CHEMICAL AGENTS
AND RELATED OCCUPATIONS
VOLUME 100 F
A REVIEW OF HUMAN CARCINOGENS

This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 20-27 October 2009

LYON, FRANCE - 2012

IARC MONOGRAPHS
ON THE EVALUATION
OF CARCINOGENIC RISKS TO HUMANS
2-NAPHTHYLAMINE

2-Naphthylamine was considered by previous IARC Working Groups in 1973, 1987, and 2008 (IARC, 1974, 1987, 2010). Since that time new data have become available, which have been incorporated in this *Monograph*, and taken into consideration in the present evaluation.

1. Exposure Data

1.1 Identification of the agent

From IARC (2010)

Chem. Abstr. Serv. Name: 2-Naphthalenamine

Synonym: this compound is also known as β-naphthylamine

\[
\text{C}_{10}\text{H}_{9}\text{N}
\]

Relative molecular mass: 143.18

Description: White to reddish crystals

(O’Neil, 2006)

Solubility: Soluble in water, diethyl ether, and ethanol (O’Neil, 2006; Lide, 2008)

1.2 Uses

2-Naphthylamine formerly was used commercially as an intermediate in the manufacture of dyes, as an antioxidant in the rubber industry, and to produce 2-chloronaphthalene (IARC, 2010). Because of its carcinogenicity, the manufacture and use of 2-naphthylamine have been prohibited in the European Union (EU) since 1998, in Italy since 1960, in the United Kingdom since 1952, and in Switzerland since 1938. Production and use of dyestuffs containing 2-naphthylamine have been banned in Japan since 1972 (Olfert *et al.*, 2006). In the United States of America (USA), 2-naphthylamine is a carcinogen regulated by the Occupational Safety and Health Administration (OSHA). As such, exposure must be strictly controlled through mandatory use of engineering controls, safe work practices, and personal protective equipment (OSHA, 2011).

Small quantities of 2-naphthylamine are used in laboratory research (IARC, 2010). The substance has been found as a contaminant in other chemicals and industries (Olfert *et al.*, 2006). Phenyl-β-naphthylamine (PBNA) has been used as a substitute; however, it partially metabolizes in the body to 2-naphthylamine (Olfert *et al.*, 2006).
1.3 Human exposure

1.3.1 Occupational exposure

In the past, occupational exposure to 2-naphthylamine mainly occurred during its production and when it was used in the manufacture of azo dyes. Exposure may still occur in laboratories where it is used as a model compound in cancer research, when workers are exposed to pyrolysis fumes containing 2-naphthylamine (e.g. foundry fumes, second-hand tobacco smoke, heated cooking-oils), to 2-nitronaphthalene (e.g. foundry workers), a nitro-PAH that can be metabolized to 2-naphthylamine, or to products containing 2-naphthylamine as a contaminant, such as certain rubber chemicals (IARC, 2010). Countries in which exposure was reported include: Italy, Japan, the Russian Federation, the United Kingdom, and the USA (IARC, 2010).

CAREX (CARcinogen EXposure) is an international information system on occupational exposure to known and suspected carcinogens, based on data collected in the European Union (EU) from 1990 to 1993. The CAREX database provides selected exposure data and documented estimates of the number of exposed workers by country, carcinogen, and industry (Kauppinen et al., 2000). Table 1.1 presents the results for 2-naphthylamine by industry in the EU (CAREX, 1999).

From the US National Occupational Exposure Survey (1981–83) it was estimated that 275 workers, including 265 women, were potentially exposed to 2-naphthylamine (NIOSH, 1990). Exposure data were reported for a 2-naphthylamine/benzidine dye factory in Moscow (Bulbulyan et al., 1995). 2-Naphthylamine concentrations in indoor air samples taken in the factory during the period 1939–1948 ranged from < 1 µg/L to > 3 µg/L. Factory-wall wipes sampled in 1948 contained 60.0–115 mg/m² wall surface. Dermal wipes sampled in 1940 and 1947 from workers after a shower at work contained between 0.018 and 37.5 mg 2-naphthylamine (data on the surface area sampled were not available).

