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Summary

With the draft of the human genome 
and advances in technology, the 
approach toward mapping complex 
diseases and traits has changed. 
Human genetics has evolved into 
the study of the genome as a 
complex structure harbouring clues 
for multifaceted disease risk with 
the majority still unknown. The 
discovery of new candidate regions 
by genome-wide association studies 
(GWAS) has changed strategies for 
the study of genetic predisposition. 
More genome-wide, “agnostic” 
approaches, with increasing 
numbers of participants from high-
quality epidemiological studies are 
for the first time replicating results 
in different settings. However, new-
found regions (which become the 
new candidate “genes”) require 
extensive follow-up and investigation 

of their functional significance. 
Understanding the true effect of 
genetic variability on the risk of 
complex diseases is paramount. 
The importance of designing 
high-quality studies to assess 
environmental contributions, as well 
as the interactions between genes 
and exposures, cannot be stressed 
enough. This chapter will address 
the basic issues of genetic variation, 
including population genetics, as 
well as analytical platforms and 
tools needed to investigate the 
contribution of genetics to human 
diseases and traits.

Introduction

New advances in microchip 
technologies and informatics allow 
geneticists to look across the genome 

agnostically using dense data sets 
with billions of data points. These 
developments have transformed 
the field, moving it away from the 
pursuit of hypothesis-driven, limited 
candidate studies to large-scale 
scans across the genome. Together 
these developments have spurred a 
dramatic increase in the discovery 
of genetic variants associated with 
or linked to human diseases and 
traits, many through genome-wide 
association studies (GWAS) (1). 
Already over 7400 novel regions of 
the genome have been associated 
with more than 75 human diseases 
or traits in large-scale GWAS (2). 
Each region now represents a new 
candidate “region” that harbours 
putative genes, which will require 
extensive mapping of the variants 
to explore the genomic architecture 
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of the region and its contribution 
to human diseases and traits. 
The return to exploring candidate 
regions differs from the old approach 
of nominating favoured genes, 
because it is driven by findings 
that reach conclusive thresholds 
based on more rigorous statistical 
considerations.

While there is ample opportunity 
to survey thousands of genetic 
variants, often well chosen 
and based on an emerging 
understanding of the structure of 
genetic variation and its patterns of 
inheritance, the ability to analyse 
the interaction between genetic 
variants and the environment has 
lagged. This is mainly because 
the measurement tools for the 
latter have not undergone the 
transformative shift observed 
in assessing genetic variation. 
The integration of environmental 
exposure with genetic factors 
should provide insights into disease 

mechanisms and outcomes. 
Eventually these insights will be 
applied to treatment or preventive 
measures that are best suited for the 
individual (known as personalized 
medicine). Individualization of 
treatments based on the greatest 
likelihood for efficacy, while 
minimizing (or avoiding) deleterious 
toxicities, represents a long-term 
goal, but one that is in the distant 
future. While the opportunity to 
begin to develop evidence-based 
individualized therapeutics, also 
known as pharmacogenomics, is 
promising, its realization will require 
a nuanced understanding of the 
contribution of genetic variation to 
complex diseases.

This chapter will address the 
basic issues of genetic variation, 
including population genetics as 
well as analytical platforms and 
tools needed to investigate the 
contribution of genetics to human 
diseases and traits.

The scope of genetic variation

The spectrum of human genetic 
variation is enormous with respect 
to both the types of genetic variation 
and the sheer magnitude of the 
number of variants in any given 
genome. Even though two genomes 
are estimated to differ by less 
than 0.5%, there are still several 
million differences; the majority are 
vestigial, but a small proportion 
probably contribute to disease risk. 
The most common type of variation 
is a single nucleotide base change, 
followed by small insertions or 
deletions in sequence. Progressively 
larger structural alterations and 
copy number variants are fewer 
in absolute number, but perhaps 
affect more bases (Figure 6.1). So 
far, available technologies have 
accelerated the discovery and 
characterization of diversity in the 
human genome. In the first wave of 
annotation, common variants have 

Figure 6.1. Genetic variant frequencies and estimated effect size for genetic contribution
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been described, many of which 
are universal to all populations. 
The ability to ascertain estimates 
for lower frequency variants is 
dependent upon the number of 
subjects surveyed, as well as the 
population genetic history of the 
subjects used for discovery. New 
sequencing technologies, referred 
to as next-generation sequencing, 
allow for the ability to catalogue 
variants with lower frequencies and 
will certainly shift the paradigms 
further. Generally, the interrogation 
of genetic variation continues to 
reveal greater complexity in different 
human populations, which manifests 
as differences in frequencies of 
variants.

Single-nucleotide 
polymorphisms (SNPs)

The most common sequence 
variation in the genome, the single-
nucleotide polymorphism (SNP), is 

the stable substitution of a single 
base, which by definition is observed 
in at least 1% of a population. Though 
this definition has been useful 
for cataloging genetic variation, 
the advent of next-generation 
sequencing technology has revealed 
the sheer breadth of variations in 
different populations with estimated 
frequencies well below 1%. Still, for 
the purpose of current applications 
of genetic variation, the SNP is the 
most commonly annotated variant. 
The minor allele frequency (MAF) 
is designated for the lower allele 
frequency observed at a locus in 
one particular population, but often 
there can be major differences 
in estimated MAFs between 
populations with distinct histories. 
The literature suggests that there are 
more than perhaps 15 million SNPs 
with a MAF greater than 1% (3–5), 
and 10 million SNPs with a MAF 
greater than 10% (3,6,7); however 
recent large-scale sequencing 

efforts, such as the 1000 Genomes 
Project, indicate these estimates 
are low (http://www.1000genomes.
org/). There are estimated to be a 
greater number of SNPs with lower 
MAFs and, unlike common SNPs, 
the majority may be population-
specific (Figure 6.2). The majority of 
common SNPs, with a MAF greater 
than 15–20%, are widespread in 
human populations (8,9). Only a 
small subset of high-frequency 
SNPs (less than 10%) appear to be 
found in a single population, again 
suggesting the universal ancestry of 
common SNPs (9).

Previously in candidate gene 
approach studies, SNPs in coding 
regions were often selected on the 
basis of an in silico predicted effect, 
but with little supporting biological 
evidence. The attempt to classify 
coding variants, known as a coding 
SNP (cSNP), has focused on the 
predicted effect on the actual coding 
sequence. The majority of cSNPs 

Figure 6.2. Estimated number of SNPs in the human genome in relation with their minor allele frequency (MAF). Source: (5). 
Reprinted by permission from Macmillan Publishers Ltd: Nature Genetics, copyright (2003).
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do not alter the predicted amino 
acid and are known as synonymous 
SNPs. However, a subset of 
variants are predicted to shift the 
amino acid and are known as non-
synonymous coding SNPs. Though 
this subset was initially of great 
interest, very few non-synonymous 
coding SNPs have actually been 
conclusively associated with human 
diseases or traits, and even fewer 
have corroborative biological 
data to provide plausibility for the 
association (10,11). Nonetheless, 
the analysis of synonymous and 
non-synonymous SNPs has been 
quite informative for evolutionary 
studies (12,13).

There has been considerable 
effort to calculate the effect of 
a non-synonymous cSNP in 
conformational protein changes. A 
proliferation of prediction software 
has been created (e.g. Protein 
Data Bank (http://www.rcsb.org/
pdb) and Swiss-Model (http://
swissmodel.expasy.org//SWISS-
MODEL.html)). Though new models 
and algorithms claim improved 
reliability for predicting deleterious 
changes in protein structure 
(14–16), without corroborative 
laboratory data the findings are 
merely in silico observations. 
Overall, between 50 000 and 250 
000 SNPs could be functional, 
non-synonymous coding variants, 
or regulators of gene expression 
or splicing (10,11). It is likely that a 
subset of non-synonymous cSNPs 
contribute to regulatory differences 
in expression or genetic pathways 
(17–19), but most SNPs appear 
not to be functional and have been 
maintained on the backbone of 
an inherited block of DNA through 
generations. Subsets of SNPs that 
alter regulation or expression of 
a gene, called regulatory SNPs 
(rSNPs), are difficult to predict with 
high efficiency and most likely will 
be categorized on the basis of large-

scale surveys of cell lines, as well as 
laboratory data.

Nearly half of the more than 
10 million human SNPs in the 
international public database for 
SNPs, or dbSNP (http://www.ncbi.
nih.gov/SNP/), have been validated 
with genotyping assays by the SNP 
Consortium and the International 
HapMap Project (8,20). Until 
recently, only a small percentage 
had been verified by sequencing, 
but with the advent of the 1000 
Genomes Project, nearly all common 
(MAF >10%) and uncommon (MAF 
between 1 and 10%) variants should 
be confirmed by next generation 
sequence technology (21,22). 
In the current build, roughly one 
sixth of the variants in dbSNP are 
probably monoallelic, due to errors 
in either genotyping or, more likely, 
sequencing (23,24). In general, the 
reported SNPs have been biased 
towards high-frequency variants in 
populations of European ancestry.

Currently, the catalogue of 
uncommon variation, namely SNPs 
with MAFs under 1%, is incomplete. 
However, the 1000 Genomes Project 
is expected to generate a thorough 
catalogue of variants with greater 
than 1% MAF. The contribution 
of uncommon variants (MAF 
between 1% and 10%) represents 
an untapped portion of the genomic 
architecture. It will require either 
larger studies to provide sufficient 
power to detect association, or new 
design strategies to discover and 
characterize uncommon and rare 
variants (25,26). Rare or uncommon 
variants have been shown to be 
informative in the extremes of 
mapping human traits, such as with 
cholesterol levels (27). Rare variants 
or mutations can explain a proportion 
of the strong familial component of 
complex diseases, as well as the 
classical Mendelian inheritance of 
single or oligogenic diseases. These 
highly penetrant disease mutations 

are catalogued in a public database, 
the Online Mendelian Inheritance in 
Man (OMIM) (http://www.ncbi.nlm.
nih.gov/omim/).

The correlation of common 
genetic variants

Most SNPs are not inherited 
independently but in blocks, resulting 
in sets of SNPs being transmitted 
together between generations 
(4,28,29). These blocks are defined 
by linkage disequilibrium (LD), which 
estimates the correlation between 
SNPs on shared chromosomes 
passed down from ancestral 
chromosomes. LD is defined as the 
non-random association of alleles 
at different loci (30). Initially, each 
SNP is a single mutation that has 
taken hold and become fixed in a 
population, either as a consequence 
of direct selection or because it is 
close enough on the chromosome 
to be included within a block of a 
shared segment. Individual SNPs 
that are strongly associated with 
each other are said to be in LD, 
although this correlation could be 
eroded over time by recombination 
(exchange of genetic material) 
during meiosis (31). Haplotypes are 
defined as sets of SNPs, and other 
genetic polymorphisms (larger in 
size), on chromosomal segments 
that are in strong LD.

There are several ways 
to determine haplotypes from 
genotypes; this is commonly referred 
to as resolving haplotype phase. 
The offspring haplotype phase 
can be determined if the parental 
genotypes are known or directly with 
biochemical methods (30). Based 
on the assumption that haplotypes 
are randomly joined into genotypes, 
phasing can be estimated using 
one of several statistical methods 
that can account for the ambiguity 
of unobserved haplotypes (30). 
Different methods have been 
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developed to estimate haplotypes 
from unphased multilocus genotype 
data in unrelated individuals; the 
underlying principles are based on 
models that incorporate either a 
maximum likelihood (32), parsimony 
(33), combinational theory (34) or 
a priori distribution derived from 
coalescent theory (35). This last 
method is the basis for the phase 
reconstruction software PHASE 
(35,36), which has performed 
favourably in simulation studies (37), 
and its modified version designed 
for larger data sets, fastPHASE 
(22). Reconstructed haplotypes 
from unrelated individuals and LD 
structure have been used to study 
genomic association to complex 
traits (17,29). In fact, some research 
suggests that haplotypes would be 
better suited for candidate studies 
because of a perceived statistical 
advantage over the single-locus LD 

mapping (38–40), but the recent 
success with GWAS suggests 
otherwise.

The concept of LD also permits 
investigators to look at a set of SNPs 
and determine proxies for other 
untested SNPs (or tagSNPs) (41,42). 
This indirect approach is predicated 
on finding markers only, relegating 
the search for causal or functional 
variants to later work (Figure 6.3). 
Several approaches optimize the 
number of surrogate SNPs needed 
to account for untested variants, 
such as the “greedy algorithm.” The 
latter estimates highly correlated 
SNPs, primarily on the basis of 
the MAF, to create heuristic bins 
of tagged SNPs. Thus, tagSNPs 
represent proxies for additional, 
highly correlated SNPs with 
comparable allele frequency and 
distribution in the population of 
interest. In a sense, tagSNPs are 

used to mark common haplotypes 
in the region (Tagger, embedded 
in Haploview software (http://www.
broad.mit.edu/mpg/haploview) and 
TagZilla (http://tagzilla.nci.nih.gov)) 
(43). Consequently, the indirect 
approach of using a limited set of 
tagSNPs as a proxy of a LD block 
has emerged as the preferred 
approach, used by both GWAS and 
candidate gene studies (44).

