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CHAPTER 3 

COMPARISONS AMONG EXPOSURE GROUPS 

The techniques of standardization introduced in the last chapter are typically used to 
determine whether the cause-specific mortality rates for the study cohort are 
comparable with those from some appropriate standard population. The observation of 
an elevated CMF or SMR for a particular cause of death may alert the investigator to 
the possibility that the cohort members are subject to exposures which increase their 
risk for that disease. However, a single elevated mortality ratio is usually not regarded 
in itself as sufficient evidence for. a causal relationship, unless it is extremely large. A 
much better indication of causality is the demonstration of a trend in the mortality 
ratios with degree or duration of exposure. 

In this chapter, we explore several elementary methods used by epidemiologists and 
biostatisticians to examine cohort data for evidence of differences in death rates 
between subgroups defined by exposures or other factors, and in particular for 
evidence of dose-response relationships. The most appropriate methods are adapta- 
tions of the classical Mantel-Haenszel analyses of grouped case-control data presented 
in Chapter 4 of Volume 1. These are covered in $3.6 below. Earlier sections consider 
methods based on the standardization -techniques developed in the last chapter. These 
are of interest largely for historical reasons. Both the limitations and the potential of 
the various techniques are illustrated by their systematic application to the Montana 
smelter workers study. In addition, we cite several examples from the literature which 
point up notable innovations or pitfalls in the use of these statistical tools. 

3.1 Allocation of person-years to time-dependent exposure categories 

The first step in comparing death rates among different subgroups of the cohort is 
simply to estimate the rates for each of them separately using the techniques outlined 
in the previous chapter. This is quite straightforward when the subgroups are formed 
on the basis of information available at entry into the study - for example, when .they 
are defined by age or calendar period at entry or by a classification of the initial work 
area according to measured levels of exposure. One simply treats each subgroup as a 
separate cohort and carries out the usual allocation of deaths and calculation of 
person-years by age and time for each one independently. Since a study member 
contributes person-years observation to only one subgroup, there is no ambiguity about 
the assignment of his observation time. 
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It is also of interest, however, to make comparisons among subgroups defined on the 
basis of variables that change values as the subject moves through the study. For 
example, subjects often continue to accumulate exposures of interest during the same 
period that they are being followed for evaluation of cause-specific mortality. Industrial 
workers may be entered on study while still relatively young and be followed through 
their working years and on into retirement. If the measured exposures are distributed 
continuously over the working lifetime, the subjects with the highest cumulative levels 
of exposure are frequently those who have lived the longest. This is even truer when a 
variable that reflects duration of exposure is being analysed for its relationship to 
the risk of disease. Special precautions are required to ensure that the allocation of 
person-years is made appropriately. 

Several investigators have attempted to establish a dose-response trend in such 
circumstances by classifying each subject into a single subgroup on the basis of his total 
cumulative exposure or duration of employment at the end of the study. Mortality 
ratios computed separately for each subgroup are then compared. Unfortunately, 
results obtained in this manner are fallacious, since the early person-years of follow-up, 
when cumulative exposures are light, are being allocated to the same heavy exposure 
category as the later person-years. The death rates calculated in this fashion for the 
highest exposure categories are too low, since person-years during which no death 
could have occurred are included in the denominator. Rates for the lowest exposure 
categories are too high since it is only the individuals who die with short exposures who 
contribute to the denominator; the person-years of someone who might have died with 
short-term exposure, but in fact did not, are allocated elsewhere. 

The correct assignment of each increment in person-years of follow-up is to that 
same exposure category to which a death would be assigned should it occur at that 
time. Subjects who change their exposure classification as they move through the 
study, as many in fact do, thus contribute to the person-years denominators of the rates 
for several exposure categories. Figure 3.1 illustrates schematically the proper, 
dynamic method of allocation as well as the improper, fixed method when duration of 
follow-up itself is used to define the subgroups being compared. 

Table 3.1 presents an example of the magnitude of this dose-response fallacy in 
actual practice. In the original report of an early study of vinyl chloride workers (Duck 
et al., 1975), the authors observed that the all-causes SMR declined from 110 for those 
employed for less than 15 years to 61 for those employed for 15 or more years and 
stated that no significant excess of mortality had occurred. However, the apparent 
decline in the SMRs was due entirely to the use of an improper methodology. After 
correcting the fixed person-years allocation used in the original analysis to an 
appropriate, dynamic one, the statistically significant negative trend in the SMRs 
disappeared. There was even an indication of a positive trend in the SMR for digestive 
cancer with duration of exposure (Duck & Carter, 1976; Wagoner et al., 1976). 
Enterline (1976) discusses a similar error in the report of Mancuso and El-Attar (1967), 
who failed to detect a trend in respiratory cancer SMRs among asbestos workers who 
had been employed for increasing lengths of time. 

We describe two algorithms for the correct assignment of person-years observation 
in the presence of time-dependent exposures categories, the use of which enables one 



84 BRESLOW AND DAY 

Fig. 3.1 Schematic diagram illustrating proper and improper methods of allocation of 
person-years. x , death from cause of interest; 0, withdrawal 

Duration of follow-up [years] 

Cases observed 
- ~p 

42 28 9 
Person-years: correct allocation 

2 28 49 
Person-years; incorrect allocatio~i 

Table 3.1 Reanalysis of data by Duck et a / .  showing original versus 
revised numbers of expected deaths and SMRs by duration of exposure 
and cause of deatha 

- 

Cause Duration No. of observed No. of expected SMR 
of death of exposure deaths deaths 

(years) 
Original Revised Original Revised 

All causes 0-14 111 100.92 118.97 110 94 
15+ 25 41.30 24.15 61 104 

Total 0-14 27 25.55 29.93 106 90 
cancers 15+ 8 10.89 6.51 73 123 

Digestive 0-14 7 7.77 9.10 90 77 
system 15+ 4 3.31 1.98 121 202 
cancers 

Lung 0-14 13 10.73 12.57 121 103 
cancer 15+ 3 4.80 2.96 62 101 

a From Duck et a/.  (1975); Duck & Carter (1976) 
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to avoid the dose-response fallacy caused by the overlapping of exposure and follow-up 
periods. 

