ADRIAMYCIN (Group 2A)

A. Evidence for carcinogenicity to humans (inadequate)

No epidemiological study of adriamycin as a single agent was available to the Working Group. Occasional case reports, especially in the presence of concurrent therapy with other putative carcinogens, such as ionizing radiation, alkylating agents and other potent oncotherapeutic drugs, do not constitute evidence of carcinogenesis.

In a large systematic follow-up of patients with Hodgkin's disease treated with an intensive chemotherapeutic combination including adriamycin [plus vinblastine (see p. 371), bleomycin (see p. 134) and dacarbazine (see p. 184)] but no alkylating agent, preliminary evidence suggested no excess of acute nonlymphocytic leukaemia in the first decade after therapy¹.

B. Evidence for carcinogenicity to animals (sufficient)

Adriamycin was tested for carcinogenicity in rats by a single intravenous injection, producing mammary tumours²⁻⁵, and by single or repeated subcutaneous injections, producing local sarcomas and mammary tumours^{6,7}. Intravesicular instillation of adriamycin in rats resulted in a low incidence of bladder papillomas and enhanced the incidence of bladder tumours induced by *N*-nitroso-*N*-(4-hydroxybutyl)-*N*-butylamine⁸.

C. Other relevant data

Adriamycin induced chromosomal aberrations in treated patients in one of two studies and sister chromatid exchanges in both studies. In another study, cisplatin-adriamycin combination chemotherapy induced sister chromatid exchanges in peripheral blood lymphocytes of treated patients. DNA strand breaks were induced in the cells of treated patients in one study⁹.

Adriamycin has been tested extensively for genetic effects in a wide variety of tests *in vivo* and *in vitro*, giving consistently positive results. It induced chromosomal aberrations, micronuclei, sister chromatid exchanges and DNA damage in rodents *in vivo* and

chromosomal aberrations, micronuclei, sister chromatid exchanges and DNA damage in human cells *in vitro*. It transformed virus-infected Fischer rat embryo cells and induced chromosomal aberrations, sister chromatid exchanges, mutation and DNA damage in cultured rodent cells. Adriamycin induced sex-linked recessive lethal mutations in *Drosophila*, chromosomal aberrations in plants and mutation in fungi. It was mutagenic to bacteria and induced DNA damage⁹.

References

- ¹Valagussa, P., Santoro, A., Kenda, R., Fossati Bellani, F., Franchi, F., Banfi, A., Rilke, F. & Bonadonna, G. (1980) Second malignancies in Hodgkin's disease: a complication of certain forms of treatment. *Br. med. J.*, *i*, 216-219
- ²IARC Monographs, 10, 43-49, 1976
- ³Marquardt, H., Philips, F.S. & Sternberg, S.S. (1976) Tumorigenicity *in vivo* and induction of malignant transformation and mutagenesis in cell cultures by adriamycin and daunomycin. *Cancer Res.*, 36, 2065-2069
- ⁴Solcia, E., Ballerini, L., Bellini, O., Sala, L. & Bertazolli, C. (1978) Mammary tumors induced in rats by adriamycin and daunomycin. *Cancer Res.*, 38, 1444-1446
- ⁵Bucciarelli, E. (1981) Mammary tumor induction in male and female Sprague-Dawley rats by adriamycin and daunomycin. J. natl Cancer Inst., 66, 81-84
- ⁶Maltoni, C. & Chieco, P. (1975) Adriamycin: a new potent carcinogen (Ital.). Osp. Vita, 2, 107-109
- ⁷Casazza, A.M., Bellini, O., Formelli, F., Giuliani, F., Lenaz, L. & Magrini, U. (1977) Tumors and dental and ocular abnormalities after treatment of infant rats with adriamycin. *Tumori*, 63, 331-338
- ⁸Ohtani, M., Fukushima, S., Okamura, T., Sakata, T., Ito, N., Koiso, K. & Niijima, T. (1984) Effects of intravesical instillation of antitumor chemotherapeutic agents on bladder carcinogenesis in rats treated with N-butyl-N-(4-hydroxybutyl)nitrosamine. Cancer, 54, 1525-1529

9IARC Monographs, Suppl. 6, 35-39, 1987