Structural polymorphisms

Structural variations in the genome 
may be either cytologically 
visible or, more commonly, 
submicroscopic variants that can 
range in size from a few base pairs 
to thousands (45,46). These can 
include deletions, insertions and 
duplications collectively known as 
copy number variations (CNVs), as 
well as less-frequent inversions and 

Figure 6.3. SNP selection strategy. A. SNP selection through haplotype blocks, based on the concept of linkage disequilibrium 
(LD). D’ is a measure of LD between SNPs, represented in the figure through a heat map from white (low D’) to red (high D”). A 
haplotype (represented by a dark triangle in the figure) is a set of SNPs in strong LD, or high D’. “TagSNPs” are proxies for other 
SNPs in the same haplotype. This is the so-called indirect approach (147). B. Selection of SNPs based on r2, another measure 
of LD. This method creates groups with similar LD (r2) into ‘bins.’ In the figure each spot represents a SNP, and those with similar 
r2 are included in the grey blocks or ‘bins.’ ‘TagSNPs’ are proxies for all these loci included in each ‘bin’ with comparable LD (148)
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translocations (Figure 6.4) (47,48). 
Several of the inversions can be 
quite large, such as the 3.5 Mb on 
chromosome 17 seen in as much 
as 20% of the European population 
(49). On the other hand, insertion/
deletions as small as two base 
pairs can be observed. Although 
structural variants in some genomic 
regions have no obvious phenotypic 
consequence (50–52), CNVs have 
been shown to influence gene 
dosage in select circumstances. 
Consequently, many have pursued 
CNVs because of the potential 
contribution of high estimated 
effects for complex diseases, either 
alone or in combination with other 
factors (53). Some observations, 
either by the failure to assemble 
the draft genome sequence or by 
actual experimentation, estimate 
the segmental duplicated genomic 
sequence could involve between 
5–10% of the genome (51,54,55). 
Other clues come from the 
recognition that a notable number 
of SNPs failed the quality control 
metrics in the International HapMap 
Project; these were later determined 
to reside in regions now known to 
be enriched for CNVs (7,45,55–57). 
Current surveys suggest that CNVs 
are less common than previously 
reported (58), and many are 
infrequent (59). It is also notable that 
over three fourths of common CNVs 
are in LD with common SNPs (59).

Coordinated efforts are underway 
to establish a comprehensive 
catalogue of CNVs, such as the 
Database of Genomic Variants 
(http://projects.tcag.ca/variation/) 
(46,60) and the Human Genome 
Structural Variation Project (http://
humanparalogy.gs.washington.edu/
structuralvariation/). Recently, there 
have been several international 
efforts to establish standards for 
identification, validation and reporting 
of CNVs (46). The availability of 
several microarray platforms that 

can detect quantitative imbalances 
has accelerated CNV discovery, but 
there are still substantive technical 
challenges due to the breadth of 
polymorphic differences for which 
analyses are particularly unstable. 
New emerging algorithms should 
streamline moderate- to high-
throughput, cost-effective methods 
to scan the genome for CNVs, as well 
as inversions or translocations based 
on stable sequence assemblies 

(59–64). Advances in techniques 
have improved determination of 
common CNVs, such as tiling arrays 
(which cover the genome through 
partial overlapping (tile-like) sets of 
fixed oligonucleotides), paired-end 
sequencing (sequence analysis of 
both ends of a larger fragment to 
improve alignment), and new dense 
SNP genotyping platforms based 
on probe intensity (e.g. Illumina and 
Affymetrix).

Figure 6.4. Spectrum of genomic variation. Challenges and standards in integrating 
surveys of structural variation: The range of genetic variation that must be taken into 
account when designing and analyzing genotype studies (46). The figure represents 
the whole spectrum of human genetic variation, from the molecular level with DNA 
sequence variation, exemplified by SNPs, to structural variation, a broad category that 
includes variations from 2 bp to whole chromosomal variations. The focus of recent 
genetic studies has been the subgroup in the midrange (with strong highlighting). 
These forms of variation have been studied with molecular methods to cytogenetic 
approaches. Reprinted by permission from Macmillan Publishers Ltd: Nature Genetics, 
copyright (2007).

Single nucleotide
• Base change – substitution – point mutation
� Insertion-deletions ( “indels ”)
• SNPs – tagSNPs

2 bp to 1,000 bp
• Microsatellites , minisatellites
� Indels
• Inversions
• Di-, tri-, tetranucleotide repeats
• VNTRs

1 kb to submicroscopic
� Copy number variants ( CNVs )
� Segmental duplications
• Inversions, translocations
� CNV regions ( CNVRs )
• Microdeletions, microduplications

Microscopic to subchromosomal 
� Segmental aneusomy
• Chromosomal deletions – losses
• Chromosomal insertions – gains
• Chromosomal inversions
• Intrachromosomal translocations
• Chromosomal abnormality
� Heteromorphisms
• Fragile sites

Whole chromosomal to whole genome
• Interchromosomal translocations
• Ring chromosomes, isochromosomes
• Marker chromosomes
� Aneuploidy
� Aneusomy

� Term de�ned or discussed in Box 1

Se
qu

en
ce

 
va

ria
tio

n
St

ru
ct

ur
al

 v
ar

ia
tio

n

Molecular
genetic 

detection 

Cytogenetic 
detection



  Unit 2 • Chapter 6. Basic principles and laboratory analysis of genetic variation 105

U
n

it
 2

C
h

a
p

te
r

 6

Short tandem repeats (STRs) 
represent a class of polymorphisms 
that occur when a pattern of two 
or more nucleotides are repeated 
in certain areas of the genome. 
Previously known as microsatellites, 
they were frequently employed to 
conduct linkage studies in potentially 
informative pedigrees. The patterns 
can range in length from 2–10 
base pairs (usually tetra- or penta-
nucleotide repeats) and are typically 
located in non-coding regions. 
Since longer repeat sequences 
can be susceptible to artefactual 
errors in genotyping accuracy, 
particularly related to problems of 
PCR amplification, the industry 
standard for both genetic analysis 
and forensic application is 4–5 base 
pair (bp) repeat units. Shorter repeat 
sequences (e.g. 2 or 3 bp) tend 
to suffer from artefacts, such as 
stutter and preferential amplification 
(65–67). By genotyping a sufficient 
number of STR loci, it is possible to 
generate a unique genetic profile of 
an individual.

Population genetics

The field of population genetics 
has advanced rapidly and emerged 
as central to the investigation of 
genetics and complex diseases. 
Overall, the discipline of population 
genetics seeks to characterize the 
genetic composition of biological 
populations, as well as the changes 
in genetic composition that occur 
from environmental and migratory 
factors, including natural selection. 
To draw conclusions about the likely 
patterns of genetic variation in actual 
populations, population geneticists 
develop abstract mathematical 
models of gene frequency dynamics 
and test these conclusions against 
empirical data. Some of the more 
robust concepts in population genetic 
analysis that are applied in disease 
mapping are discussed below.

Fitness for Hardy–Weinberg 
proportion

The fitness for Hardy–Weinberg 
proportion, an important tool for 
understanding population structure, 
examines the distribution of the 
allelic and genotypic frequencies. 
Though theoretical, it states that 
if certain assumptions are met, 
genotype and allele frequencies can 
be estimated from one generation 
to the next. The derivation of the 
Hardy–Weinberg principle for a 
single locus assumes: a randomly 
mating population; an infinitely large 
population, or a population size large 
enough that random fluctuations in 
allele and genotype frequencies are 
small; no mutation; no migration; 
and no fitness differences among 
genotypes. When all of these 
assumptions are met, Hardy–
Weinberg Equilibrium (HWE) is 
established and four important 
conclusions can be drawn: 1) allele 
frequencies do not change from one 
generation to the next; 2) genotype 
frequencies can be inferred from 
allele frequencies; 3) only one 
generation is required to go from 
non-equilibrium to equilibrium; and 
4) once the system is in HWE, it 

stays in HWE (68). Also, if these 
conditions are met, the genotypic 
and allelic frequencies of the 
offspring generation will be related 
by the following simple equations. 
For a trait in the population with two 
alleles (A1 and A2), if the A1 allele 
frequency in the population is p, and 
the A2 allele frequency is q = (1-p), 
then expected genotype proportions 
(f) under HWP are:
f(A1A1) = p2, f(A1A2) = 2pq, f(A2A2) = q2

Random mating, or the absence 
of a genotypic correlation between 
mating partners, will generate a 
distribution of observed genotypes 
that should not deviate significantly 
from the expected proportions 
(Hardy–Weinberg Proportions 
(HWP)). This is predicated on 
Mendel’s law of segregation, and, 
assuming the absence of selection, 
all parents contribute equal numbers 
of gametes to the pool. The HWE 
principles can be applied to family-
based and case–control data to 
detect genotyping error, population 
stratification and association.

A violation of any of the above 
assumptions can produce deviation 
from HWE, which may include 
mating behaviour, population size 
and migration patterns. For example, 

Table 6.1. Issues for generation of final, publication-grade build of high-density 
genotype data

• Eliminate samples with low completion rates (< 90%)

• Remove SNP assays with low call rates (< 90%)

• Determination of fitness for Hardy–Weinberg proportion

• Compare expected duplicates

• Investigate unexpected duplicates

• Assess concordance between duplicates

• Search for cryptic relatedness between subjects

• Assessment of population substructure (after filtering 1st degree relatives)

• Determine admixture with STRUCTURE analysis

• Estimate population stratification (principal component analysis)

• Assess genotype calling algorithm

• Validate significant genotype calls with second technology
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systematic inbreeding will increase 
levels of homozygosity across the 
genome, as will small population 
sizes (68). Having more than one 
random mating population in a 
sample may also cause deviations 
from HWE, as well as mating 
with certain phenotypes (known 
as assortative mating), which will 
increase homozygosity as well. 
Small population size causes 
allele frequencies to drift from one 
generation to the next. In many 
cases, the deviations are also a 
screen for performance of the 
genotype technology, because 
a disproportionate number of 
heterozygotes or homozygotes 
could represent systematic errors in 
genotyping.

One of the most common 
reasons for not using data in 
association studies is presumed 
genotyping error. Many types of 
errors in genotyping can cause 
deviations from HWE; therefore 
tests for both assay specificity and 
deviation from HWE have been 
proposed to minimize the genotype 
error rate and thereby improve 
data quality (69,70). Deviation from 
HWE resulting from allelic drop-out, 
where some alleles are insufficiently 
amplified, can cause an excess of 
homozygotes and increase false-
negative or false-positive results 
(71). However, caution should be 
exercised in association studies 
before removing data because 
of HWE deviations. If there is a 
systematic HWE deviation in both 
cases and controls, it may be 
easier to determine a genotyping 
error if both deviations occurred 
in the same direction (72). Non-
systematic error is more problematic 
and should trigger a review of 
standard operating procedures for 
biospecimen handling, as well as 
an assessment of all information 
workflow. If the error is recognized, 
re-genotyping of the faulty samples 

might eliminate the problem. The 
power to detect deviations due to 
genotyping error under most modes 
of inheritance has been found to be 
very small (73). Even the deviation 
created by neighbouring SNPs, 
which diminish the performance 
of genotyping assays, does not 
produce a large enough deviation 
from HWE to be detected (74).

In GWAS, it is likely that hundreds 
if not thousands of markers will 
deviate from HWE. Understanding 
why and how HWE testing would 
help in the process of disease-
gene discovery is becoming more 
important as the number of SNPs 
included in these studies increases 
into the hundreds of thousands (75). 
The control observed genotype 
frequencies are tested against control 
expected genotype frequencies to 
determine if there may be genotyping 
error (68).

Spectrum of differences 
in population substructure

The age of GWAS has generated 
sufficiently large data sets that 
can determine the degree of 
differences in underlying population 
substructure, also known as 
population stratification. An 
examination of thousands of markers 
not in LD permits investigators to 
assess the extent of admixture and 
exclude individuals who are outliers 
for the association analysis.

Classically, population 
stratification is present when there 
is a measurable difference in the 
distribution of alleles between 
subgroups that have different 
population histories. There are 
examples of this in older case–
control studies where the cases 
and controls have been drawn 
from different populations. It is 
also possible to have stratification 
between cases and controls based 
on differences in exposures, as well 

in the distribution of common SNP 
markers (76). The ability to detect 
stratification with any marker or set 
of markers may also vary depending 
on the allele frequency in each 
subgroup (68).