(a) Algorithms for exact allocation of person-years 

In practice, there may be several time-dependent exposure variables of interest, and 
a simultaneous classification of deaths and person-years in a multidimensional table is 
required. For example, in addition to duration of time since start of employment, we 
usually need to keep track of age and calendar year, if only for purposes of 
standardization. Time since cessation of exposure adds a fourth dimension. Deter- 
mination of the exact length of observation time that each individual contributes to 
each cell in the four-way table may seem initially to present a difficult problem. 

Clayton (1982) describes a computing algorithm for making the appropriate 
allocation of person-years in such circumstances. It requires that one have available 
exact dates of entry into and exit from the various time-dependent classes. While not 
the most efficient method for all problems, this procedure has the advantage of 
simplicity and generality. Suppose, for example, that one wishes to determine the 
person-years observation time contributed by one subject to the cell defined by the age 
range 40-49, the calendar period from 1950-1954, and the interval from five to ten 
years since first exposure to some risk factor. Then Clayton's procedure is as follows: 

(A) Choose the latest of the three dates: date of birth +40 years, 31 December 1949, 
and date of first exposure +five years. 

(B) Choose the earliest of the four dates: date of birth +50 years, 31 December 
1954, date of first exposure +ten years, and date of exit from study. 

(C) If B precedes A, then the individual makes no contribution to this cell. 
Otherwise, the observation time contributed is the time interval from date A to date B. 

The calculation must be repeated for each individual for each such cell in the 
multidimensional table (three dimensions in this example). It accommodates time- 
dependent variables defined in terms of cumulative length of exposure to particular 
agents, provided that one knows the exact dates at which cell boundaries are crossed. 
For example, one could add to the above specifications the requirement that the 
individual has received a cumulative exposure of between 5 and 10 units of radiation 
while employed in a nuclear industry. If periodic readings of radiation exposure were 
made, so that the dates of crossing the 5 and 10 unit boundaries could be estimated, 
these two dates would be added to those in parts (A) and (B) above. 

An alternative, more efficient algorithm (Clayton, personal communication) is 
available when all of the axes of the multidimensional classification represent time 
variables that advance in pace with one another (age, calendar year, duration of time 
from initial exposure) rather than variables such as cumulative exposure or duration of 
(intermittent) employment, which advance at varying rates depending upon the entire 
history. This algorithm is presented in Appendix IV. 

When using one of the standard programmes for cohort analysis it may be feasible to 
obtain the number of deaths and person-years in each age-time-exposure category by 
making separate passes through the data for each exposure category. One defines the 
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dates of entry into and exit from the 'study7 for each individual to correspond to the 
dates of entry into and exit from the particular exposure category. However, this 
approach is too cumbersome and inefficient to be practical when the number of 
separate exposure categories is very large. 

( 6 )  Approximate methods of allocating person-years 

A drawback to Clayton's algorithms is that they require the exact dates at which an 
individual crosses from each time-dependent cell into another. In practice, exact dates 
maybe available for some of the relevant variables but not others. For example, we 
may know a worker's birthdate and date of termination, but have available only the 
(integral) age and calendar year at which he entered the study or moved between jobs. 
Nevertheless, it may be possible in such cases to assign approximate dates to the 
relevant events so that a consistent ordering is maintained between the dates of entry, 
first exposure, termination and so on, and Clayton's method may then be used. It is 
important that the same procedure be applied also to the classification of deaths, so 
that one does not have person-years accumulating in cells where no deaths are 
possible, or vice versa. 

An alternative approach to the problem of missing days and months in date variables 
is to use an approximate method of person-years allocation based on integral ages and 
calendar years. One such method was outlined in 82.1. For some of the examples in 
this monograph we have employed yet another approximation which divides each 
subject's observation period into annual intervals that are allocated in their entirety to 
a given time/exposure cell. Specifically, at the midpoint of each calendar year of 
follow-up, a determination is made as to the cell in which the subject should be 
classified at that moment. All of the observation time for that year, which may be less 
than a full year in case of entry into or exit from the study, is allocated to the one cell. 

3.2 Grouped data from the Montana smelter workers study 

One of the major themes of this monograph is the statistical analysis of grouped 
cohort data consisting of cause-specific deaths and person-years denominators classified 
by age, calendar period and relevant exposure variables, some of which may be 
time-dependent. In order to illustrate and compare the various analytical approaches, 
and to provide the reader with material that he can use to test his comprehension of 
the methodology, it is helpful to have available a data set that is reasonably typical of 
what one encounters in practice. Of course, one needs to balance the realism of the 
example against the need for simplicity if it is to be used as a pedagogic device. 