In a German study of workers primarily exposed to aniline and 4-chloroaniline, urinary 2-naphthylamine concentrations were 0–9.8 µg/L (mean, 3.9 ± 2.2) in 22 smokers and 0–11.6 µg/L (mean, 2.1 ± 2.8) in 21 non-smokers, both significantly higher than the concentrations measured in non-smoking, non-exposed workers (0.0–1.6 µg/L; mean, 0.5 ± 0.7) (Riffelmann et al., 1995).

In a study of two Danish iron foundries, airborne PAH concentrations were measured in relation to 2-naphthylamine (as a possible marker of 2-nitronaphthalene) in the urine of PAH-exposed workers (Hansen et al., 1994). The concentration of 2-naphthylamine in urine was significantly higher in PAH-exposed workers than in controls (matched for smoking habits). Hand moulders, finishing workers and truck drivers tended to have the highest levels. These results may be explained by the presence of 2-nitronaphthalene (which can metabolized to 2-naphthylamine), the presence of aromatic amines, e.g. in moulding sand, or the presence of nitrogen oxides, e.g. in diesel exhaust. It has been estimated that a maximum of 1% of total N-phenyl-2-naphthylamine uptake can be transformed into 2-naphthylamine (Weiss et al., 2007).

1.3.2 Non-occupational exposure

The general population can be exposed to 2-naphthylamine through tobacco smoke and other fumes containing 2-naphthylamine, or reportedly when in contact with dyes and hair dyes contaminated with 2-naphthylamine [The Working Group could not find evidence of current contamination of these consumer products]. Exposure to 2-nitronaphthalene, which is formed by incomplete combustion of organic material and generally found in the environment in a mixture with other nitro-PAH and non-nitro-PAH, can also become an indirect source of contact with 2-naphthylamine (IARC, 2010).
Mainstream cigarette smoke from eight different conventional market cigarettes in the USA contained 2-naphthylamine at concentrations of 1.47 to 14.06 ng/cigarette (Stabbert et al., 2003). A review of similar studies in the IARC Monograph on tobacco indicated that amounts of 2-naphthylamine in mainstream cigarette smoke range from 1–22 ng/cigarette; those in sidestream cigarette smoke range from 113.5–171.6 ng/cigarette (IARC, 2004).

In a German study (Grimmer et al., 2000), 2-naphthylamine was found in urine in comparable levels for non-smokers ($n = 14$; mean, 120.8 ng/24 hours), smokers ($n = 12$; mean, 84.5 ng/24 hours) and persons exposed to second-hand tobacco smoke ($n = 22$; mean, 94.9 ng/24 hours). In a study by Riedel et al. (2006), smokers ($n = 10$) excreted significantly higher amounts of 2-naphthylamine compared with non-smokers ($n = 10$) (20.8 vs 10.7 ng/24 hours).

2-Naphthylamine has been detected in fumes of heated cooking-oils (Chiang et al., 1999) in a study in Taiwan (China) looking at three different commercial cooking oils. Concentrations of 2-naphthylamine in oil fumes were 31.5 µg/m³ for sunflower oil, 31.9 µg/m³ for vegetable oil, and 48.3 µg/m³ for refined lard oil.

2. Cancer in Humans

Studies of cancer in humans exposed to 2-naphthylamine were most recently reviewed by a Working Group in 2008 (IARC, 2010): it was concluded that there was sufficient evidence in humans for the carcinogenicity of 2-naphthylamine in the human urinary bladder. Numerous case series reported bladder cancer in workers exposed to 2-naphthylamine; in coal-tar dye workers exposed to 2-naphthylamine, and not to other aromatic amines, the cumulative incidence of bladder cancer was 25% (Goldwater et al., 1965). Eleven cohort studies (four in the USA, two in the United Kingdom, two in Japan, and one each in Poland, the Russian Federation and Italy) are available concerning bladder-cancer risks in workers engaged in the manufacture and use of 2-naphthylamine (see Table 2.1 available at http://monographs.iarc.fr/ENG/Monographs/vol100F/100F-05-Table2.1.pdf). All these studies indicate markedly elevated bladder cancer risks associated with the manufacture and use of 2-naphthylamine. In most of the studies, it was not possible to quantify the relative contributions of exposures to benzidine and 2-naphthylamine to the overall excess risks. However, Case et al. (1954) had reported 26 bladder-cancer deaths, with 0.3 expected [SMR 86.7, 95%CI: 56.6–127.0], in British dyestuff-industry workers exposed to 2-naphthylamine. Also, in a study of bladder-cancer risks in the British rubber industry, Veys (2004) showed excesses of bladder cancer in workers employed between 1946 and 1949 when 2-naphthylamine-contaminated antioxidants were still used (58 cases, SIR 1.71; 95%CI: 1.3–2.21) and no excess in workers employed after this exposure was removed (39 cases, SIR 1.02 95%CI: 0.72–1.39).
3. Cancer in Experimental Animals