In general, an assessment of 
the underlying structure can be 
estimated using standard algorithms 
to identify distinct populations (77). 
The most commonly used approach 
is implemented in the STRUCTURE 
program. This uses multilocus 
genotype data to examine population 
structure by attempting to separate 
subjects into groups (defined as k 
populations) and determining the 
distribution of shared alleles.

As the ability to understand 
population stratification (or 
differences between cases and 
controls due to systematic ancestral 
differences) has improved, several 
methods have been developed to 
study and account for these types 
of systematic study population 
structures. One approach 
commonly used for the correction of 
population stratification is to adjust 
simultaneously for a fixed number 
of top-ranked principal components 
resulting from a principal component 
analysis (PCA) (76). It is critical to 
look for underlying subgroups in 
stratified samples by testing sets 
of genetic markers not linked to 
the phenotype, and then adjust 
for inflation due to stratification 
(76,78,79). An alternative approach 
is to use a structured association 
method in association mapping, 
permitting case–control analysis in 
the context of known differences in 
population structure.

In select circumstances, in 
which the epidemiologic data 
suggest major differences between 
populations, it is possible to 
conduct mapping by admixture 
of linkage disequilibrium (MALD). 
This capitalizes on the concept of 
admixture, which is the genetic mix 
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of two or more distinct populations. 
It relies on the differences in allele 
frequencies between populations 
to guide the search to focus on 
changes in the genome rather than 
a specific gene(s). So far it has 
been successful in mapping a key 
prostate cancer region on 8q24 and 
a type of end-stage renal disease 
that is more common in individuals 
of African American background 
(80–82).

Selection

Population geneticists often 
define evolution as a change in a 
population’s genetic composition 
over time. The four factors that can 
bring about such a change are natural 
selection, mutation, random genetic 
drift, and migration into or out of the 
population. More controversial is a 
possibility of changes in the mating 
pattern, which some consider not 
to be part of classical evolutionary 
change. Natural selection occurs 
when some genotypic variants in 
a population enjoy a survival or 
reproduction advantage over others. 
Although the concept that natural 
selection favours the survival of 
individuals with a fitness advantage 
now almost seems intuitive, it was 
largely opposed when introduced 
by Darwin (83). Under Mendelian 
inheritance and with random 
mating, genotype frequencies after 
one generation do not change; the 
determinant of whether the allele 
will spread in the population is the 
fitness of heterozygotes versus that 
of wild-type homozygotes.

Mutation is the primary 
source of genetic variation driving 
differences within a population 
and thus preventing homogeneity. 
Although mutations that occur in 
the genome are initially thought 
to be random, the distribution of 
biologically significant mutations 
that cause diversity appears to be 

non-random (84,85). Gene function, 
gene structure and the roles of 
genes and gene products in genetic 
networks can influence whether 
particular mutations will contribute 
to advantageous phenotypic 
changes. Some mutations generate 
specific phenotypic changes, 
whereas pleiotropic mutations alter 
several seemingly unrelated traits. 
Mutations with pleiotropic effects 
will rarely change all phenotypic 
traits in a favourable way, and, in 
some instances, may even reduce 
fitness (86). The same mutation in 
a different genetic background may 
produce a different phenotypic effect 
because of interactions between 
alleles, under the phenomenon 
called epistasis. Also, populations 
exposed to repeated environmental 
changes may present with different 
genetic changes that produce a 
range of phenotypes suited to the 
environmental conditions, namely 
phenotypic plasticity.

Initially, when the environment 
favours a phenotype that is largely 
different from the average one in a 
population, mutations that cause 
this phenotypic change towards the 
new optimum are favoured (called 
strength of selection). Population 
size and history also influence 
genetic evolution. A small population 
size can accentuate the effects 
of random sampling of alleles, 
so-called genetic drift. In small 
populations, genetic drift will allow 
deleterious alleles to occasionally 
increase in frequency (84).

Random genetic drift refers 
to the chance fluctuations in 
gene frequency that arise in finite 
populations; it can be thought of 
as a type of “sampling error.” In 
many evolutionary models, the 
population is assumed to be infinite 
or very large to avoid chance 
fluctuations. This assumption is 
often not realistic, and species with 
historically low effective population 

sizes, such as humans, show 
evidence for reduced variability 
and effectiveness of selection in 
comparison with other species 
(87,88). In the era of multispecies 
comparisons of genome sequences 
and GWAS, it is critical to assess 
the evolutionary role of genetic drift 
and its interactions with mutation, 
migration, recombination and 
selection. Therefore, population 
size plays a central part in modern 
studies of molecular evolution and 
variation (88).

One of the most influential 
variables for human genetic variation 
is geographic location, with genetic 
differentiation between populations 
increasing with geographic distance 
and genetic diversity decreasing with 
distance from Africa. Populations of 
African ancestry have the greatest 
diversity, resulting in shorter 
segments of LD (89–93). Modern 
population genetics estimates that 
the ancestral human population 
originated in Africa and radiated 
outward to other continental 
locations, both within Africa and 
elsewhere.

Alleles under positive selection 
can increase in prevalence in a 
population and leave distinctive 
signatures, or patterns of genetic 
variation, in DNA sequences. These 
can be identified by comparison 
with the background distribution 
of genetic variation, primarily 
evolved under neutrality (94). In 
some cases, these signatures, or 
differences in allele frequencies 
between populations, reflect major 
regional selective pressures like 
infectious diseases (e.g. malaria), 
environmental stresses (e.g. 
temperature), or dietary factors (e.g. 
milk consumption) (13,95,96).

When immigrants with a 
different genetic makeup enter a 
new population, the population’s 
genetic composition will be altered. 
The evolutionary importance of 
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migration stems from the fact that 
many species are composed of 
several distinct subpopulations, 
largely isolated from each other but 
connected by occasional migration. 
Migration between subpopulations 
gives rise to gene flow, limiting the 
extent to which subpopulations can 
diverge from each other genetically.

Laboratory analysis of human 
genetic variation

Genotype analysis

Genotyping is used to interrogate 
specific, unique loci in the genome 
following DNA amplification by 
polymerase chain reaction (PCR). 
One of the challenges of genotype 
analysis is that each allele in 
the genome must be assayed 
individually, unlike surveys of gene 

expression that can use a common 
signature (the polyA tail) to capture 
a high percentage of mRNA at 
once. An assay must be robust and 
reproducible in exceeding a sufficient 
threshold for detection. Even though 
amplification protocols are highly 
reliable, error can be introduced for 
SNP detection, particularly if there 
are neighbouring SNPs that alter 
allele-specific binding of probes 
or if local genomic sequence is 
enriched for guanine-cytosine (GC) 
content (Figure 6.5) (97,98). The 
presence of duplicates of part of 
the sequence (CNV), either in the 
segment amplified or neighbouring 
the SNPs, can undermine the 
fidelity of the assay, sometimes 
providing bias in allele calling (55). 
Based on the amplification of local 
sequence surrounding the SNP of 
interest, redundant sequences are 

amplified, either locally or elsewhere 
in the genome, and the fidelity of 
the polymorphisms between these 
different segments is undermined, 
as was observed in the International 
HapMap Project (45,56).

Initially, restriction fragment 
length polymorphism (RFLP) 
assays were used to identify 
patterns of DNA broken into pieces 
by restriction enzymes. The size of 
the fragments was used to develop 
a footprint of the region of interest 
(99). RFLP analysis is laborious 
and error-prone, and thus has 
been largely abandoned for probe 
intensity and microchip technologies 
that can be easily scaled and 
reliably performed. Examples of 
these are differential hybridization, 
primer extension, ligation reactions 
and allele-specific probe cleavage, 
all of which interrogate one SNP 

Figure 6.5. Fidelity of the genotyping assay: error could be introduced in SNP detection. For example, the presence of a 
neighboring SNP under both TaqMan® (TM) probes (left panel) may alter allele-specific binding and bias the allele call (right 
panel).
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at a time. Occasionally, RFLPs are 
required to interrogate a region with 
high degrees of paralogy.

Low-density genotyping

The most commonly used 
technique for single SNP assays 
is the TaqMan® SNP genotyping 
assay (Applied Biosystems). It is 
a PCR-based assay designed to 
interrogate a single SNP that uses 
two locus-specific PCR primers and 
two allele-specific labelled probes 
(100). The 5′ exonuclease property 
of Taq polymerase is capitalized 
for detection of base-matching at a 
specific site. Attached to the 5′ end 
of each probe is an allele-specific 
reporter dye: each allele has a 
corresponding dye, which provides 
a benchmark for the ratio of the 
dyes as a reflection of the allele 
distributions. On the 3′ end of each 
probe is a single universal quencher 
dye, which prevents the excitation 
and emission of the reporter dyes. 
During PCR amplification, the two 
PCR primers anneal to the template 
DNA. The detection probes anneal 
specifically to the complementary 
sequence between the forward and 
reverse primer sites. During the 
elongation step of each cycle, the 
Taq polymerase comes in contact 
from the 5′ end with the reporter dye. 
Capitalising on the exonuclease 
property of Taq polymerase, the 
reporter dye is released from the 
probe and the fluorescence is 
released (i.e. no longer quenched by 
the quencher dye). In addition, the 
probe itself is digested by the Taq 
polymerase. After multiple cycles 
of PCR (that reach saturation for 
copying both alleles), fluorescence 
is detected for the two reporter dyes 
using an ABI 7900HT Sequence 
Detection System.

Careful attention must be paid 
to the unique flanking sequences 
to avoid overlap with adjacent, 

neighbouring SNPs or insertion/
deletions. The throughput is 
moderate for single-plex TaqMan, 
but new miniaturization technologies 
have improved the efficiency of 
moderate-scale genotyping studies 
using either the Fluidigm® or 
BioTrove platforms (101,102).

Multiplexing has increased the 
technical capacity to interrogate 
large, predetermined, fixed sets 
of SNPs. The cost of high-density 
SNP platforms and the necessity 
for large-scale follow-up studies 
have incentivized the development 
of methodologies for selective 
replication efforts. The technologies 
that have been developed for these 
replication studies are based on 
direct oligonucleotide hybridization 
with probe fluorescence detection, 
the single-base sequencing method, 
or chip-based mass spectrometry 
(i.e. based on matrix-assisted laser 
desorption/ionization time-of-flight 
(MALDI-TOF)) (103). Matrix-assisted 
laser desorption/ionization (MALDI) 
enables analysis of biomolecules by 
ionization usually triggered by a laser 
beam. A matrix is used to protect the 
biomolecule from destruction; it can 
be multiplexed to perform roughly 30 
SNP assays at one time.

High-density SNP detection

The first generation of custom 
bead-array technology by Illumina® 
enables custom detection of more 
than 1500 SNPs with excellent 
performance, and analysis of high-
quality DNA generated by whole- 
genome amplification assays 
(104,105). This system combines 
high-multiplexing in a multisample 
array format, well suited for custom 
genotype analysis of samples. 
Though best used with native 
DNA, it can analyse whole-genome 
amplified DNA, but at a price of 
distortions of heterozygosity for 
roughly 5% of the SNPs.

The newer system of Illumina, 
known as the Infinium® Assay, 
features single-tube preparation of 
DNA followed by whole-genome 
amplification before genotyping 
thousands of unique SNPs. 
Hybridization to bead-bound 50mer 
oligomers is followed by single-
base extension, which incorporates 
a labelled nucleotide for assay 
detection. This technology can 
be used to design custom sets of 
SNPs (between 7600 and 60 000 
bead types) with high efficiency 
(106). It is the backbone of the 
fixed content chips, which have 
increased in size and coverage of 
the common SNPs in the genome. 
This began with the HumanHap300 
and its complementary HumanHap 
240, through to the HumanHap500, 
Human Hap610 and HumanHap 
660w. The Infinium HD (high-
density) series followed with the 
Human1M-Duo BeadChips, which 
has over 106 SNPs to be genotyped, 
primarily chosen as tagSNPs from 
HapMap II (8). The increasing 
content of the chips also provides 
an opportunity to detect a larger 
subset of the common CNVs. 
However, algorithms for detection of 
CNVs continue to evolve and should 
improve in the coming years.

The Affymetrix microchip system 
is based on an assay known as the 
whole-genome sampling analysis 
(WGSA) for highly multiplexed SNP 
genotyping (107). This method 
amplifies the human genome with a 
single primer amplification reaction 
using restriction enzyme-digested, 
adaptor-ligated human genomic 
DNA. After fragmentation, sequential 
labelling and hybridization of the 
targets is required before analysing 
the fragments on a microchip. The 
initial GeneChip® Human Mapping 
500K Array spaced SNP markers 
by physical proximity, but the new 
Genome-Wide Human SNP Array 
6.0 provides a denser set of SNPs 
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(over 900 000), as well as probes 
that monitor common CNVs across 
the genome. The distribution of 
restriction enzyme sites in select 
regions of the genome does not 
permit assays across the full 
genome, limiting the coverage 
somewhat. The primary debate 
over the choice of platforms is the 
coverage of known SNPs in HapMap 
Stage 2: the SNPs selected for 
the Illumina platform have been 
primarily chosen according to the 
aggressive tag strategy, whereas 
the first-generation Affymetrix chips 
provided spaced coverage based on 
the physical map of the genome, but 
with higher density. The coverage of 
the latter has improved.