For this purpose we used the approximate method of person-years allocation just 
mentioned to summarize the data from the Montana study into a three-way table with 
the dimensions age, calendar period and arsenic exposure. Cumulative exposure was 
measured in terms of the duration of time spent in certain areas of the smelter where 
airborne arsenic levels were thought to be higher than average. It thus represents a 
relatively crude way of separating workers (or, more precisely, their person-years of 
observation) according to the presumed degree of hazard. The largely descriptive 
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analyses consist of estimating separate summary mortality measures for each exposure 
category and testing the statistical significance of the differences, especially for 
evidence of a trend with increasing exposure. Other, more refined approaches to 
dose-time-response analyses are discussed in Chapter 6. 

The epidemiologists who conducted this study classified the 30 work areas within the 
plant into three levels of arsenic exposure (see Appendix IE). 'High' arsenic exposure 
areas comprised the arsenic kitchen, arsenic roaster and cottrell, whereas those with 
'moderate' exposure levels were the convertor, reverbatory furnace, ore roaster and 
acid plant. All other areas were regarded as giving only 'light' exposures (Lee & 
Fraumeni, 1969). From the original data file containing the dates of entry into and exit 
from each work area for each worker, summary data consisting of the number of years 
worked in both high and moderate exposure areas were recorded by five-year calendar 
periods starting in 1910. By assuming that the exposure intensity was constant during 
each such period, we were able to determine the appropriate exposure duration 
category into which each individual should be classified at each point in time: (i) under 
1.0 years moderate or high arsenic exposure; (ii) 1.0-4.9 years; (iii) 5.0-14.9 years; 
and (iv) 15 or more years. 

The assignment of an exposure category to each calendar year was based on the 
duration of heavylmedium exposure experienced at a point two years earlier. Such 
adjustments to cumulative exposure variables are a crude way of coping with the bias 
that can arise from the fact that workers who have just entered a new cumulative 
exposure category are necessarily still employed and thus at lower risk of death, 
whereas those who change employment or retire for health reasons may have higher 
death rates (Gilbert, 1983). See the discussion in $ 1 . 5 ~  of the selection biases, known 
collectively as the 'healthy worker effect', that are caused by the fact that health status 
has a major influence on hiring, job changes and termination. This adjustment would 
be less necessary if it were possible to use onset of disease as the endpoint, rather than 
death from disease, since onset presumably occurs closer to the time of any adverse 
health effect. 

For the descriptive analyses reported in this chapter, the cohort was divided into two 
subcohorts, one consisting of the 1482 men employed prior to 1925 and the other of the 
remainder. The reason for this division was the fact that the selective flotation process 
introduced in 1924 apparently resulted in greatly reduced arsenic exposures (Lee- 
Feldstein, 1983). Substantially different dose-response trends are evident in the two 
groups. An alternative and possibly more appropriate means of coping with the change 
would be to classify the exposures as to the period during which they were actually 
received, namely before or after 1 January 1925. A man hired prior to 1925 could 
contribute to both sets of exposure duration variables, while someone employed later 
would contribute only to the post-1925 categories. However, this refinement is too 
complex for illustrative purposes. 

We used four ten-year age groups of 40-49, 50-59, 60-69 and 70-79 years and four 
calendar periods, 1938-1949, 1950-1959, 1960-1969 and 1970-1977, in order to keep 
the data file to a reasonable size. In actual practice, five-year intervals of age by 
calendar year (quinquinquennia) would be considered more appropriate in order to 
take full account of their potentially confounding effects. In order to be able to 
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Table 3.2 Standard respiratory cancer death rates and 
standard weights used for comparative analyses of the 
Montana smelter workers data 

Age range No. of deaths per 1000 person-years Standard 
(years) Calendar period weight 

(%) 
1938-1949 1950-1959 1960-1969 1970-1977 

40-49 0.14817 0.21 896 0.28674 0.37391 37.4 
50-59 0.4741 2 0.80277 1.05824 1.25469 30.1 
60-69 0.731 36 1.55946 2.33029 2.90461 21.5 
70-79 0.73207 1.63585 2.85724 4.22945 1 1 .O 

calculate and compare SMRs for the various exposure classes, standard respiratory 
cancer death rates were determined for each of the 16 agelcalendar cells by taking a 
weighted average of the death rates for the corresponding quinquinquennia (Appendix 
111), using weights proportional to the observed person-years. For calculation of 
directly standardized rates by exposure class, we chose weights to be proportional to 
the age distribution of the 1950 US population (Table 2.5). These weights thus depend 
only on age and not on calendar year. The standard rates and weights are both shown 
in Table 3.2. 

Table 3.3 presents summary data on the numbers of respiratory cancer deaths and 
person-years allocated to each exposure category by this method, as well as the results 
of certain analyses described below. Deaths and person-years that occurred outside the 
age range 40-79 years are ignored. The entire set of data records, consisting of 
observed respiratory cancer deaths and person-years denominators for each combina- 
tion of age, period and exposure, as well as other data, is listed in Appendix V. Note 
that age-year-exposure categories with no person-years of observation are omitted. The 
omissions are due largely to the fact that persons hired before 1925 could not 
contribute observations to the younger age groups during the later calendar intervals. 