Studies on the carcinogenicity of 2-naphthylamine in the mouse, rat, hamster, rabbit, dog, and monkey after oral administration, after subcutaneous or intraperitoneal injection, after intravesicular implantation, or after dermal application have been reviewed in previous IARC Monographs (IARC, 1974, 1987, 2010). There have been no additional carcinogenicity studies in animals reported since the most recent evaluation (IARC, 2010).

2-Naphthylamine was tested for carcinogenicity by oral administration (in the feed, by gavage or in a gelatin capsule) in five experiments in mice, three experiments in rats, ten experiments in dogs, and one experiment each in hamsters, rabbits and monkeys; by subcutaneous administration in five experiments in mice; by intraperitoneal injection in two experiments in mice and one in rats; and by one intravesicular implantation and one skin-painting study in mice and one bladder instillation study in dogs. Results of adequately conducted carcinogenicity studies are summarized in Table 3.1.

Oral administration of 2-naphthylamine to mice caused a significant increase in the incidence of cholangiomas, hepatomas and liver adenomas (Bonser et al., 1952; Yoshida et al., 1979) and induced ‘malignant’ hepatomas (Bonser et al., 1952). 2-Naphthylamine caused a significant increase in urinary bladder tumours (including carcinomas) following its oral administration to rats (Hicks et al., 1982; Hicks & Chowaniec, 1977), hamsters (Saffiotti et al., 1967), dogs (Hueper et al., 1938; Bonser et al., 1956; Harrison et al., 1969; Conzelman & Moulton, 1972; Romanenko & Martynenko, 1972; Rigotti et al., 1977; Purchase et al., 1981) and monkeys (Conzelman et al., 1969). Intraperitoneal injection of 2-naphthylamine (Theiss et al., 1981) or its administration by gavage (Stoner et al., 1986) increased the multiplicity of benign lung tumours in strain A mice.

The results of the oral study in rabbits, the intraperitoneal injection study in rats, the subcutaneous injection study, the intravesicular implant study and the skin-painting study in mice, and the bladder-instillation study in dogs were found to be inadequate for the evaluation of the carcinogenicity of 2-naphthylamine.

4. Other Relevant Data

A general Section on “Aromatic amines: metabolism, genotoxicity, and cancer susceptibility” appears as Section 4.1 in the Monograph on 4-aminobiphenyl in this volume.