Methodological issues in 
GWAS genotyping

High-throughput genotyping 
facilities require sophisticated 
robotics for efficient laboratory flow 
and sample handling, as well as 
dedicated computational hardware 
and software able to effectively 
process both the quantity and 
complexity of the data. Despite 
the fact that new technologies and 
platforms has decreased the nominal 
price per genotype assayed, the 
pricing must also take into account 
the need to study duplicates and 
samples that must be redone due to 
technical inadequacies determined 
in the quality control assessment 
(see below).

Since replication is a central 
requirement to protect against the 
flurry of false-positives observed in 
GWAS, follow-up studies are needed 
to verify the results and thus justify 
the considerable effort required to 
investigate novel regions. To this 
end, custom panels are needed 
to explore regions at the same 
time that loci are analysed over 
sufficiently large data sets, so that 
genome-wide significance can be 

conclusively established (106,108). 
Normally, custom panels are more 
expensive and usually created for 
a single study (109). In this regard, 
scalability to meet the requirements 
of validation studies represents one 
of the biggest challenges in the 
design of these studies (110).

Important components of the 
optimization process include both a 
Laboratory Information Management 
System (LIMS) and robotic 
automation that accurately track and 
handle samples for efficient workflow 
management. Because of the high 
cost of these platforms, the hardware 
used for sample processing, and the 
software integrating both, there is 
little flexibility in choosing individual 
SNPs to be included within the 
already-designed, commercially 
available whole-genome scans.

Two high-density genotyping 
platforms, Affymetrix and Illumina®, 
achieve calling capabilities of 
between 500 000 and 2.5 million 
SNPs, as well as probe content to 
interrogate CNVs. Both platforms 
need between 400–800 ng of total 
high-quality DNA (usually at 50 ng/
μl) for the assay, but because of the 
dead-space of the robotics (which 
can be 35% of the required amount 
for the assay) over 1 ug is required. 
Issues common to both platforms 
are the difficulties in assaying SNPs 
that reside close together (within 
60 or fewer nucleotides), which, as 
previously mentioned, is inherent in 
this type of genotyping detection. 
Denser sets of SNPs on commercial 
platforms have increased coverage, 
but not always for all populations.

Coverage based on the HapMap 
II set of SNPs with minor allele 
frequencies greater than 5%, is 
one of the main factors driving the 
choice of platform (8,43). Figure 
6.6 illustrates the minimum LD 
for any SNP assay assessed by 
the coefficient of correlation, r2 
(a measure of LD), for 2-SNP 

comparison. The closer the value is 
to 1, the stronger the correlation, and 
if the value is estimated to be 1.0, then 
both loci segregate together. New 
approaches are being developed 
to account for the complexity of LD 
patterns in distinct populations, such 
as multimarker strategies that have 
been proposed for analysing more 
complicated loci (111,112).

Sequence analysis

Until recently, DNA sequence 
analysis by capillary electrophoresis 
has been the platform of choice 
for medium- and small-scale 
projects, displacing the Sanger 
sequencing protocols that used gels 
or polymers as separation media 
for the fluorescently labelled DNA 
fragments (113). The advent of the 
96-capillary 3730/3730 xl DNA 
Analyser (Applied Biosystems) was 
the central catalyst in the generation 
of the first draft sequence of the 
human genome (114).

Dideoxy sequencing is based 
on the principle of terminating DNA 
synthesis by incorporation of the 
dideoxy nucleotide terminator on 
the complementary strand of DNA 
fragments. The generated library 
of various length fragments can 
be assembled to read the specific 
DNA sequence. Sequencing-
by-synthesis is based upon the 
principle of pyrophosphate release 
by nucleotide incorporation along 
the complementary strand of DNA 
to the varied-length template. As 
with dideoxy sequencing, the library 
of generated fragment lengths can 
be assembled into a specific DNA 
sequence. An amplification step by 
PCR is required, and thus has an 
intrinsic error below 0.3% (small but 
predictable) (115).

Efficient removal of 
unincorporated dye terminators is 
necessary before running samples 
on a capillary electrophoresis in 
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which an electrical field is applied. 
This allows negatively-charged 
DNA fragments to move through 
the polymer towards the positive 
electrode. Standard software 
collects raw data files and translates 
the collected colour data images 
into consecutive nucleotide base 
calls.

Next-generation DNA 
sequencing

Next-generation sequencers have 
been developed to process millions 
of sequence reads in parallel rather 
than in batches of 96 at a time, 

setting them apart from conventional 
capillary-based sequencing. These 
techniques provide high speed and 
high-throughput from amplified 
single DNA fragments, avoiding the 
need for cloning of DNA fragments. 
Therefore, with minimal input of 
DNA, the sequencer produces 
libraries of shorter length reads of 
between 35–400 bp, depending on 
the platform, compared to those of 
capillary sequencers (650–800 bp). 
A limiting factor is the elevated cost 
for generating the sequence with 
high-throughput. There is a need to 
develop software applications and 
more efficient computer algorithms 

to analyse the increasing amount 
of data generated by these systems 
(113). Because of their novelty, 
the accuracy and associated 
quality of sequencing reads must 
be further validated, but the high 
number of reads provides increased 
coverage of each base position 
(25). The major challenge of the 
next-generation sequencing is 
the informatics of the dense data 
sets, which requires archiving and 
storing dense data sets that must be 
assembled to determine accurate 
reads. In this regard, error rates for 
next-generation sequencing runs 
and assembly constitute a new set 

Figure 6.6. Genotyping platforms coverage of HapMap II SNPs. SNP coverage is plotted against LD measured by r2, or coefficient 
of correlation, for SNP-SNP comparison. Panels: A. HapMap CEU population: CEPH (Utah residents with ancestry from northern 
and western Europe USAB); B. HapMap YRI population: Yoruba in Ibadan, Nigeria; C. HapMap JPT population: Japanese in 
Tokyo, Japan, and CHB population: Han Chinese in Beijing, China.
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of problems, particularly since the 
quantum increase in data makes 
their inspection more daunting.

The Roche/454 GS-FLX 
technology works on the principle 
of pyrosequencing, which uses 
pyrophosphate molecules released 
on nucleotide incorporation by DNA 
polymerase to fuel a downstream 
set of reactions that ultimately 
produces light from the cleavage 
of oxyluciferin by luciferase (116). 
The DNA strands of the library are 
amplified en masse by emulsion 
PCR (117) on the surfaces of 
hundreds of thousands of agarose 
beads. Each agarose bead surface 
contains up to 1 million copies of the 
original annealed DNA fragment to 
produce a detectable signal from the 
sequencing reaction. Imaging of the 
light flashes from luciferase activity 
records which templates are adding 
that particular nucleotide; the light 
emitted is directly proportional to the 
amount of a particular nucleotide 
incorporated. The current 454 
instrument, the GS-FLX, produces 
an average read length of 400 bp per 
sample (per bead), with a combined 
throughput of ~100–150 Mb of 
sequence data per run. By contrast, 
a single ABI 3730 programmed to 
sequence 24 × 96 well plates per 
day produces ~440 kb of sequence 
data in 7 hours, with an average 
read length of 650 bp per sample 
(25).

The Illumina Genome 
Analyser is based on the concept 
of sequencing by synthesis 
(Solexa® Sequencing technology) 
to produce sequence reads of 
35–150 bp from tens of millions of 
surface-amplified DNA fragments 
simultaneously (118). A mixture 
of single-stranded, adaptor oligo-
ligated DNA fragments is incubated 
and amplified with four differentially-
labelled fluorescent nucleotides. 
Each base incorporation cycle is 
followed by an imaging step that 

identifies it and by a chemical step 
that removes the fluorescent group. 
At the end of the sequencing run (~4 
days), the sequence of each cluster 
is computed and subjected to quality 
control. A typical run yields ~40–50 
million such sequences.

The Applied Biosystems 
SOLiD sequencer uses a unique 
sequencing process catalysed by 
DNA ligase. A SOLiD (Sequencing 
by Oligo Ligation and Detection) run 
requires days, and produces 3–4 Gb 
of sequence data with an average 
read length of approximately 50 bp 
(119). The specific process couples 
oligo adaptor-linked DNA fragments 
with 1-μm magnetic beads that are 
decorated with complementary 
oligos, and amplifies each bead-DNA 
complex by emulsion PCR. A SOLiD 
sequencing by ligation first anneals 
a universal sequencing primer, 
then goes through subsequent 
ligation of the appropriate labelled 
8mer, followed by detection at each 
cycle by fluorescent readout. The 
unique attribute of this system is 
that an extra quality check of read 
accuracy is enabled that facilitates 
the discrimination of base calling 
errors from true polymorphisms or 
insertion/deletion (indel) events, the 
so-called “2 base encoding” (25).

The third generation of 
sequencing technologies is in 
development and should be available 
in the coming years. For example, 
single molecule sequencing is based 
on novel chemistry that enables 
direct measurement of billions of 
strands of DNA. The detection 
system measures incorporated 
bases on individual strands and 
thus avoids the requirement of 
amplification, which is subject to 
biases and errors.

Applications of high-throughput 
DNA sequencing

A major focus of this new technology 
is to rapidly and comprehensively 
catalogue human genetic variation, 
particularly common and uncommon 
genetic polymorphisms (e.g. SNPs 
and insertion/deletions). Since 
GWAS have relied on the genotyping 
of common alleles to discover 
novel associations with diseases’ 
risks (120), follow-up of regions of 
association identified by GWAS is 
important to characterize common 
and uncommon variants which 
might be better markers (or even 
candidates) for further functional 
studies. Since GWAS point to new 
candidate regions, the detailed fine 
mapping of a region necessitates 
the generation of a comprehensive 
set of common and uncommon 
variants. Already there are select 
examples of next-generation 
sequencing analysis applied to 
regions to determine new variants 
for follow-up association testing, 
such as for regions 8q24 associated 
with prostate and colon cancer and 
10q11.2 (containing the MSMB gene) 
associated with prostate cancer 
(121,122). Eventually the 1000 
Genomes Project should provide 
a suitable map to begin to choose 
variants in a region of interest. 
Characterizing all common variants 
previous to a fine-mapping process 
has two major benefits: all common 
genetic variants are represented 
using a tagSNP approach; and 
the correlations among all genetic 
variants are known, which provides 
advantages in functional variant 
detection (121,122).

Since large-scale sequencing 
across the genome is still several 
years away, attention has focused 
on targeted sequencing of regions of 
high interest, such as those defined 
by GWAS or linkage studies, and, 
more recently, the opportunity to 
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sequence across the exome (e.g. 
more than 180 000 known exons 
in the genome). Several different 
technologies have been developed 
to capture target sequence, 
either through liquid phase (e.g. 
biotinylated solution capture probes 
with long range or micro-droplet 
solution technique), or tiled arrays 
that contain probes that enrich 
for capture of DNA for sequence 
analysis. Each of the next-generation 
sequencing technologies have been 
successfully used with one or more 
target capture technologies. For 
instance, using the NimbleGen 
solution-based capture technique, 
the KLK3 locus, recently identified 
as a signal for prostate cancer and 
prostate serum antigen levels, was 
resequenced to comprehensively 
catalogue all common variants for 
follow-up genotype and functional 
analyses (123–125). Recently, 
sequencing across the exome after 
enrichment with tiled arrays has 
successfully been used to identify 
high-penetrant mutations in the 
coding regions in individuals with 
Mendelian disorders (126). Exome 
sequencing represents the first step 
towards examining the portion of the 
genome that is easily interpretable, 
namely changes in coding structure. 
It requires careful annotation and 
analytical structures, however, to 
sift through the thousands of rare 
variants in unique individuals.

The sequencing of the first 
human genomes has underscored 
the challenge of unraveling the 
physical map, particularly in some 
regions of great redundancy and/or 
complexity; moreover, it illustrates 
the daunting problem of assembly 
(127,128). More genomes need 
to be sequenced to establish a 
reliable reference standard for 
the analysis of human genomic 
variations. The current reference is 
an amalgam of several genomes, 
thus the ability to unravel variation 

is particularly difficult. Two new 
developments should address this 
issue: sequencing with greater 
coverage, which diminishes the 
false-positives and -negatives of 
sequence determination, and an 
increase in read length, which will 
permit phasing of genomes.