A major weakness of the Lee and Fraumeni study, which also affects all the analyses 
of the Montana data reported in this monograph, is the lack of smoking histories for 
the 8014 smelter workers. Welsh et al. (1982) subsequently ascertained smoking 
information by mail questionnaire or telephone interviews from a random sample of 
1800 men, using proxy respondents for men who had died. They reported that the 
percentage of smokers was higher than for the USA as a whole, and this could well 
explain the high rates of respiratory cancer and ischaemic heart disease even in the 
'low' exposure category. There was little difference in smoking habits among men in 
the arsenic categories, however, so that the dose-response relationships are unlikely to 
be confounded by smoking. However, the positive effects of certain other variables on 
respiratory cancer, notably foreign birthplace, could well be secondary to the effects of 
smoking. Unfortunately, the smoking data were not available and could not be 
considered in the illustrative analyses. 
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Table 3.3 Dose-response analysis of respiratory cancer deaths among Mon- 
tana smelter workers, based on external standardization 

Cumulative years of moderatelheavy arsenic exposure 
(lagged two years) 

0-0.9 1 .O-4.9 5.0-14.9 15+ Total 

Workers employed prior to 1925 
No. of observed deaths 5 1 17 13 
Person-years ( x  1000) 19.017 2.683 2.600 
Crude rate 2.681 6.337 5.000 

(per 1000 person-years) 
Standardized rate 2.641 7.433 5.832 

(per 1000 person-years) 
Standard population ratea 1.185 1.185 1.185 

(per 1000 person-years) 
Expected deaths (E;) 21.47 2.95 2.76 

(standard population) 
CMF (%) 222.8 627.0 492.0 
SMR (%) 237.5 577.1 471.7 
Relative risk 1 .O 2.43 1.99 

(ratio of SMRs) 
Adjusted expected ( E ; )  78.10 10.71 10.02 
Test for homogeneity of SMR: x:= 33.7; test for trend: X: 

Workers employed 1925 or later 
No. of observed deaths 100 38 15 
Person-years ( x 1000) 74.677 13.693 5.940 
Crude rate 1.339 2.775 2.525 

(per 1000 person-years) 
Standardized rate 1.557 2.409 2.482 

(per 1000 person-years) 
Standard population ratea 1.031 1.031 1.031 

(per 1000 person-years) 
Expected deaths (E;) 74.12 13.84 6.83 

(standard population) 
CMF (%) 155.1 233.7 240.8 
SMR (%) 134.9 274.6 219.6 
Relative risk 1 .O 2.04 1.63 

(ratio of SMRs) 
Adjusted expected (E?)  121.21 22.63 11.17 

Test for homogeneity of SMR: x $ =  16.14; test for trend: X: = 8.74 

a See Example 3.1 
Based on 14 age x calendar periods for which data are available (see Appendix V) and therefore not comparable to the others. The 

other exposure categories have data for all 16 age x calendar periods. 

3.3 Comparison of directly standardized rates 

The goal of a comparative analysis is to describe the effects of the different levels of 
exposure on death rates from particular diseases. Ideally, this should be done at fixed 
levels of potentially confounding variables such as age and calendar year. However, the 
large number of comparisons and the instability of the component rates would then 
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Table 3.4 Notation used for two-way classification of 
deaths and person-years 

Stratum ( j )  Exposure level ( k )  

1 Deaths 
Person-years 

2 Deaths 
Person-years 

J Deaths 
Person-years 

Total Deaths 
Person-yea rs 

2 ... K Total 
dl2 - a .  d1K Dl 
n12 . - -  nlK Nl 
d22 4 K  D2 

n22 . ... . . n2, . N, ... . ... . 
d . dJK Dj 
n ~ 2  . . - n~~ N~ 
0, ... OK o+ 
n+2 ... n+K N+=n++ 

make for a rather confusing picture. In our example, 16 separate evaluations 
depending on the particular agelyear stratum would be required. One possible remedy 
is to base the evaluation on a summary measure such as the directly standardized rate. 

Table 3.4 introduces some notation for the number of deaths and person-years of 
observation in each of J strata (j = 1, . . . , J) and K exposure categories (k = 
1, . . . , K). Thus, the directly standardized rate for the kth exposure level may be 
written 

J 

= C ydjkInjk, 
j=l 

(3.1) 

where the weights are assumed to have been normalized so as to sum to one. These are 
divided by the standard population rate CyA; in order to find the CMFs for each level. 
In the examples below, the standard weights depend only on age (Table 3.2). 

Example 3.1 
Table 3.3 illustrates the application of several elementary methods to the grouped data from the Montana 

study. Crude and directly standardized death rates are shown in the first few rows of each part of the table, 
the two parts corresponding to the pre- and post-1925 subcohorts created to illustrate the effect of date of 
hire. Stratum-specific death rates for each exposure group, calculated from the deaths and person-years in 
Appendix V, were multiplied by the standard weights (Table 3.2) and summed to give the directly 
standardized rate. The standard population rate used for comparison is simply the weighted average of the 
stratum-specific standard rates, the same weights being used for each calendar period. Both sets of 
standardized rates were divided by the total of the weights for those age x calendar periods that had some 
person-years of observation for the particular exposure category. In the second part of Table 3.3, note the 
limitation in the use of the standardized rate as a comparative measure caused by a lack of data for certain 
age x calendar periods for persons with the longest exposure. There is a substantial jump in the standardized 
rates as one progresses from the first to the second exposure category, but a less obvious trend thereafter. 

