973. Am. J. Epidemiol., 107, 96-103
- ⁷¹Polissar, L., Severson, R.K. & Boatman, E.S. (1984) A case-control study of asbestos in drinking water and cancer risk. Am. J. Epidemiol., 119, 456-471
- ⁷²Kanarek, M.S., Conforti, P.M., Jackson, L.A., Cooper, R.C. & Murchio, J.C. (1980) Asbestos in drinking water and cancer incidence in the San Francisco Bay area. Am. J. Epidemiol., 112, 54-72
- ⁷³Acheson, E.D., Gardner, M.J., Pippard, E.C. & Grime, L.P. (1982) Mortality of two groups of women who manufactured gas masks from chrysotile and crocidolite asbestos: a 40-year followup. Br. J. ind. Med., 39, 344-348
- ⁷⁴Botha, J.L., Irwig, L.M. & Strebel, P.M. (1986) Excess mortality from stomach cancer, lung cancer, and asbestosis and/or mesothelioma in crocidolite mining districts in South Africa. Am. J. Epidemiol., 123, 30-40

- ⁷⁵Hobbs, M.S.T., Woodward, S.D., Murphy, B., Musk, A.W. & Elder, J.E. (1980) The incidence of pneumoconiosis, mesothelioma and other respiratory cancer in men engaged in mining and milling crocidolite in Western Australia. In: Wagner, J.C., ed., Biological Effects of Mineral Fibres (IARC Scientific Publications No. 30), Lyon, International Agency for Research on Cancer, pp. 615-625
- ⁷⁶Wignall, B.K. & Fox, A.J. (1982) Mortality of female gas mask assemblers. Br. J. ind. Med., 39, 34-38
- ⁷⁷Hilt, B., Rosenberg, J. & Langard, S. (1981) Occurrence of cancer in a small cohort of asbestosexposed workers. Scand. J. Work Environ. Health, 7, 185-189
- ⁷⁸Baker, J.E., Reutens, D.C., Graham, D.F., Sterrett, G.F., Musk, A.W., Hobbs, M.S.T., Armstrong, B.K. & de Klerk, N.H. (1986) Morphology of bronchogenic carcinoma in workers formerly exposed to crocidolite at Wittenoom Gorge in Western Australia. Int. J. Cancer, 37, 547-550
- ⁷⁹Berry, G. & Newhouse, M.L. (1983) Mortality of workers manufacturing friction materials using asbestos. Br. J. ind. Med., 40, 1-7
- ⁸⁰Gardner, M.J., Winter, P.D., Pannett, B. & Powell, C.A. (1986) Follow up study of workers manufacturing chrysotile asbestos cement products. Br. J. ind. Med., 43, 726-732
- ⁸¹Weiss, W. (1977) Mortality of a cohort exposed to chrysotile asbestos. J. occup. Med., 19, 737-740
- ⁸²Haider, M. & Neuberger, M. (1980) Comparison of lung cancer risks for dust workers, asbestoscement workers and control groups. In: Wagner, J.C., ed., Biological Effects of Mineral Fibres (IARC Scientific Publications No. 30), Lyon, International Agency for Research on Cancer, pp. 973-977
- ⁸³McDonald, A.D., Fry, J.S., Woolley, A.J. & McDonald, J.C. (1984) Dust exposure and mortality in an American chrysotile asbestos friction products plant. Br. J. ind. Med., 41, 151-157
- ⁸⁴Peto, J. (1980) Lung cancer mortality in relation to measured dust levels in an asbestos textile factory. In: Wagner, J.C., ed., Biological Effects of Mineral Fibres (IARC Scientific Publications No. 30), Lyon, International Agency for Research on Cancer, pp. 829-836
- ⁸⁵Peto, J., Doll, R., Howard, S.V., Kinlen, L.J. & Lewinsohn, H.C. (1977) A mortality study among workers in an English asbestos factory. Br. J. ind. Med., 34, 169-173
- ⁸⁶Peto, J., Doll, R., Hermon, C., Binns, W., Clayton, R. & Goffe, T. (1985) Relationship of mortality to measures of environmental asbestos pollution in an asbestos textile factory. Ann. occup. Hyg., 29, 305-355
- 87Liddell, F.D.K., Thomas, D.C., Gibbs, G.W. & McDonald, J.C. (1984) Fibre exposure and mortality from pneumoconiosis, respiratory and abdominal malignancies in chrysotile production in Quebec, 1926-75. Ann. Acad. Med., 13, 340-344