The ambitious effort from an 
international research consortium, 
namely the 1000 Genomes Project, 
“…will involve sequencing the 
genomes of at least a thousand 
people from around the world 
to create the most detailed and 
medically useful picture to date of 
human genetic variation” (http://
www.1000genomes.org/). The 
goal is to create a detailed map of 
human genetic variation relevant at 
or above the level of a frequency of 
0.5–1% across the genome (113). 
By optimizing technology, costs 
will continue to fall enabling greater 
scope of study at a lower price. 
Reduction to affordable levels, 
targeted for the US$1000 range for 
an entire human genome sequence, 
offers the promise of personal 
genomics. There are still formidable 
barriers, however, with respect to 
informatics, storage and the ethical 
and social dilemmas posed by such 
analyses.

Next-generation sequencing 
technologies have already been 
applied to complementary fields of 
investigation in genetics. The intent 
has been to characterize a complex 
sample with a mixture of nucleic 
acids through their sequence without 
prior knowledge of it, in contrast to 
the probe hybridization used by the 
original SAGE technique (129,130). 
Thus, it is possible to characterize 
the sequence of mRNAs, methylated 
DNA, DNA or RNA regions bound 
by certain proteins, and other DNA 
or RNA regions involved in gene 
expression and regulation (113). 
Recent examples are its application 
to transcriptome profiling in stem 

cells (119); to whole transcriptome 
shotgun sequencing, or RNA-
Seq, study into alternative splicing 
in human cells (131); and the 
identification of mammalian DNA 
sequences bound by transcription 
factors in vivo, by combining 
chromatin immunoprecipitation 
(ChIP) with parallel sequencing 
(ChIP-Seq) (132).

The Human Microbiome Project 
(HMP) (http://nihroadmap.nih.
gov/hmp/) integrates genomics 
and metagenomics in an effort to 
characterize the genome sequences 
of organisms inhabiting a common 
environment (133). By understanding 
genomics, metagenomics and 
their relations, the HMP seeks 
to determine whether individuals 
share a core human microbiome 
and whether changes in the human 
microbiome can be correlated with 
changes in human health (134).

Quality control in the 
laboratory

The advent of new technologies 
and workflow paradigms required 
for high-throughput genotyping and 
sequencing has changed the nature 
of laboratory work in genetics. The 
bulk of the work has been shifted to 
high-throughput analyses, where so 
much data is processed in such a 
short time that the older shibboleths 
of quality control have been shed for 
more efficient approaches, which 
seek to identify potential errors in a 
high-volume workflow.

The efficient and meticulous 
sample handling process must 
begin at the moment of receipt of 
germline DNA for genotyping or 
sequencing. Close coordination 
between the laboratory performing 
the extraction and the biorepository 
storing the DNA samples is 
optimal and protects against 
handling and biorepository errors, 
an underappreciated problem. 
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Standard operating procedures 
(SOPs) for the process should be 
created and reviewed regularly for 
improvements and quality control 
purposes.

DNA quantification is not an 
exact science. Due to technical and 
workflow issues, it is actually quite 
difficult to reproducibly quantify 
DNA (135). Several different 
techniques can be used to measure 
DNA, but each one has limitations 
and, in some workflows, different 
applications of preparing for low- or 
high-throughput genetic analyses. 
Quantification methods should 
be chosen for specific genotype/
sequence platforms. The most 
commonly used techniques are 
spectrophotometric measurement of 
DNA optical density by PicoGreen 
(Turner BioSystems) analysis, 
NanoDrop spectrophotometer 
(NanoDrop Technologies), or by 
real-time PCR analysis using a 
standardized TaqManTM assay 
(136). Real-time PCR can provide 
a preliminary test for sample 
quality as it relates to robust 
analysis in a high-throughput 
laboratory, but performance still 
must be gauged with specific 
technologies. Spectrophotometry 
and the PicoGreen assay measure 
total DNA present, regardless of 
source or quality, whereas a real-
time PCR assay measures the 
total amplifiable human DNA. DNA 
quantitation by real-time PCR is 
particularly helpful for assessing 
the contribution of non-human DNA 
to samples collected from buccal 
swabs, cytobrush samples or other 
non-blood sources. Minor but real 
differences between techniques 
reflect dissimilarities in the ratio of 
single- and double-stranded DNA, 
critical for analysis using diverse 
technologies.

Because of the high volume 
of activities in high-throughput 
genotyping/sequencing facilities, 

unique genetic profiles of samples 
can be useful for quality assessment 
and control in the workflow. Many 
laboratories have incorporated into 
the upfront analysis a set of SNPs or 
a forensic panel of 15 small tandem 
repeats and amelogenin, also 
known as the AmpFLSTR Identifiler 
assay (Applied Biosystems). 
The fingerprinting can be helpful 
to sleuth problems and identify 
contaminated samples before costly 
analysis. Furthermore, the results 
can serve as a proxy for the viability 
of the DNA and its success on the 
high-performance genotyping or 
sequencing technologies. Certainly, 
high failure rates indicate poor 
performance. The profiles can be 
used to match known duplicates 
and identify unexpected duplicates, 
which in turn stimulates close 
inspection of both biorepository 
issues and workflow in the laboratory 
(e.g. errors with plates or reagents).

For the conduct of many 
molecular epidemiology studies, 
sample availability has been a 
limiting factor. Naturally, there has 
been intense interest in the whole- 
genome amplification (WGA) 
technology to provide sufficient 
amounts of DNA for analysis. 
Thus, varying results reflect not 
only differences in the protocols 
and reagents, but the samples 
themselves. The quality of DNA 
used to amplify across the genome 
affects the success and fidelity of 
the process. WGA can generate 
large quantities of DNA for genotype 
assays, but approximately 5% of the 
genome is not faithfully reproduced, 
particularly regions with high GC 
content or near telomeres. Thus, the 
results of analyses of these regions 
should be cautiously interpreted. 
While the temptation to use WGA 
DNA in GWAS is great, the results 
so far have not been encouraging. 
Currently, there are two approaches 
that have been commercially 

optimized. These include a type of 
multiple displacement amplification 
(MDA) with the high-performance 
bacteriophage φ 29 DNA 
polymerase, which uses degenerate 
hexamers or generation of libraries 
of 200–2000 base pair fragments 
created by random chemical 
cleavage of genomic DNA. Ligation 
of adaptor sequences to both ends 
and PCR amplification is required. 
Quantities can vary greatly based 
on input DNA, but under optimal 
conditions an enrichment of 10 000-
fold can be expected.

The rolling circle amplification 
(RCA) technique is an enzymatic 
process mediated by DNA 
polymerases. Long single-stranded 
DNA molecules are synthesized 
on a short circular template by 
using a single DNA primer. RCAs 
generate a large-scale DNA 
template with the advantage of 
not requiring a thermal cycling 
instrument (137,138). Differential 
success has been observed with 
whole blood, dried blood, buccal 
cell swabs, cultured cells and buffy 
coat cells. Intriguingly, WGA of 
water control specimens generates 
a small, monoallelic signal, which 
can be called as a single allele, 
thus underscoring the value of 
rigorous controls (139). Still, more 
laboratories have chosen MDA for 
whole-genome amplification (140).

The utility of duplicates drawn 
from the same sample remains a 
central theme of laboratory quality 
control, but with the advent of high-
throughput laboratories the purpose 
has shifted slightly. Still duplicate 
testing is useful to detect problems 
with sample quality, prior storage, 
and informatic issues in sample 
management. In some cases, it 
can also reveal rare individuals 
enrolled in more than one study. 
Reproducibility of assays is key, and 
with the whole-genome-scan chips 
surpasses 99.8% concordance. 
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Errors in genotyping, mainly due 
to loss of one of the heterozygous 
alleles, occur in well below 1% 
of samples; therefore, when the 
rate creeps above 1%, close 
inspection of the process should be 
undertaken. If SOPs are followed 
closely, completion rates should be 
greater than 95% for most studies, 
but may be slightly lower depending 
on the quality of genomic DNA. 
Completion rates below 90% should 
raise substantive concern about 
technical or analytical problems. In 
GWAS studies, it is recommended 
that a second technology, such 
as TaqMan or sequencing, be 
performed to verify the accuracy and 
establish concordance (120). Errors 
with fitness for Hardy–Weinberg 
proportion (Hardy–Weinberg 
equilibrium (HWE) testing) can catch 
major genotype errors, but should 
probably not be used as a stringent 
threshold for excluding SNPs from 
analysis.

Bioinformatics

Large-scale genotyping and 
sequence analysis has shifted 
the burden of informatics towards 
high-performance tools that 
manage the computational and 
bioinformatic workflow needed 
to manipulate high-density data 
sets. The required tasks, archiving, 
analysis and access are destined to 
grow exponentially as studies are 
designed with increasing numbers 
of participants and larger and more 
complex variants to be interrogated. 
Accordingly, the efficiency of the 
laboratory flow is based on a high-
throughput pipeline for both genetic 
analysis and informatic handling 
of the data sets. Major steps in 
the process include the choice of 
markers and platforms together 
with a sophisticated quality control 
process. Highly trained personnel 
are needed to effectively coordinate 

the flow of information. Central 
to the success of a laboratory is 
the functioning of a Laboratory 
Information Management System 
(LIMS), which is required to 
track samples, assays, reagents, 
equipment, robotics and processes 
through the entire workflow. The 
LIMS captures the movement of 
information from receipt of samples 
through the analytical steps and into 
the quality control regime required 
to provide a final, stable data set, 
linking the results of experimental 
data to in silico information via 
relational databases. Annotation of 
the genome is needed to provide 
clear points of reference for the 
genomic coordinates for the 
genotype and sequence assays. 
Careful quality control and quality 
assurance checks within the LIMS 
software, particularly with real-time 
monitoring, are needed to maintain 
assay reproducibility and reliable 
data flow.

The increasing number of loci 
explored by new platforms, as 
well as the quantum increases in 
the increments in study size, has 
forced major changes in laboratory 
data storage and management. 
Laboratory systems should be 
able to routinely process, monitor 
and assess quality control of large 
amounts of data (106–109 data 
points) generated by these studies. 
The increasing need for processing 
power mandates the use of scalable 
computational systems capable of 
parallel computing, with software 
applications specially designed for 
this multiprocessor environment and 
readily upgradable.

Suites of publicly available 
tools (e.g. PLINK (http://pngu.
mgh.harvard.edu/~purcell/plink /
summary.shtml) (141) and Genotype 
Library and Utilities (GLU) (http://
cgf.nci.nih.gov/glu/docs)) have 
been developed for archiving and 
management of dense data sets, 

such as those encountered in 
GWAS. PLINK, now in version 1.06, 
is a free, open-source whole-genome 
association suite that focuses on the 
analysis of large-scale genotype/
phenotype data, but lacks support 
for study design and planning, 
genotype generation, or CNV calling. 
Its integration with Haploview (http://
www.broadinstitute.org/haploview/
haploview) allows visualization, 
annotation and representation of 
some of the results. GLU (version 
1.0) is also a suite created to manage, 
analyse and report high-throughput 
SNP genotype data (http://code.
google.com/p/glu-genetics). GLU 
was created to address the need 
for new and scalable computational 
approaches, as well as storage, 
management, quality control and 
genetic analysis. It is a framework 
and software package designed 
with a set of powerful tools that can 
scale to effectively handle trillions 
of genotypes. The integration of 
GLU with a robust and fast SNP 
tagging tool, like TagZilla, increases 
its functionality and allows LD 
estimation and computation of 
MAF, HWE, and proportions (http://
tagzilla.nci.nih.gov/).

Conclusions 
and future directions

Knowledge acquired by the draft 
of the human genome and its 
annotation, and advances in 
technology, have changed the 
approach towards mapping complex 
diseases and traits. Once oriented 
to the study of candidate genes 
and/or mutations, human genetics 
has evolved into the study of the 
genome as a complex structure 
harbouring clues for multifaceted 
disease risk; some known, but the 
majority unknown. The discovery 
of new candidate regions by GWAS 
has forced rethinking previous 
strategies for the study of genetic 
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predisposition. More agnostic 
approaches, genome-wide, with 
increasing numbers of participants 
from high-quality epidemiological 
studies are, for the first time, 
replicating results in different 
settings. But new-found candidate 
regions lead to extensive follow-up 
and confirmation of their functional 
significance. Understanding the 
true effect of genetic variability 
on the risk of complex diseases is 
paramount, but also important is 
the design of high-quality studies to 
assess environmental contributions, 
as well as the interactions between 
genes and exposures.

If accurate measures of 
environmental factors must be 
addressed, increased efforts are 
needed in the study of the biological 
relevance of the regions already 
discovered. To date, there are a 
few examples where biological 
functional basis has been associated 
with a candidate region discovered 
via GWAS. Also, the gap between 
new-found genomic regions and 
their biological interpretation could 
become greater with the introduction 
of new resequencing technology, 
which is capable of interrogating 
more numbers of less frequent 
loci. New challenges arise with 
new technologies. High-throughput 
resequencing must standardise its 
technical protocols, quality control, 
calling algorithm and interpretation. 
Only deep resequencing of high 
numbers of individuals will create 
quality databases capable of testing 
rare variants in the population. Until 
these steps are readily available 
for new technologies, broad 
implementation will not be possible.