2-Naphthylamine is a constituent of tobacco smoke, and the amounts of 2-naphthylamine-haemoglobin adducts are higher in cigarette smokers than in non-smokers (Bryant et al., 1988). Similarly to other aromatic amines, 2-naphthylamine may undergo N-hydroxylation by CYP1A2 (Butler et al., 1989) followed by conjugation of the hydroxyl group with sulfate or glucuronide, or conjugation of the amino group with acetate (N-acetylation), sulfate, or glucuronide. In addition, 2-naphthylamine may undergo N-oxidation and ring oxidation by peroxidative enzymes such as prostaglandin H synthase in the bladder (Wise et al., 1984; Yamazoe et al., 1985) to form an arene oxide. The N-hydroxylated intermediate may re-arrange to form 2-amino-1-naphthol and conjugates with sulfate or glucuronide, or form DNA adducts such as N-(deoxyguanosin-8-yl)-2-NA, 1-(deoxyguanosin-N²-yl)-2-naphthylamine, and 1-(deoxyadenosin-N⁸-yl)-2-naphthylamine (Beland et al., 1983). These adducts are also formed by prostaglandin H synthase (Yamazoe et al., 1985), or from the 2-imino-1-naphthoquinone intermediate (e.g. N⁴-deoxyguanosin-N²-yl)-2-amino-1,4-naphthoquinone-imine).
<table>
<thead>
<tr>
<th>Species, strain (sex)</th>
<th>Route</th>
<th>Dosing regimen, Animals/group at start</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse, IF (M, F) up to 72 wk</td>
<td>Gavage</td>
<td>A group of 13 M and 12 F mice received 2-naphthylamine suspended in arachis oil, twice weekly at a dose of 400 mg/kg bw per wk. A group of 6 M and 5 F served as arachis-oil controls.</td>
<td>Liver cholangiomas: M–0/6 (controls), 5/13 F–0/5 (controls), 5/12 M+F–0/11 (controls), 10/25</td>
<td>NR, [NS]</td>
<td>Age NR Small number of animals studied, especially controls</td>
</tr>
<tr>
<td>Mouse, BALB/c (F) 24 wk</td>
<td>Feed</td>
<td>Groups of 20 F mice were fed a diet containing 0 or 2000 ppm 2-naphthylamine for 40 wk</td>
<td>Liver tumours: Adenoma–0/17, 10/16 Hepatoma–0/17, 3/16 Urinary bladder epithelium hyperplasia: 0/17, 6/16</td>
<td>NR [P < 0.0001] [NS] [P < 0.01]</td>
<td>Purity NR</td>
</tr>
<tr>
<td>Mouse, A/J (M, F) 24 wk</td>
<td>Gavage</td>
<td>A group of 16 M and 16 F mice received 2-naphthylamine in tricaprylin by gavage 3 × /wk for 8 wk, resulting in a total dose per animal of 600 mg/kg bw. A group of 16 M and 16 F mice served as tricaprylin controls.</td>
<td>Lung tumours: M–3/15 (controls), 8/14 F–2/14 (controls), 4/13 Lung tumour multiplicity: M–0.93 ± 1.00 vs 0.27 ± 0.59 (controls)</td>
<td>[NS] [NS] P < 0.05</td>
<td></td>
</tr>
<tr>
<td>Rat, Albino (strain NR) (M, F) over 90 wk</td>
<td>Feed</td>
<td>Three groups of 18, 15 and 17 M and F rats were fed low-, mid- and high-protein diets containing 2-naphthylamine at a dose of 310 mg/kg bw per wk for life. Three groups of 15, 17 M and 17 F rats served as controls.</td>
<td>Urinary bladder papillomas: 0/49 (controls), 4/50</td>
<td>NR, [NS]</td>
<td>Age NR</td>
</tr>
<tr>
<td>Species, strain (sex)</td>
<td>Route</td>
<td>Incidence of tumours</td>
<td>Significance</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
<td>----------------------</td>
<td>--------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Rat, Wistar (F)</td>
<td>Gavage</td>
<td>Urinary bladder tumours: 0/50, 5/17</td>
<td>NR, $[P < 0.001]$</td>
<td>Purity NR, Bladder tumours not further specified</td>
<td></td>
</tr>
<tr>
<td>up to 104 wk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hicks & Chowaniec (1977)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat, Wistar (F)</td>
<td>Gavage</td>
<td>Urinary bladder: Carcinomas–0/20, 4/18 Urothelial hyperplasias–0/20, 8/18</td>
<td>NR $[P < 0.05]$ $[P < 0.001]$</td>
<td>Purity NR</td>
<td></td>
</tr>
<tr>
<td>100 wk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hicks et al. (1982)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamster, Random-bred Syrian golden (M, F)</td>
<td>Feed</td>
<td>Urinary bladder carcinomas: M–0/30, 0/30, 10/23* F–0/30, 0/30, 8/18*</td>
<td>$[P < 0.0001]$</td>
<td>Purity NR, Hepatoma was found in one high-dose male and one high-dose female.</td>
<td></td>
</tr>
<tr>
<td>Lifetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saffiotti et al. (1967)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog, Mongrel (F)</td>
<td>Oral and subcutaneous injection</td>
<td>Urinary bladder tumours (papillomas and carcinomas combined): 0/4, 13/16</td>
<td>NR $[P < 0.01]$</td>
<td>Purity NR, Bladder-tumour incidence based partly on autopsy and partly on cystoscopy and biopsy. Dosing poorly described.</td>
<td></td>
</tr>
<tr>
<td>89 wk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hueper et al. (1938)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog, Mongrel (F)</td>
<td>Oral</td>
<td>Urinary bladder carcinomas: 2/4</td>
<td>-</td>
<td>Age NR, purity NR, One dog died after 14.5 mo of treatment. No controls</td>
<td></td>
</tr>
<tr>
<td>up to 3 yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonser et al. (1956)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog, Mongrel (F)</td>
<td>Oral</td>
<td>Urinary bladder carcinomas: 4/4</td>
<td>-</td>
<td>Age NR, purity NR, No controls, Experimental details poorly described</td>
<td></td>
</tr>
<tr>
<td>79 mo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harrison et al. (1969)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.1 (continued)