- ⁸⁸Dement, J.M., Harris, R.L., Jr, Symons, M.J. & Shy, C. (1982) Estimates of dose-response for respiratory cancer among chrysotile asbestos textile workers. Ann. occup. Hyg., 26, 869-887
- ⁸⁹McDonald, A.D., Fry, J.S., Woolley, A.J. & McDonald, J. (1983) Dust exposure and mortality in an American chrysotile textile plant. Br. J. ind. Med., 40, 361-367
- ⁹⁰Acheson, E.D. & Gardner, M.J. (1979) Mesothelioma and exposure to mixtures of chrysotile and amphibole asbestos. Arch. environ. Health, 34, 240-242
- ⁹¹Browne, K. & Smither, W.J. (1983) Asbestos-related mesothelioma: factors discriminating between pleural and peritoneal sites. *Br. J. ind. Med.*, 40, 145-152
- ⁹²Newhouse, M.L., Berry, G. & Skidmore, J.W. (1982) A mortality study of workers manufacturing friction materials with chrysotile asbestos. Ann. occup. Hyg., 26, 899-909

- ⁹³Ohlson, C.-G., Klaesson, B. & Hogstedt, C. (1984) Mortality among asbestos-exposed workers in a railroad workshop. Scand. J. Work Environ. Health, 10, 283-291
- ⁹⁴McDonald, A.D. & Fry, J.S. (1982) Mesothelioma and fiber type in three American asbestos factories — preliminary report. Scand. J. Work Environ. Health, 8 (Suppl. 1), 53-58
- ⁹⁵Acheson, E.D., Gardner, M.J., Bennett, C. & Winter, P.D. (1981) Mesothelioma in a factory using amosite and chrysotile asbestos. *Lancet*, *ii*, 1403-1405
- ⁹⁶McDonald, J.C., Gibbs, G.W., Liddell, F.D.K. & McDonald, A.D. (1978) Mortality after long exposure to cummingtonite-grunerite. Am. Rev. respir. Dis., 118, 271-277
- ⁹⁷McDonald, J.C., McDonald, A.D., Armstrong, B. & Sébastien, P. (1986) Cohort study of mortality in vermiculite miners exposed to tremolite. Br. J. ind. Med., 43, 436-444
- ⁹⁸Amandus, H.E. & Wheeler, R. (1987) The morbidity and mortality of vermiculite miners and millers exposed to tremolite-actinolite: Part II. Mortality. Am. J. ind. Med., 11, 15-26
- ⁹⁹Neuberger, M., Kundi, M. & Friedl, H.P. (1984) Environmental asbestos exposure and cancer mortality. Arch. environ. Health, 39, 261-265
- ¹⁰⁰Ohlson, C.-G. & Hogstedt, C. (1985) Lung cancer among asbestos cement workers. A Swedish cohort study and a review. Br. J. ind. Med., 42, 397-402
- ¹⁰¹Thomas, H.F., Benjamin, I.T., Elwood, P.C. & Sweetnam, P.M. (1982) Further follow-up study of workers from an asbestos cement factory. Br. J. ind. Med., 39, 273-276
- ¹⁰²Weill, H., Hughes, J. & Waggenspack, C. (1979) Influence of dose and fiber type on respiratory malignancy risk in asbestos cement manufacturing. Am. Rev. respir. Dis., 120, 345-354
- ¹⁰³Finkelstein, M.M. (1984) Mortality among employees of an Ontario asbestos-cement factory. Am. Rev. respir. Dis., 129, 754-761
- ¹⁰⁴Hardell, L. (1981) Relation of soft-tissue sarcoma, malignant lymphoma and colon cancer to phenoxy acids, chlorophenols and other agents. Scand. J. Work Environ. Health, 7, 119-130
- ¹⁰⁵Malker, H.S.R., McLaughlin, J.K., Malker, B.K., Stone, B.J., Weiner, J.A., Ericsson, J.L.E. & Blot, W.J. (1986) Biliary tract cancer and occupation in Sweden. Br. J. ind. Med., 43, 257-262
- ¹⁰⁶Ross, R., Nichols, P., Wright, W., Lukes, R., Dworsky, R., Paganini-Hill, A., Koss, M. & Henderson, B. (1982) Asbestos exposure and lymphomas of the gastrointestinal tract and oral cavity. *Lancet*, *ii*, 1118-1120
- ¹⁰⁷Waxweiler, R.J. & Robinson, C. (1983) Asbestos and non-Hodgkin's lymphoma. Lancet, i, 189-190