In actual epidemiological practice, examination of dose-response trends in terms of 
directly standardized rates or CMFs seems largely and properly to be limited to studies 
in which there are substantial numbers of deaths in each exposure category. This 
ensures that the standardized rates are reasonably stable, so that evidence for a trend 
should be clear from a simple examination of the data. Although questions of statistical 
significance are generally not at issue, it is nonetheless prudent to report the standard '. 
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Table 3.5 Age-standardized death rates (all causes combined) and mor- 
tality ratios among male ex-smokers of 1-19 cigarettes per day, ages 50-74 
yea rsa 

Smoking category Number of Number of Standardized death rate CMF 
men deaths (per 100 000 person-years) 

Current smokers 118373 9117 2 359 172 
Ex-smokers by years 

since last smoked 
Under 1 81 4 64 2 212 161 
1-4 1 986 144 1 985 144 
5-9 1 909 128 1 840 134 
1 O+ 4 578 255 1 397 102 

Nonsmokers 62332 3512 1 374 100 

a From Hammond (1966) 

error of each summary rate (equation (2.7)) as a means of judging its stability. In case 
of uncertainty about the statistical significance of the observed results, the reciprocals 
of the corresponding variances could be employed as empirical weights in a formal 
regression analysis of the directly standardized rates on quantitative exposure 
variables. Such a regression analysis could also be helpful if the summary data were the 
only data available, for example, if they were obtained from published sources. 
However, statisticians have pointed out the need for caution in regression analyses of 
standard rates or other indices that have (age-specific). population denominators in 
both dependent and independent variables. 

Example 3.2 
The American Cancer Society study of one million men and women (Hammond, 1966) furnishes an 

example in which numbers of deaths are sufficiently large that direct standardization is appropriate. The 
effect of smoking on mortality was reported in terms of the ratios of the standardized death rates for various 
categories of smokers relative to the standardized rate for nonsmokers. Table 3.5, which concerns smokers of 
1-19 cigarettes per day, indicates that cessation of smoking for increasing lengths of time results in a decline 
in the all-causes death rate compared to that for continuing smokers. Ten years after cessation of exposure, 
the death rate among ex-smokers is down nearly to the level among lifelong nonsmokers. 

3.4 Comparison of standardized mortality ratios 

If the data are not so extensive and questions of sampling variability are of greater 
concern, it is generally appropriate to use the SMR in place of the CMF as a measure 
of how the death rates in each exposure category compare with those of the standard 
population. Evidence for a dose-response trend may then be sought in terms of an 
increase or decrease in the SMRs with increasing exposure. Referring to Table 3.4, let 
us denote by Ok = Cj djk the observed number of deaths in the kth exposure group. 
Keeping to the convention that quantities calculated from external standard rates are 
starred (*), the expected numbers of deaths may be written 
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and the standardized mortality ratios 

The grand totals of observed and expected deaths are denoted by 0, = C Ok and 
Ez = C E,*, respectively. 

The overall SMR for the entire cohort is given by O+IET, which was discussed in 
detail in Chapter 2. Here we are interested in comparisons among the different 
subcohorts, that is, among the different SMRks. When examining the SMRks for a 
trend with increasing exposure, it should be kept in mind that they are relative 
measures of effect calculated with reference to an external set of rates and that they 
may not be strictly comparable to one another. For reasons discussed at length in $2.3, 
ratios of the SMRks for different exposure categories may fail to summarize adequately 
the ratios of the stratum-specific rates. This occurs in precisely those circumstances 
when the SMR,s themselves are not good summary measures, namely when the ratios 
of cohort to standard death rates vary widely from one stratum to another. For 
example, it might happen that heavier exposures had the effect of adding progressively 
greater amounts to the age-specific (background) rates that would be expected in the 
absence of exposure. However, if much higher background rates were expected with 
the heavier exposures, for instance, because persons with such exposures tended to be 
older, such an additive dose-response relationship could well be missed by a 
comparison of SMRks. 

Example 3.3 
Table 3.6 presents fictitious data that illustrate the phenomenon just described. The effect of increasing 

exposure is to increase the two age-specific death rates by 2 per 100 person-years (low exposure) or 4 per 100 

Table 3.6 Fictitious data to illustrate a potential defect in the SMR 

Age range (years) SMR (%) CMF ( % I  

35-44 45-54 Total 

Unexposed 
Rate (per 100) 
Population 
No. of observed deaths 
No. of expected deaths 

Lightly exposed 
Rate (per 100) 
Population 
No. of observed deaths 
No. of expected deaths 

Heavily exposed 
Rate (per 100) 
Population 
No. of observed deaths 
No. of expected deaths 

Standard population 
Rate 
Weight 
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person-years (high exposure). These increases are reflected in increases in the CMFs, which are averages of 
the age-specific rates. However, due to the very skewed age distribution and the fact that the cohort to 
standard rate ratios vary markedly with age, the apparent trend as measured by the three SMR,s is reversed. 
Compare Table 2.13. 

Fortunately, the statistical confounding is not so serious in typical applications, and a 
dose-response analysis carried out in terms of SMRks often yields results that are quite 
similar to those obtained by other methods. The formal assumption required for an 
SMR analysis to be completely appropriate is that the stratum-specific death rates for 
each exposure class be proportional to the external standard rates, this being precisely 
the condition needed to assure comparability of the SMRks. This assumption may be 
investigated in practice by fitting an explicit model and comparing the observed and 
fitted number of deaths in each stratum-exposure cell, using the techniques described 
in the next chapter. Thus, the data themselves should give indications of situations in 
which inferences based on the SMR are liable to be seriously in error. When there 
appears to be heterogeneity of (multiplicative) dose-response effects between different 
age strata, it is better to use a different model to describe this heterogeneity rather than 
to summarize a number of disparate effects in a single SMR. 