<table>
<thead>
<tr>
<th>Species, strain (sex)</th>
<th>Route</th>
<th>Incidence of tumours</th>
<th>Significance</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog, Beagle (M, F) up to 30 mo</td>
<td>Oral</td>
<td>Urinary bladder carcinomas: M–0/2, 4/6, 2/5, 6/7, 1/2 F–0/2, 0/3, 2/5, 2/3, 3/3 M+F–0/4 (controls), 20/34* (treated)</td>
<td>NR [P < 0.05]</td>
<td>Purity NR</td>
</tr>
<tr>
<td>Conzelman & Moulton (1972)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog, Breed NR (F) 55 mo</td>
<td>Oral</td>
<td>Urinary bladder carcinomas: 7/8</td>
<td>-</td>
<td>Age NR, purity NR No controls. Route of administration poorly described.</td>
</tr>
<tr>
<td>Romanenko & Martynenko (1972)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog, Breed NR (F) 26 mo</td>
<td>Oral</td>
<td>Urinary bladder carcinomas: 20/20</td>
<td>-</td>
<td>Age NR, purity NR No controls.</td>
</tr>
<tr>
<td>Rigotti et al. (1977)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog, Beagle (M, F) up to 47 mo</td>
<td>Oral</td>
<td>Urinary bladder transitional-cell carcinomas: 0/8, 5/5</td>
<td>NR, [P < 0.001]</td>
<td></td>
</tr>
<tr>
<td>Purchase et al. (1981)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monkey, Rhesus Macaca mulatta (M, F) up to 60 mo</td>
<td>Gavage</td>
<td>Urinary bladder carcinomas: 0/3 (controls), 9/24</td>
<td>NR</td>
<td>Age NR Some animals received a fixed dose during the entire experiment, others received different doses over the course of five yr. The majority of tumours occurred in animals given high doses.</td>
</tr>
<tr>
<td>Conzelman et al. (1969)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse, Inbred A/St mice (M, F) 24 wk</td>
<td>Intraperitoneal injection</td>
<td>Lung adenomas/mouse: 0.19, 0.40, 0.50, 1.38*</td>
<td>P < 0.01</td>
<td>Purity NR</td>
</tr>
<tr>
<td>Theiss et al. (1981)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bw, body weight; d, day or days; F, female; M, male; mo, month or months; NR, not reported; NS, not significant; vs, versus; wk, week or weeks; yr, year or years
2-Naphthylamine was mutagenic in *S. typhimurium* strains TA98 and TA100 in the presence of bovine bladder cells (Hix et al., 1983). 2-Naphthylamine-induced DNA damage was triggered by an NAT1-overexpressing *S. typhimurium* strain, but not by an O-acetyltransferase-deficient strain, in the presence of human CYP1A2 (umu response) (Oda, 2004). In another umu gene-expression assay, DNA damage in *S. typhimurium* strain NM2009 exposed to 2-naphthylamine was induced by the CYP4B1 isoenzyme from rat-bladder epithelium (Imaoka et al., 1997). 2-Naphthylamine was mutagenic in Chinese hamster ovary cells in the presence or absence of an exogenous activating system (Gupta & Singh, 1982).

5. Evaluation

There is sufficient evidence in humans for the carcinogenicity of 2-naphthylamine. 2-Naphthylamine causes cancer of the urinary bladder.

There is sufficient evidence in experimental animals for the carcinogenicity of 2-naphthylamine.

There is strong mechanistic evidence indicating that the carcinogenicity of 2-naphthylamine operates by a genotoxic mechanism of action that involves metabolic activation, formation of DNA adducts, and induction of mutagenic and clastogenic effects. Metabolic activation to DNA-reactive intermediates occurs by multiple pathways including N-oxidation in the liver, O-acetylation in the bladder, and peroxidative activation in the mammary gland and other organs.

2-Naphthylamine is carcinogenic to humans (Group 1).

References