The new approach to the 
genomic study of complex diseases 
has resulted in a more ambitious 
“team” science, in which resources 
and study populations are pooled to 
identify novel genetic markers (Cf. 
Figure 6.1). In this regard, GWAS 

study thousands of the most common 
genetic variants across the genome 
(SNPs), without any prior hypothesis, 
conception or what is being defined 
as an agnostic manner. This initial 
phase requires adequately powered 
follow-up studies for replication 
that is central to the search for 
moderate- to high-frequency low-
penetrance variants associated with 
human diseases and traits (120,142). 
Teams of scientists with specific 
responsibilities in each step of the 
process are necessary to ensure 
quality control and stable analytical 
results as part of the effort to map 
complex human diseases and traits.

Previously, family linkage 
studies have been used to identify 
rare genetic variants with high-
penetrance susceptibility genes 
(143,144), but failed to be informative 
on more common genetic variants 
with low to moderate effect (145). 
With the advent of next-generation 
sequencing technologies and 
the discovery of many rare and 
uncommon variants, family studies 
will be required to assist in defining 
the most notable variants for follow-
up studies. In this regard, family 
studies should prove invaluable in 
mapping many complex diseases, 
as well as the highly penetrant 
Mendelian disorders.

Based on the preliminary data 
published as a result of GWAS, it is 
not currently possible to draw final 
conclusions concerning the valid risk 
assessment of complex diseases. 
Education of both the public and 
scientific media is necessary to 
affect a rational approach towards 
implementing any risk reduction 
policies. These new challenges for 
public health officials will require 
careful attention to the ethical, moral 
and social implications of dense 
genomic data sets to assure the 
public, and the participants in the 
current studies, that confidentiality 
is protected (26).

Consortial efforts to describe 
human variation have focused on 
the description and characterization 
of three continental populations 
pursued by the International 
HapMap Project (http://www.
hapmap.org). But using GWAS, 
other consortia and interest groups 
have focused on a more disease-
specific approach that has resulted 
in the discovery of over 200 
novel loci associated with human 
diseases/traits (2,8,20,57). Though 
the majority of the association 
studies to date have used high-
throughput genotyping technology, 
new programs in comprehensive 
resequencing analysis would 
unveil an even greater catalogue 
of uncommon variants (http://
www.1000genomes.org/).

In concert with the assessment 
of germline genetic variation, 
other programs are underway to 
characterize functional annotation 
through gene expression 
analysis. The ENCODE Project 
(ENCyclopedia Of DNA Elements) 
seeks to define functional elements 
(http://www.genome.gov/10005107) 
(25), and The Cancer Genome Atlas 
(TCGA) examines both somatic 
and germline alterations in select 
cancers (146). Together, these new 
developments promise to accelerate 
the discovery and characterization 
of novel genomic mechanisms in 
human diseases and traits.



  Unit 2 • Chapter 6. Basic principles and laboratory analysis of genetic variation 117

U
n

it
 2

C
h

a
p

te
r

 6

References

1. Hunter DJ, Khoury MJ, Drazen JM (2008). 
Letting the genome out of the bottle–will we 
get our wish? N Engl J Med, 358:105–107.
doi:10.1056/NEJMp0708162 PMID:18184955

2. Manolio TA, Brooks LD, Collins FS (2008). 
A HapMap harvest of insights into the genetics 
of common disease. J Clin Invest, 118:1590–
1605.doi:10.1172/JCI34772 PMID:18451988

3. Kruglyak L, Nickerson DA (2001). Variation 
is the spice of life. Nat Genet, 27:234–236.
doi:10.1038/85776 PMID:11242096

4. Reich DE, Cargill M, Bolk S et al. (2001). 
Linkage disequilibrium in the human genome. 
Nature, 411:199–204.doi:10.1038/35075590 
PMID:11346797

5. Reich DE, Gabriel SB, Altshuler D (2003). 
Quality and completeness of SNP databases. 
Nat Genet, 33:457–458.doi:10.1038/ng1133 
PMID:12652301

6. Lander ES, Linton LM, Birren B et al.; 
International Human Genome Sequencing 
Consortium (2001). Initial sequencing and 
analysis of the human genome. Nature, 
409:860–921.doi:10.1038/35057062 PMID:11 
237011

7. Venter JC, Adams MD, Myers EW et al. 
(2001). The sequence of the human genome. 
Science, 291:1304–1351.doi:10.1126/science. 
1058040 PMID:11181995

8. Frazer KA, Ballinger DG, Cox DR et al.; 
International HapMap Consortium (2007). A 
second generation human haplotype map of 
over 3.1 million SNPs. Nature, 449:851–861.
doi:10.1038/nature06258 PMID:17943122

9. Hinds DA, Stuve LL, Nilsen GB et al. (2005). 
Whole-genome patterns of common DNA 
variation in three human populations. Science, 
307:1072–1079.doi:10.1126/science.1105436 
PMID:15718463

10. Chanock SJ (2001). Candidate genes 
and single nucleotide polymorphisms (SNPs) 
in the study of human disease. Dis Markers, 
17:89–98. PMID:11673655

11. Risch NJ (2000). Searching for genetic 
determinants in the new millennium. 
Nature, 405:847–856.doi:10.1038/35015718 
PMID:10866211

12. Hughes AL, Packer B, Welch R et al. 
(2003). Widespread purifying selection at 
polymorphic sites in human protein-coding 
loci. Proc Natl Acad Sci USA, 100:15754–
15757.doi:10.1073/pnas.2536718100 PMID:1 
4660790

13. Hughes AL, Packer B, Welch R et al. 
(2005). Effects of natural selection on 
interpopulation divergence at polymorphic 
sites in human protein-coding Loci. Genetics, 
170:1181–1187.doi:10.1534/genetics.104. 
037077 PMID:15911 586

14. Miklós I, Novák A, Dombai B, Hein J 
(2008). How reliably can we predict the 
reliability of protein structure predictions? 
BMC Bioinformatics, 9:137.doi:10.1186/1471-
2105-9-137 PMID:18315874

15. Edwards YJ, Cottage A (2003). 
Bioinformatics methods to predict protein 
structure and function. A practical approach. 
Mol Biotechnol, 23:139–166.doi:10.1385/MB: 
23:2:139 PMID:12632698

16. Heringa J (2000). Computational methods 
for protein secondary structure prediction 
using multiple sequence alignments. 
Curr Protein Pept Sci, 1:273–301.doi:10. 
2174/1389203003381324 PMID:12369910

17. Erichsen HC, Chanock SJ (2004). SNPs in 
cancer research and treatment. Br J Cancer, 
90:747–751.doi:10.1038/sj.bjc.6601574 PMID: 
14970847

18. Cargill M, Altshuler D, Ireland J et al. 
(1999). Characterization of single-nucleotide 
polymorphisms in coding regions of human 
genes. Nat Genet, 22:231–238.doi:10.1038/ 
10290 PMID:10391209

19. Stephens JC, Schneider JA, Tanguay DA 
et al. (2001). Haplotype variation and linkage 
disequilibrium in 313 human genes. Science, 
293:489–493.doi:10.1126/science.1059431 
PMID:11452081

20. International HapMap Consortium (2003). 
The International HapMap Project. Nature, 
426:789–796. doi:10.1038/nature02168 
PMID:14685227

21. Packer BR, Yeager M, Burdett L et al. 
(2006). SNP500Cancer: a public resource 
for sequence validation, assay development, 
and frequency analysis for genetic variation 
in candidate genes. Nucleic Acids Res, 34 
Database issue;D617–D621.doi:10.1093/nar/
gkj151 PMID:16381944

22. Stephens M, Sloan JS, Robertson PD 
et al. (2006). Automating sequence-based 
detection and genotyping of SNPs from diploid 
samples. Nat Genet, 38:375–381.doi:10.1038/
ng1746 PMID:16493422

23. Marth G, Schuler G, Yeh R et al. 
(2003). Sequence variations in the public 
human genome data reflect a bottlenecked 
population history. Proc Natl Acad Sci USA, 
100:376–381.doi:10.1073/pnas.222673099 
PMID:12502794

24. Marth GT, Korf I, Yandell MD et al. (1999). 
A general approach to single-nucleotide 
polymorphism discovery. Nat Genet, 23:452–
456.doi:10.1038/70570 PMID:10581034

25. Mardis ER (2008). The impact of next-
generation sequencing technology on 
genetics. Trends Genet, 24:133–141.doi:10. 
1016/j.tig.2007.12.007 PMID:18262675

26. Birney E, Stamatoyannopoulos JA, 
Dutta A et al.; ENCODE Project Consortium; 
NISC Comparative Sequencing Program; 
Baylor College of Medicine Human Genome 
Sequencing Center; Washington University 
Genome Sequencing Center; Broad Institute; 
Children’s Hospital Oakland Research 
Institute (2007). Identification and analysis 
of functional elements in 1% of the human 
genome by the ENCODE pilot project. Nature, 
447:799–816.doi:10.1038/nature05874 PMID: 
17571346

27. Romeo S, Pennacchio LA, Fu Y et al. 
(2007). Population-based resequencing of 
ANGPTL4 uncovers variations that reduce 
triglycerides and increase HDL. Nat Genet, 
39:513–516.doi:10.1038/ng1984 PMID:17322 
881

28. Bonnen PE, Wang PJ, Kimmel M et al. 
(2002). Haplotype and linkage disequilibrium 
architecture for human cancer-associated 
genes. Genome Res, 12:1846–1853.doi:10.11 
01/gr.483802 PMID:12466288

29. Sabeti PC, Reich DE, Higgins JM et al. 
(2002). Detecting recent positive selection in 
the human genome from haplotype structure. 
Nature, 419:832–837.doi:10.1038/nature011 
40 PMID:12397357

30. Slatkin M (2008). Linkage disequilibrium–
understanding the evolutionary past and 
mapping the medical future. Nat Rev Genet, 
9:477–485.doi:10.1038/nrg2361 PMID:18427 
557

31. Orr N, Chanock SJ (2008). Common 
genetic variation and human disease. Adv 
Genet, 62:1–32.doi:10.1016/S0065-2660(08) 
00601-9 PMID:19010252

32. Hill WG (1974). Estimation of linkage 
disequilibrium in randomly mating populations. 
Heredity, 33:229–239.doi:10.1038/hdy.1974. 
89 PMID:4531429

33. Clark AG (1990). Inference of haplotypes 
from PCR-amplified samples of diploid 
populations. Mol Biol Evol, 7:111–122. PMID: 
2108305

34. Eskin E, Halperin E, Karp RM (2003). 
Efficient reconstruction of haplotype structure 
via perfect phylogeny. J Bioinform Comput 
Biol, 1:1–20.doi:10.1142/S0219720003000174 
PMID:15290779

35. Stephens M, Smith NJ, Donnelly P 
(2001). A new statistical method for haplotype 
reconstruction from population data. Am J 
Hum Genet, 68:978–989.doi:10.1086/319501 
PMID:11254454

36. Stephens M, Donnelly P (2003). A 
comparison of bayesian methods for 
haplotype reconstruction from population 
genotype data. Am J Hum Genet, 73:1162–
1169.doi:10.1086/379378 PMID:14574645



118

37. Marchini J, Cutler D, Patterson N et al.; 
International HapMap Consortium (2006). A 
comparison of phasing algorithms for trios 
and unrelated individuals. Am J Hum Genet, 
78:437–450.doi:10.1086/500808 PMID:1646 
5620

38. Akey J, Jin L, Xiong M (2001). Haplotypes 
vs single marker linkage disequilibrium tests: 
what do we gain? Eur J Hum Genet, 9:291–300.
doi:10.1038/sj.ejhg.5200619 PMID:11313774

39. Schaid DJ (2004). Evaluating associations 
of haplotypes with traits. Genet Epidemiol, 
27:348–364.doi:10.1002/gepi.20037 PMID:15 
543638

40. Tan Q, Christiansen L, Christensen K et 
al. (2005). Haplotype association analysis 
of human disease traits using genotype 
data of unrelated individuals. Genet Res, 
86:223–231.doi:10.1017/S0016672305007792 
PMID:16454861

41. Cardon LR, Abecasis GR (2003). Using 
haplotype blocks to map human complex trait 
loci. Trends Genet, 19:135–140.doi:10.1016/
S0168-9525(03)00022-2 PMID:12615007

42. Johnson GC, Esposito L, Barratt BJ et al. 
(2001). Haplotype tagging for the identification 
of common disease genes. Nat Genet, 29:233–
237.doi:10.1038/ng1001-233 PMID:11586306

43. Barrett JC, Fry B, Maller J, Daly MJ (2005). 
Haploview: analysis and visualization of LD 
and haplotype maps. Bioinformatics, 21:263–
265.doi:10.1093/b io informat ics /bth457 
PMID:15297300

