SUMMARY OF FINAL EVALUATIONS

<table>
<thead>
<tr>
<th>Agent</th>
<th>Degree of evidence of carcinogenicity</th>
<th>Overall evaluation of carcinogenicity to humans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human</td>
<td>Animal</td>
</tr>
<tr>
<td>Amitrole</td>
<td>I</td>
<td>S</td>
</tr>
<tr>
<td>Chlordane/heptachlor</td>
<td>I</td>
<td>S</td>
</tr>
<tr>
<td>2,4-Diaminoanisole</td>
<td>I</td>
<td>S</td>
</tr>
<tr>
<td>N,N'-Diethyliourea</td>
<td>I (ND)</td>
<td>L</td>
</tr>
<tr>
<td>Doxylamine succinate</td>
<td>I</td>
<td>L</td>
</tr>
<tr>
<td>Ethylenethiourea</td>
<td>I</td>
<td>S</td>
</tr>
<tr>
<td>Griseofulvin</td>
<td>I</td>
<td>S</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>I</td>
<td>S</td>
</tr>
<tr>
<td>Kojic acid</td>
<td>I (ND)</td>
<td>L</td>
</tr>
<tr>
<td>Methimazole</td>
<td>I</td>
<td>L</td>
</tr>
<tr>
<td>Methylthiouracil</td>
<td>I</td>
<td>S</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>I</td>
<td>S</td>
</tr>
<tr>
<td>Propylthiouracil</td>
<td>I</td>
<td>S</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>I</td>
<td>L</td>
</tr>
<tr>
<td>Sulfamethazine</td>
<td>I (ND)</td>
<td>S</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>I</td>
<td>L</td>
</tr>
<tr>
<td>Thiouracil</td>
<td>I</td>
<td>S</td>
</tr>
<tr>
<td>Thiourea</td>
<td>I (ND)</td>
<td>L</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>I</td>
<td>S</td>
</tr>
</tbody>
</table>

S, sufficient evidence of carcinogenicity; L, limited evidence of carcinogenicity; I, inadequate evidence of carcinogenicity; ND, no data; group 2B, possibly carcinogenic to humans; group 3, not classifiable as to its carcinogenicity to humans; for definitions of criteria for degrees of evidence and groups, see preamble, pp. 23–27.

* Overall evaluation downgraded on the basis of mechanistic data.