When the proportionality assumption holds, we may regard the total number of 
deaths, Ok, observed at the kth exposure level as having an approximate Poisson 
distribution with mean OkE:, where E: represents the expected number of deaths and 
Ok the unknown SMR for this level of exposure in relation to the standard rates (see 
$4.3). The ratios of SMRks, which we denote qk = Ok/8,,  thus represent relative risks 
for each exposure level using the first level as baseline ( q l  = 1). These have precisely 
the same interpretation as do the relative risk parameters qk estimated in case-control 
studies ($4.5 of Volume 1). They represent the ratios of age-specific rates for different 
exposure categories, assuming these to be constant over age-calendar year strata. 

In this section we consider methods for estimating the individual relative risks, for 
determining their standard errors, for testing the statistical significance of each one 
individually, and for testing the global null hypothesis that the qk equal unity (i.e., the 
SMRks are equal) for k = 1, . . . , K against alternatives of heterogeneity and trend. 
The tests involve a comparison of the observed numbers Ok with fitted values 8; 
calculated under the hypothesis that each 8, is equal to some common value 8. These 
latter are easily obtained by distributing the total deaths 0, among the K exposure 
levels in proportion to the expected numbers: 

We refer to the 8: as 'adjusted expected values' to reflect the fact that they are equal 
to the E,* scaled by the overall SMR, O+/E:, so as to ensure that Ck 8: = Ck 0,. 

( a )  Two dose levels: exposed versus unexposed 

The simplest comparison is between two levels of exposure, say exposed (k = 2) 
versus unexposed (k = 1). Thus, we regard 0, as a Poisson variable with mean 8,ET 
and 0, as Poisson with mean 8,E,*. If we set 8 = el ,  11, = q, = 02/8, and 8q = 02, 
suppressing the subscripts for clarity, the parameter of interest is the relative risk q ,  8 
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playing the role of a nuisance parameter that interferes with our inferences concerning 
v. According to standard principles of statistical inference (Cox & Hinkley, 1974), it is 
appropriate in such circumstances to consider a distribution for the observed data 
which depends only on the parameter of interest. This is quire easy here since the 
distribution of two Poisson variates conditional on their sum is binomial (Lehman, 
1959). More precisely, 

where 

or, equivalently, 

Statistical inferences about the relative risk v ,  whether exact or approximate, may 
therefore be carried out by making inferences about the binomial parameter n in (3.5) 
and then transforming v ia  (3.6). They are formally identical to those used in the 
analysis of matched case-control pairs with dichotomous exposures (85.2 of Volume 1). 
The relevant equations need merely be rewritten for use with cohort data. 

Under the null hypothesis vo = 1 we have no = E,*/ET, and an exact test is obtained 
from the tail probability of the corresponding binomial distribution. For example, if 
0' > E,*, the one-sided significance level or p value is given by 

In practice, it will usuallysuffice to use the approximate chi-square statistic based on 
the observed deviation of 0' from its expectation. This may be written 

where we have used the fact that Var (0') = O+no(l - no) = 8f E,*/(E: + E;) and 
0, - 81 = -(02 - E;). The numerator(s) in (3.7) are reduced in absolute value by 112 

' 
before squaring for a continuity correction. 

( b )  Point and interval estimation of the relative risk 

The maximum likelihood estimate of n is A = 0 2 / 0 + ,  from which it follows that the 
maximum likelihood estimate of v is 
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the ratio of the two SMRks. Exact 100(1- a)% confidence limits for ;rt may be found 
from the charts of Pearson and Hartley (1966) or computed using the equations 

and 

where Fa12(v1, v2) denotes the upper 100,12 percentile of the F distribution with vl and 
v2 degrees of freedom. The limits (3.9) are inserted into (3.6) to obtain confidence 
limits qL and for the relative risk. Alternatively, approximate limits based on the 
normal approximation to the binomial probabilities (Cornfield, 1956) are given as the 
solutions to the equations 

and (3.10) 

These are quadratic equations in the unknown variable 5 = fi. 
Example 3.4 

Suppose 0, = 5 and.0, = 14 bladder cancer deaths are observed among unexposed and exposed members 
of an industrial cohort, respectively, whereas El  = 7.3 and E2 = 5.5 were expected from vital statistics 
available for the region in which the plant was located. The overall SMR is O+/E+ = 19112.8 = 1.484, and 
adjusted expected values are ET = 7.3 X 1.484 = 10.84 and E; = 5.5 x 1.484 = 8.16. Individual SMRs are 
517.3 = 0.685 and 1415.5 = 2.545 for unexposed and exposed so that 6 = 2.54510.685 = 3.72 is the point 
estimate of relative risk. The test (3.7) for the hypothesis q = 1 gives 

with continuity correction @ = 0.01). Using equation (3.9) and the fact that Fo.,,(12, 28) = 2.45 and 
F0.,(30, 10) = 3.31, exact 95% confidence limits on the associated binominal probability are 

and 

from which we determine qL = 1.26 and qu = 13.2 as limits on the relative risk. The approximate limits are 
found as solutions to 

and 

these being qL = 1.25 and qu = 11.8, respectively. 
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( c )  Testing for heterogeneity and trend in the SMRs 

The same methods may be used to estimate the relative risks qk for. each level of 
exposure k = 2, . . . , K and to test the significance of each one individually. One 
merely substitutes Ok and I?: for O2 and E; in equations (3.7) through (3.10). 
However, since interpretation of a large number of separate comparisons is difficult, 
we also need a test of the hypothesis that all K qk are simultaneously equal to unity. 
This is easy to derive using the framework already introduced (Kilpatrick, 1962, 1963). 
Conditional on the total observed deaths, 0 + ,  the joint distribution of 0 = 
(01, . . . , OK) under the null hypothesis is multinomial with cell occupancy probabil- 
ities (nl, . . . , nK) where nk = E:IET. A test of the global null hypothesis is thus 
achieved by comparing the Ok to the fitted values E: using the standard criterion 

which should be referred to tables of the chi-square distribution with K - 1 degrees of 
freedom. 