44. Stram DO, Haiman CA, Hirschhorn JN et 
al. (2003). Choosing haplotype-tagging SNPS 
based on unphased genotype data using a 
preliminary sample of unrelated subjects with 
an example from the Multiethnic Cohort Study. 
Hum Hered, 55:27–36.doi:10.1159/000071807 
PMID:12890923

45. McCarroll SA, Altshuler DM (2007). Copy-
number variation and association studies of 
human disease. Nat Genet, 39 Suppl;S37–
S42.doi:10.1038/ng2080 PMID:17597780

46. Scherer SW, Lee C, Birney E et al. (2007). 
Challenges and standards in integrating 
surveys of structural variation. Nat Genet, 39 
Suppl;S7–S15.doi:10.1038/ng2093 PMID:1759 
7783

47. Kidd JM, Cooper GM, Donahue WF et al. 
(2008). Mapping and sequencing of structural 
variation from eight human genomes. Nature, 
453:56–64.doi:10.1038/nature06862 PMID:18 
451855

48. Feuk L, Carson AR, Scherer SW (2006). 
Structural variation in the human genome. 
Nat Rev Genet, 7:85–97.doi:10.1038/nrg1767 
PMID:16418744

49. Stefansson H, Helgason A, Thorleifsson 
G et al. (2005). A common inversion under 
selection in Europeans. Nat Genet, 37:129–
137.doi:10.1038/ng1508 PMID:15654335

50. Sharp AJ, Locke DP, McGrath SD et al. 
(2005). Segmental duplications and copy-
number variation in the human genome. Am 
J Hum Genet, 77:78–88.doi:10.1086/431652 
PMID:15918152

51. Sebat J, Lakshmi B, Troge J et al. (2004). 
Large-scale copy number polymorphism in 
the human genome. Science, 305:525–528.
doi:10.1126/science.1098918 PMID:15273396

52. Iafrate AJ, Feuk L, Rivera MN et al. (2004). 
Detection of large-scale variation in the human 
genome. Nat Genet, 36:949–951.doi:10.1038/
ng1416 PMID:15286789

53. Inoue K, Lupski JR (2002). Molecular 
mechanisms for genomic disorders. Annu 
Rev Genomics Hum Genet, 3:199–242.doi: 
10.1146/annurev.genom.3.032802.120023 
PMID:12142364

54. Bailey JA, Yavor AM, Massa HF et al. 
(2001). Segmental duplications: organization 
and impact within the current human genome 
project assembly. Genome Res, 11:1005–1017.
doi:10.1101/gr.GR-1871R PMID:11381028

55. Bailey JA, Gu Z, Clark RA et al. (2002). 
Recent segmental duplications in the human 
genome. Science, 297:1003–1007.doi:10.1126/
science.1072047 PMID:12169732

56. Freeman JL, Perry GH, Feuk L et al. 
(2006). Copy number variation: new insights in 
genome diversity. Genome Res, 16:949–961.
doi:10.1101/gr.3677206 PMID:16809666

57. International HapMap Consortium (2005). A 
haplotype map of the human genome. Nature, 
437:1299–1320.doi:10.1038/nature04226 
PMID:16255080

58. Buckley PG, Mantripragada KK, Piotrowski 
A et al. (2005). Copy-number polymorphisms: 
mining the tip of an iceberg. Trends Genet, 
21:315–317.doi:10.1016/j.tig.2005.04.007 
PMID:15922827

59. McCarroll SA, Kuruvilla FG, Korn JM 
et al. (2008). Integrated detection and 
population-genetic analysis of SNPs and copy 
number variation. Nat Genet, 40:1166–1174.
doi:10.1038/ng.238 PMID:18776908

60. Khaja R, Zhang J, MacDonald JR et 
al. (2006). Genome assembly comparison 
identifies structural variants in the human 
genome. Nat Genet, 38:1413–1418.doi:10. 
1038/ng1921 PMID:17115057

61. Istrail S, Sutton GG, Florea L et al. (2004). 
Whole-genome shotgun assembly and 
comparison of human genome assemblies. 
Proc Natl Acad Sci USA, 101:1916–1921.
doi:10.1073/pnas.0307971100 PMID:14769938

62. Cooper GM, Zerr T, Kidd JM et al. (2008). 
Systematic assessment of copy number variant 
detection via genome-wide SNP genotyping. 
Nat Genet, 40:1199–1203.doi:10.1038/ng.236 
PMID:18776910

63. Korn JM, Kuruvilla FG, McCarroll SA et 
al. (2008). Integrated genotype calling and 
association analysis of SNPs, common copy 
number polymorphisms and rare CNVs. Nat 
Genet, 40:1253–1260.doi:10.1038/ng.237 
PMID:18776909

64. Barnes C, Plagnol V, Fitzgerald T et 
al. (2008). A robust statistical method for 
case-control association testing with copy 
number variation. Nat Genet, 40:1245–1252.
doi:10.1038/ng.206 PMID:18776912

65. Ballantyne KN, van Oorschot RAH, Mitchell 
RJ (2007). Comparison of two whole genome 
amplification methods for STR genotyping of 
LCN and degraded DNA samples. Forensic 
Sci Int, 166:35–41.doi:10.1016/j.forsciint.2006. 
03.022 PMID:16687226

66. Goellner GM, Tester D, Thibodeau S et al. 
(1997). Different mechanisms underlie DNA 
instability in Huntington disease and colorectal 
cancer. Am J Hum Genet, 60:879–890. PMID: 
9106534

67. Roewer L, Krawczak M, Willuweit S et al. 
(2001). Online reference database of European 
Y-chromosomal short tandem repeat (STR) 
haplotypes. Forensic Sci Int, 118:106–113.
doi:10.1016/S0379-0738(00)00478-3 PMID:11 
311820

68. Ryckman K, Williams SM. Calculation 
and use of the Hardy-Weinberg model in 
association studies. Curr Protoc Hum Genet 
2008;Chapter 1:Unit 1.18.

69. Hosking L, Lumsden S, Lewis K et al. 
(2004). Detection of genotyping errors by 
Hardy-Weinberg equilibrium testing. Eur J 
Hum Genet, 12:395–399.doi:10.1038/sj.ejhg. 
5201164 PMID:14872201

70. Gomes I, Collins A, Lonjou C et al. (1999). 
Hardy-Weinberg quality control. Ann Hum 
Genet, 63:535–538.doi:10.1046/j.1469-
1809.1999.6360535.x PMID:11246455

71. Akey JM, Zhang K, Xiong M et al. (2001). 
The effect that genotyping errors have on the 
robustness of common linkage-disequilibrium 
measures. Am J Hum Genet, 68:1447–1456.
doi:10.1086/320607 PMID:11359212

72. Wittke-Thompson JK, Pluzhnikov A, Cox NJ 
(2005). Rational inferences about departures 
from Hardy-Weinberg equilibrium. Am J Hum 
Genet, 76:967–986.doi:10.1086/430507 PMID: 
15834813

73. Leal SM (2005). Detection of genotyping 
errors and pseudo-SNPs via deviations 
from Hardy-Weinberg equilibrium. Genet 
Epidemiol, 29:204–214.doi:10.1002/
gepi.20086 PMID:16080207

74. Cox DG, Kraft P (2006). Quantification of the 
power of Hardy-Weinberg equilibrium testing to 
detect genotyping error. Hum Hered, 61:10–14.
doi:10.1159/000091787 PMID:16514241

75. Hirschhorn JN (2005). Genetic approaches 
to studying common diseases and complex 
traits. Pediatr Res, 57:74R–77R.doi:10.1203/01.
PDR.0000159574.98964.87 PMID:15817501

76. Yu K, Wang Z, Li Q et al. (2008). Population 
substructure and control selection in genome-
wide association studies. PLoS One, 
3:e2551.doi:10.1371/journal.pone.0002551 
PMID:18596976



  Unit 2 • Chapter 6. Basic principles and laboratory analysis of genetic variation 119

U
n

it
 2

C
h

a
p

te
r

 6

77. Falush D, Stephens M, Pritchard JK 
(2003). Inference of population structure 
using multilocus genotype data: linked loci 
and correlated allele frequencies. Genetics, 
164:1567–1587. PMID:12930761

78. Devlin B, Roeder K (1999). Genomic control 
for association studies. Biometrics, 55:997–
1004.doi:10.1111/j.0006-341X.1999.00997.x 
PMID:11315092

79. Pritchard JK, Rosenberg NA (1999). Use of 
unlinked genetic markers to detect population 
stratification in association studies. Am J 
Hum Genet, 65:220–228.doi:10.1086/302449 
PMID:10364535

80. Freedman ML, Haiman CA, Patterson N et 
al. (2006). Admixture mapping identifies 8q24 
as a prostate cancer risk locus in African-
American men. Proc Natl Acad Sci USA, 
103:14068–14073.doi:10.1073/pnas.0605 
832103 PMID:16945910

81. Kao WH, Klag MJ, Meoni LA et al.; Family 
Investigation of Nephropathy and Diabetes 
Research Group (2008). MYH9 is associated 
with nondiabetic end-stage renal disease in 
African Americans. Nat Genet, 40:1185–1192.
doi:10.1038/ng.232 PMID:18794854

82. Kopp JB, Smith MW, Nelson GW et al. 
(2008). MYH9 is a major-effect risk gene 
for focal segmental glomerulosclerosis. Nat 
Genet, 40:1175–1184.doi:10.1038/ng.226 
PMID:18794856

83. Hurst LD (2009). Fundamental concepts 
in genetics: genetics and the understanding 
of selection. Nat Rev Genet, 10:83–93.
doi:10.1038/nrg2506 PMID:19119264

84. Stern DL, Orgogozo V (2009). Is genetic 
evolution predictable? Science, 323:746–751.
doi:10.1126/science.1158997 PMID:19197055

85. Stern DL, Orgogozo V (2008). The loci 
of evolution: how predictable is genetic 
evolution? Evolution, 62:2155–2177.
doi:10.1111/j.1558-5646.2008.00450.x PMID: 
18616572

86. Cooper TF, Ostrowski EA, Travisano 
M (2007). A negative relationship between 
mutation pleiotropy and fitness effect in yeast. 
Evolution, 61:1495–1499.doi:10.1111/j.1558-
5646.2007.00109.x PMID:17542856

87. Eyre-Walker A, Keightley PD, Smith NGC, 
Gaffney D (2002). Quantifying the slightly 
deleterious mutation model of molecular 
evolution. Mol Biol Evol, 19:2142–2149. 
PMID:12446806

88. Charlesworth B (2009). Fundamental 
concepts in genetics: effective population 
size and patterns of molecular evolution 
and variation. Nat Rev Genet, 10:195–205.
doi:10.1038/nrg2526 PMID:19204717

89. Relethford JH (2004). Global patterns of 
isolation by distance based on genetic and 
morphological data. Hum Biol, 76:499–513.
doi:10.1353/hub.2004.0060 PMID:15754968

90. Ramachandran S, Deshpande O, 
Roseman CC et al. (2005). Support from 
the relationship of genetic and geographic 
distance in human populations for a serial 
founder effect originating in Africa. Proc Natl 
Acad Sci USA, 102:15942–15947.doi:10.1073/
pnas.0507611102 PMID:16243969

91. Li JZ, Absher DM, Tang H et al. (2008). 
Worldwide human relationships inferred from 
genome-wide patterns of variation. Science, 
319:1100–1104.doi:10.1126/science.1153717 
PMID:18292342

92. Rosenberg NA, Pritchard JK, Weber 
JL et al. (2002). Genetic structure of human 
populations. Science, 298:2381–2385.doi: 
10.1126/science.1078311 PMID:12493913

93. Romero IG, Manica A, Goudet J et al. 
(2009). How accurate is the current picture of 
human genetic variation? Heredity, 102:120–
126.doi:10.1038/hdy.2008.89 PMID:18766200

94. Sabeti PC, Schaffner SF, Fry B et al. 
(2006). Positive natural selection in the human 
lineage. Science, 312:1614–1620.doi:10.1126/
science.1124309 PMID:16778047

95. Sabeti PC, Varilly P, Fry B et al.; 
International HapMap Consortium (2007). 
Genome-wide detection and characterization 
of positive selection in human populations. 
Nature, 449:913–918.doi:10.1038/nature062 
50 PMID:17943131

96. Tishkoff SA, Reed FA, Ranciaro A et al. 
(2007). Convergent adaptation of human 
lactase persistence in Africa and Europe. Nat 
Genet, 39:31–40.doi:10.1038/ng1946 PMID: 
17159977

97. Pompanon F, Bonin A, Bellemain E, 
Taberlet P (2005). Genotyping errors: causes, 
consequences and solutions. Nat Rev Genet, 
6:847–859.doi:10.1038/nrg1707 PMID:1630 
4600

98. Packer BR, Yeager M, Staats B et al. 
(2004). SNP500Cancer: a public resource for 
sequence validation and assay development 
for genetic variation in candidate genes. 
Nucleic Acids Res, 32 Database issue;D528–
D532.doi:10.1093/nar/gkh005 PMID:14681474