- ¹⁰⁸Spanedda, R., Barbieri, D. & La Corte, R. (1983) Asbestos and non-Hodgkin's lymphoma. Lancet, *i*, 190
- ¹⁰⁹Saracci, R. (1977) Asbestos and lung cancer: an analysis of the epidemiological evidence on the asbestos-smoking interaction. Int. J. Cancer, 20, 323-331
- ¹¹⁰Davis, J.M.G., Addison, J., Bolton, R.E., Donaldson, K., Jones, A.D. & Miller, B.G. (1985) Inhalation studies on the effects of tremolite and brucite dust in rats. *Carcinogenesis*, 6, 667-674

- ¹¹¹Davis, J.M.G., Addison, J., Bolton, R.E., Donaldson, K. & Jones, A.D. (1986) Inhalation and injection studies in rats using dust samples from chrysotile asbestos prepared by a wet dispersion process. Br. J. exp. Pathol., 67, 113-129
- ¹¹²Stanton, M.F., Layard, M., Tegeris, A., Miller, E., May, M., Morgan, E. & Smith, A. (1981) Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J. natl Cancer Inst., 67, 965-975
- ¹¹³Suzuki, Y, & Kohyama, N. (1984) Malignant mesothelioma induced by asbestos and zeolite in the mouse peritoneal cavity. *Environ. Res.*, 35, 277-292
- ¹¹⁴Bolton, R.E., Davis, J.M.G., Donaldson, K. & Wright, A. (1982) Variations in the carcinogenicity of mineral fibres. *Ann. occup. Hyg.*, 26, 569-582
- ¹¹⁵Pott, F., Huth, F. & Spurny, K. (1980) Tumour induction after intraperitoneal injection of fibrous dusts. In: Wagner, J.C., ed., Biological Effects of Mineral Fibres (IARC Scientific Publications No. 30), Lyon, International Agency for Research on Cancer, pp. 337-342
- ¹¹⁶Spurny, K., Pott, F., Huth, F., Weiss, G. & Opiela, H. (1979) Identification and carcinogenic action of fibrous actinolite from a diabase rock (Ger.). *Staub-Reinhalt. Luft*, 39, 386-389
- ¹¹⁷Pott, F., Schlipköter, H.W., Ziem, U., Spurny, K. & Huth, F. (1982) New results from implantation experiments with mineral fibres. In: Biological Effects of Man-made Fibres, Vol. 2, Copenhagen, WHO Regional Office for Europe, pp. 286-302
- ¹¹⁸Pott, F., Matscheck, A., Ziem, U., Muhle, H. & Huth, F. (1987) Animal experiments with chemically treated fibres. *Ann. occup. Hyg.* (in press)
- ¹¹⁹McConnell, E.E., Rutter, H.A., Ulland, B.M. & Moore, J.A. (1983) Chronic effects of dietary exposure to amosite asbestos and tremolite in F344 rats. *Environ. Health Perspect.*, 53, 27-44
- ¹²⁰National Toxicology Program (1983) Lifetime Carcinogenesis Studies of Amosite Asbestos (CAS No. 121-72-73-5) in Syrian Golden Hamsters (Feed Studies) (NIH Publ. No. 84-2505; NTP TR 249), Research Triangle Park, NC
- ¹²¹McConnell, E.E., Shefner, A.M., Rust, J.H. & Moore, J.A. (1983) Chronic effects of dietary exposure to amosite and chrysotile asbestos in Syrian golden hamsters. *Environ. Health Perspect.*, 53, 11-25
- ¹²²National Toxicology Program (1985) Toxicology and Carcinogenesis Studies of Chrysotile Asbestos (CAS No. 12001-29-5) in F344/N Rats (Feed Studies) (NIH Publ. No. 86-2551; NTP TR 295), Research Triangle Park, NC
- ¹²³Bolton, R.E., Davis, J.M.G. & Lamb, D. (1982) The pathological effects of prolonged asbestos ingestion in rats. *Environ. Res.*, 29, 134-150
- ¹²⁴Küng-Vösamäe, A. & Vinkmann, F. (1980) Combined carcinogenic action of chrysotile asbestos dust and N-nitrosodiethylamine on the respiratory tract of Syrian golden hamsters. In: Wagner, J.C., ed., Biological Effects of Mineral Fibres (IARC Scientific Publications No. 30), Lyon, International Agency for Research on Cancer, pp. 305-310

¹²⁵IARC Monographs, Suppl. 6, 77-80, 1987