One disadvantage of (3.11) is its relative lack of power against the specific alternative 
hypothesis of a trend in the SMRks with increasing exposure. Even if none of the 
pairwise comparisons of baseline and exposure groups nor the multi-degree of freedom 
statistic (3.11) yields a significant result, substantial evidence for a dose-response trend 
may nevertheless be generated if the estimated relative risks are in the hypothesized 
order. The Poisson trend statistic (Armitage, 1955; Tarone, 1982) was designed 
especially to detect such monotonic dose-response relationships. If xk denotes a 
quantitative dose level associated with the kth exposure category, this single degree of 
freedom test is given by 

In situations in which the categories are merely ordered, and there is no specific 
quantitative exposure, it suffices to set xk = k. Formal justification for both (3.11) and 
(3.12) stems from the fact that they are efficient score tests under various sets of 
assumptions, including the log linear models for Poisson variables discussed in the next 
chapter (Tarone & Gart, 1980). 

Example 3.5 
Returning to the Montana data, the standard rates shown in Table 3.2 were used in conjunction with the 

data in Appendix V to produce expected numbers of deaths and SMRks for each exposure category using 
equations (3.2) and (3.3). With the exception of the highest dose category for the post-1924 cohort, the 
SMR,s are in reasonable agreement with the corresponding CMF,s (Table 3.3). However, the CMF for this 
category is not comparable to the others since there are no data for the earliest calendar period for two age 
groups. To alleviate this difficulty, we could, of course, restrict all CMFs to those age x calendar period 
strata for which full data are available. Relative risks obtained by dividing each SMR, by the SMR for 0-0.9 
years exposed indicate that workers hired before 1925 who had 15 or more years of moderate to heavy 
arsenic exposure have mortality rates from respiratory cancer that are approximately three times higher than 
the rates among workers who remained in areas of the plant where only light exposures occurred. 

The penultimate rows in both parts of Table 3.3 show the adjusted expected values E,* for the four 
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exposure categories. These were obtained in accordance with equation (3.4), multiplying the expected 
numbers shown in the sixth row of each part of the table by the overall SMR. In the 0 - 0.9 years exposure 
group for pre-1925 employees, for example, we have 21.47 x (115J31.62) = 78.10 cases expected after 
adjustment. The global test (3.11) yields 

as shown at the bottom of the first part of Table 3.3. Likewise, the trend statistic (3.12) is 

Note the use of the coded levels x, = k in this example. 

(d) Trend test for exposure effect versus trend test for dose-response 

The object of a dose-response analysis is to demonstrate a continuously increasing 
response to increasing dose or, in the present context, a continuously increasing 
(relative) risk with increasing exposure. While the trend statistic (3.12) is designed to 
detect such alternatives to the null hypothesis (no effect of exposure), it may 
sometimes give a significant result even if the relative risks are not continuously 
increasing. This could happen, for example, if the risk were increased for any amount 
of exposure relative to no exposure but the risks among the different exposure levels 
remained constant. The causal inference linking exposure and disease is less secure in 
such cases, because of the greater possibility that a dose-response function that jumps 
up initially and then remains flat could be produced by bias or confounding. For 
example, the weak relationship between coffee drinking and bladder cancer observed 
in several case-control studies was interpreted as noncausal on just such a basis ($3.2 of 
Volume 1). One may wish to restrict the trend statistic to a comparison of positive dose 
or duration levels and exclude the baseline nonexposed category when testing 
specifically for a dose-response effect. 

Example 3.6 
Returning to Table 3.3, we noted significant 'trends' in relative risk with increasing duration of 

heavy/medium arsenic exposure for both the pre-1925 and post-1925 sub-cohorts (~:=30.5 and 8.74, 
respectively). However, the relative risk estimates in fact showed little variation among the three highest 
categories of exposure. Restricting the trend analyses to the categories 1.0-4.9 years duration, 5.0-14.9 
years, and 15+ years, this being accomplished by adjusting the expected values to agree with the total 
observed for the three categories, and applying the usual statistic (3.12), we find X: = 1.67 (p = 0.19) for the 
pre-1925 cohort and X: = 0.60 (p = 0.44) for the post-1925 cohort. This confirms what is already apparent 
from an examination of the relative risks, namely, that there is no evidence for an increasing dose-response 
trend with exposure duration above one year. 

If the object of the analysis is primarily to test for a possible carcinogenic effect, 
however, the baseline or lowest dose level should definitely be included in calculation 
of the trend. An issue that then arises is whether the intercept of the regression line of 
SMR on dose, the slope of which is implicitly being tested in a trend analysis, 
necessarily passes through unity or instead through some other value that represents 
the true position of the cohort uk-a'-uis the standard population. If the true SMR at 
zero dose were somehow known a priori to be equal to one, although this is unlikely in 
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practice, this would permit a more powerful analysis and yield a more significant result 
on average (Gilbert, 1983). 