99. Saiki RK, Scharf S, Faloona F et al. 
(1985). Enzymatic amplification of beta-
globin genomic sequences and restriction site 
analysis for diagnosis of sickle cell anemia. 
Science, 230:1350–1354.doi:10.1126/science. 
2999980 PMID:2999980

100. Livak KJ, Marmaro J, Todd JA (1995). 
Towards fully automated genome-wide 
polymorphism screening. Nat Genet, 9:341–
342.doi:10.1038/ng0495-341 PMID:7795635

101. Brenan CJ (2002). DNA-based molecular 
lithography for nanoscale fabrication. IEEE 
Eng Med Biol Mag, 21:164.doi:10.1109/
MEMB.2002.1175178 PMID:12613226

102. Frederickson RM (2002). Fluidigm. 
Biochips get indoor plumbing. Chem Biol, 
9:1161–1162. PMID:12445764

103. Sun X, Ding H, Hung K, Guo B (2000). 
A new MALDI-TOF based mini-sequencing 
assay for genotyping of SNPS. Nucleic 
Acids Res, 28:E68.doi:10.1093/nar/28.12.e68 
PMID:10871391

104. Cunningham JM, Sellers TA, Schildkraut 
JM et al. (2008). Performance of amplified 
DNA in an Illumina GoldenGate BeadArray 
assay. Cancer Epidemiol Biomarkers Prev, 
17:1781–1789.doi:10.1158/1055-9965.EPI-
07-2849 PMID:18628432

105. Berthier-Schaad Y, Kao WH, Coresh J 
et al. (2007). Reliability of high-throughput 
genotyping of whole genome amplified DNA 
in SNP genotyping studies. Electrophoresis, 
28:2812–2817.doi:10.1002/elps.200600674 
PMID:17702060

106. Thomas G, Jacobs KB, Yeager M et al. 
(2008). Multiple loci identified in a genome-
wide association study of prostate cancer. 
Nat Genet, 40:310–315.doi:10.1038/ng.91 
PMID:18264096

107. Matsuzaki H, Loi H, Dong S et al. (2004). 
Parallel genotyping of over 10,000 SNPs 
using a one-primer assay on a high-density 
oligonucleotide array. Genome Res, 14:414–
425.doi:10.1101/gr.2014904 PMID:14993208

108. Al Olama AA, Kote-Jarai Z, Giles 
GG et al.; UK Genetic Prostate Cancer 
Study Collaborators/British Association of 
Urological Surgeons’ Section of Oncology; 
UK Prostate testing for cancer and Treatment 
study (ProtecT Study) Collaborators (2009). 
Multiple loci on 8q24 associated with prostate 
cancer susceptibility. Nat Genet, 41:1058–
1060.doi:10.1038/ng.452 PMID:19767752

109. Barrett JC, Cardon LR (2006). Evaluating 
coverage of genome-wide association 
studies. Nat Genet, 38:659–662.doi:10.1038/
ng1801 PMID:16715099

110. McCarthy MI, Abecasis GR, Cardon LR et 
al. (2008). Genome-wide association studies 
for complex traits: consensus, uncertainty 
and challenges. Nat Rev Genet, 9:356–369.
doi:10.1038/nrg2344 PMID:18398418

111. Kim Y, Feng S, Zeng ZB (2008). 
Measuring and partitioning the high-order 
linkage disequilibrium by multiple order 
Markov chains. Genet Epidemiol, 32:301–
312.doi:10.1002/gepi.20305 PMID:18330903

112. Schaid DJ (2004). Genetic epidemiology 
and haplotypes. Genet Epidemiol, 27:317–
320.doi:10.1002/gepi.20046 PMID:15543637

113. Ansorge WJ (2009). Next-generation 
DNA sequencing techniques. N Biotechnol, 
25:195–203.doi:10.1016/j.nbt.2008.12.009 
PMID:19429539

114. Collins FS, Morgan M, Patrinos A (2003). 
The Human Genome Project: lessons from 
large-scale biology. Science, 300:286–290.
doi:10.1126/science.1084564 PMID:12690187

115. Sanger F, Nicklen S, Coulson AR (1977). 
DNA sequencing with chain-terminating 
inhibitors. Proc Natl Acad Sci USA, 
74:5463–5467.doi:10.1073/pnas.74.12.5463 
PMID:271968



120

116. Margulies M, Egholm M, Altman 
WE et al. (2005). Genome sequencing in 
microfabricated high-density picolitre reactors. 
Nature, 437:376–380. PMID:16056220

117. Dressman D, Yan H, Traverso G et al. 
(2003). Transforming single DNA molecules 
into fluorescent magnetic particles for 
detection and enumeration of genetic 
variations. Proc Natl Acad Sci USA, 100:8817–
8822.doi:10.1073/pnas.1133470100 PMID:12 
857956

118. Van Tassell CP, Smith TPL, Matukumalli 
LK et al. (2008). SNP discovery and allele 
frequency estimation by deep sequencing 
of reduced representation libraries. Nat 
Methods, 5:247–252.doi:10.1038/nmeth.1185 
PMID:18297082

119. Cloonan N, Forrest ARR, Kolle G et al. 
(2008). Stem cell transcriptome profiling 
via massive-scale mRNA sequencing. Nat 
Methods, 5:613–619.doi:10.1038/nmeth.1223 
PMID:18516046

120. Chanock SJ, Manolio T, Boehnke M et al.; 
NCI-NHGRI Working Group on Replication 
in Association Studies (2007). Replicating 
genotype-phenotype associations. Nature, 
447:655–660.doi:10.1038/447655a PMID:17 
554299

121. Yeager M, Deng Z, Boland J et al. (2009). 
Comprehensive resequence analysis of a 97 
kb region of chromosome 10q11.2 containing 
the MSMB gene associated with prostate 
cancer. Hum Genet, 126:743–750.doi:10.1007/
s00439-009-0723-9 PMID:19644707122. 

122. Yeager M, Xiao N, Hayes RB et al. (2008). 
Comprehensive resequence analysis of a 
136 kb region of human chromosome 8q24 
associated with prostate and colon cancers. 
Hum Genet, 124:161–170.doi:10.1007/s00439 
-008-0535-3 PMID:18704501

123. Parikh H, Deng Z, Yeager M et al. (2010). 
A comprehensive resequence analysis of the 
KLK15-KLK3-KLK2 locus on chromosome 
19q13.33. Hum Genet, 127:91–99.doi:10.1007/
s00439-009-0751-5 PMID:19823874

124. Ahn J, Berndt SI, Wacholder S et al. 
(2008). Variation in KLK genes, prostate-
specific antigen and risk of prostate cancer. 
Nat Genet, 40:1032–1034, author reply 
1035–1036.doi:10.1038/ng0908-1032 PMID: 
19165914

125. Eeles RA, Kote-Jarai Z, Giles GG 
et al.; UK Genetic Prostate Cancer Study 
Collaborators; British Association of 
Urological Surgeons’ Section of Oncology; UK 
ProtecT Study Collaborators (2008). Multiple 
newly identified loci associated with prostate 
cancer susceptibility. Nat Genet, 40:316–321.
doi:10.1038/ng.90 PMID:18264097

126. Ng SB, Turner EH, Robertson PD et 
al. (2009). Targeted capture and massively 
parallel sequencing of 12 human exomes. 
Nature, 461:272–276.doi:10.1038/nature082 
50 PMID:19684571

127. Levy S, Sutton G, Ng PC et al. (2007). 
The diploid genome sequence of an individual 
human. PLoS Biol, 5:e254.doi:10.1371/
journal.pbio.0050254 PMID:17803354

128. Wheeler DA, Srinivasan M, Egholm 
M et al. (2008). The complete genome of 
an individual by massively parallel DNA 
sequencing. Nature, 452:872–876.doi:10. 
1038/nature06884 PMID:18421352

129. Mortazavi A, Williams BA, McCue K et al. 
(2008). Mapping and quantifying mammalian 
transcriptomes by RNA-Seq. Nat Methods, 
5:621–628.doi:10.1038/nmeth.1226 PMID:18 
516045

130. Velculescu VE, Zhang L, Vogelstein 
B, Kinzler KW (1995). Serial analysis of 
gene expression. Science, 270:484–487.
doi:10.1126/science.270.5235.484 PMID:75 
70003

131. Sultan M, Schulz MH, Richard H et al. 
(2008). A global view of gene activity and 
alternative splicing by deep sequencing of the 
human transcriptome. Science, 321:956–960.
doi:10.1126/science.1160342 PMID:18599741

132. Robertson G, Hirst M, Bainbridge 
M et al. (2007). Genome-wide profiles of 
STAT1 DNA association using chromatin 
immunoprecipitation and massively parallel 
sequencing. Nat Methods, 4:651–657.doi:10. 
1038/nmeth1068 PMID:17558387

133. Hugenholtz P, Tyson GW (2008). 
Microbiology: metagenomics. Nature, 
4 5 5 : 4 8 1 – 4 8 3 . d o i : 1 0 .1 0 3 8 / 4 5 5 4 8 1a 
PMID:18818648

134. Turnbaugh PJ, Ley RE, Hamady M et 
al. (2007). The human microbiome project. 
Nature, 449:804–810.doi:10.1038/nature062 
44 PMID:17943116

135. Bergen AW, Qi Y, Haque KA et al. (2005). 
Effects of DNA mass on multiple displacement 
whole genome amplification and genotyping 
performance. BMC Biotechnol, 5:24.doi:10. 
1186/1472-6750-5-24 PMID:16168060

136. Haque KA, Pfeiffer RM, Beerman 
MB et al. (2003). Performance of high-
throughput DNA quantification methods. BMC 
Biotechnol, 3:20.doi:10.1186/1472-6750-3-20 
PMID:14583097

137. Fire A, Xu SQ (1995). Rolling replication 
of short DNA circles. Proc Natl Acad Sci USA, 
92:4641–4645.doi:10.1073/pnas.92.10.4641 
PMID:7753856

138. Dean FB, Nelson JR, Giesler TL, Lasken 
RS (2001). Rapid amplification of plasmid and 
phage DNA using Phi 29 DNA polymerase and 
multiply-primed rolling circle amplification. 
Genome Res, 11:1095–1099.doi:10.1101/
gr.180501 PMID:11381035

139. Bergen AW, Haque KA, Qi Y et al. 
(2005). Comparison of yield and genotyping 
performance of multiple displacement 
amplification and OmniPlex whole genome 
amplified DNA generated from multiple DNA 
sources. Hum Mutat, 26:262–270.doi:10. 
1002/humu.20213 PMID:16086324

140. Lasken RS (2009). Genomic DNA 
amplification by the multiple displacement 
amplification (MDA) method. Biochem Soc 
Trans, 37:450–453.doi:10.1042/BST0370450 
PMID:19290880

141. Purcell S, Neale B, Todd-Brown K et al. 
(2007). PLINK: a tool set for whole-genome 
association and population-based linkage 
analyses. Am J Hum Genet, 81:559–575.
doi:10.1086/519795 PMID:17701901

142. Hunter DJ, Thomas G, Hoover RN, 
Chanock SJ (2007). Scanning the horizon: 
what is the future of genome-wide association 
studies in accelerating discoveries in cancer 
etiology and prevention? Cancer Causes 
Control, 18:479–484.doi:10.1007/s10552-
007-0118-y PMID:17440825

143. Hall JM, Lee MK, Newman B et al. 
(1990). Linkage of early-onset familial breast 
cancer to chromosome 17q21. Science, 
250:1684–1689.doi:10.1126/science.2270482 
PMID:2270482

144. Wooster R, Bignell G, Lancaster J et 
al. (1995). Identification of the breast cancer 
susceptibility gene BRCA2. Nature, 378:789–
792.doi:10.1038/378789a0 PMID:8524414

145. Stratton MR, Rahman N (2008). The 
emerging landscape of breast cancer 
susceptibility. Nat Genet, 40:17–22.doi:10. 
1038/ng.2007.53 PMID:18163131

146. McLendon R, Friedman A, Bigner D 
et al.; Cancer Genome Atlas Research 
Network (2008). Comprehensive genomic 
characterization defines human glioblastoma 
genes and core pathways. Nature, 455:1061–
1068.doi:10.1038/nature07385 PMID:187728 
90

147. Gabriel SB, Schaffner SF, Nguyen H et 
al. (2002). The structure of haplotype blocks 
in the human genome. Science, 296:2225–
2229.doi:10.1126/science.1069424 PMID:120 
29063

148. Carlson CS, Eberle MA, Rieder MJ et 
al. (2004). Selecting a maximally informative 
set of single-nucleotide polymorphisms 
for association analyses using linkage 
disequilibrium. Am J Hum Genet, 74:106–120.
doi:10.1086/381000 PMID:14681826


	Chapter 6