The trend statistic (3.12) implicitly assumes that the intercept is being estimated from 
the data. One argument in favour of estimating the intercept is that the cohort may 
have higher death rates than expected even in the low dose range, due to the effects of 
other risk factors. Or the initial SMR may be less than 1 due to a 'healthy worker' 
selection effect. A trend analysis that assumed it was equal to 1 would yield a trend test 
statistic that was too large in the first case and too small in the second. With the 
Montana study, for example, the SMRks for respiratory cancer in the lowest dose groups 
are 237.5% and 134.9% for the pre- and post-1925 cohorts, respectively (Table 3.3). 
It is unclear whether the excess is due to generally higher levels of smoking in the study 
population or to the effects of arsenic exposures that even 'low dose' persons may 
receive. Thomas, D.C. and McNeill (1982) note that other reasons for the regression 
line not to pass through unity at zero dose, besides the possible noncomparability of 
the standard population, are that the assumed dose-response function is wrong or that 
random errors in dose measurement have led to a slope estimate that is too shallow. In 
the face of such uncertainty, it does not seem prudent to make a strong assumption 
about the intercept. 

(e) Selection of the dose metameter 

In order to carry out the test for trend we must assign quantitative values to each 
exposure category. Underlying the test is the implicit assumption that some transfor- 
mation of thedisease rate is a linear function of a dose variable x .  It is the slope of this 
relation that is being tested (Tarone & Gart, 1980). Thought should be given to the 
most appropriate values, since the choice sometimes can have a substantial influence 
on the significance of the result. Often one will want to choose the dose scale so that 
there is an approximately linear relationship between disease rates and exposures, at 
least at low doses. Multistage models of carcinogenesis (Chapter 6) suggest a low-order 
polynomial relationship of the form A(d) = Po + P,d + P,d2 + . . . , where all 
coefficients are positive. These imply that there is an approximately linear relationship 
between relative risk and exposure at low (measured) doses. Other assignments of x 
values to exposure categories may be tried also, although problems of interpretation 
will arise if a large number of separate tests are carried out on the same data. 

Example 3.7 
Table 3.7 shows numbers of deaths from haematological malignancies among workers at the Portsmouth 

(US) Naval Shipyard, according to the cumulative radiation exposure received by the time of death 
(Najarian, 1983). Also shown are person-years denominators by dose category. In order to test for a trend in 
the Poisson rates with increasing dose, we use Armitage's (1955) statistic, which has the same form as (3.12) 
except that the expected deaths E~ are obtained by allocating the total deaths in proportion to the 
person-years in each category. Both observed and expected deaths are shown in Table 3.7. 

Note that the intervals used for grouping the data into exposure categories are approximately logarithmic. 
After the initial control category, each group of radiation doses is approximately ten times larger than the 
preceding one. Thus, the usual assignment of coded values xk = k to the K = 7 exposure categories 
effectively means that a log dose metameter is being used. An alternative would be to use a linear dose 
metameter, assigning to each exposure category the average of the doses included within it. Someone who 
believed that the true dose-response curve was discontinuous and that there was a threshold at 1 rad might 
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Table 3.7 Observed and expected deaths from haematological malignancies 
among Portsmouth (USA) Naval Shipyard workers, by cumulative radiation dosea 

Lifetime No. of observed No. of person- No. of expected Dose metameters 
dose (rems) deaths years deathsb 

Linear Log Threshold 

- ---- 

Total 17 122 455 17.00 

Test for trend (x:): 
p value (one-sided): 

a From Najarian (1983) 
Assuming constant rate in all dose groups 

assign x, = 0 for k = 1, 2, 3, 4, 5, and x, = 1 for k = 6 and 7. We would have to be suspicious of this choice 
for the threshold, however, since setting it at 1 rad for these particular data obviously maximizes the 
difference in relative risks one will observe between the 'exposed' (x, = 1) and 'unexposed' (x, = 0). 

The three dose metameters lead to rather different trend statistics in this example. The logarithmic scale 
yields = 2.25 @ = 0.07; one-sided), whereas the value on the arithmetic scale is somewhat lower at 
x2 = 1.19 @ = 0.14). The most significant result is obtained from the threshold model comparing doses over 
and under 1 rad (x2 = 3.53, p = 0.03). Setting the threshold at 0.5 rads reduces x2 from 3.53 to 2.32, 
indicating the sensitivity to a basically arbitrary threshold. Since the results obtained with the continuous 
scales do not attain statistical significance, one would conclude little more than that the situation perhaps 
warranted further investigation. No excess of deaths due to cancer nor specifically to cancer of the blood or 
blood-forming tissues was found in the analysis of these data performed by Rinsky et al. (1981). It seems 
likely that the positive results reported from the earlier proportional mortality study (Najarian & Colton, 
1978) were biased by the incomplete ascertainment of deaths that had occurred among workers at the facility 
(Committee on the Biological Effects of Ionizing Radiation, 1980). See also the discussion in 01.6. 

( f )  Alternative tests for trend 

The statistic (3.12) that we have suggested for a trend test relies heavily on the 
assumed Poisson variability of the observed numbers of deaths. In some situations in 
which there are a large number of different comparison groups, it may be more 
prudent to carry out a standard regression analysis of the SMRks or their logarithms on 
the quantitative dose levels. Especially when the SMRks are calculated for different 
intervals of calendar time, the observed variation in numbers of deaths between 
adjacent time intervals may be greater than would be expected from Poisson sampling 
variation. It is then more appropriate to evaluate the linear time trend against the 
observed background of year-to-year variation rather than against the smaller 
theoretical variance. The issue is complicated by the fact that the estimate of residual 
variation from the regression analysis may be heavily dependent on the particular 
regression model chosen, or may be unstable because the number of different dose 
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categories does not provide a sufficient number of 'degrees of freedom' for error 
estimation. Furthermore, there is some controversy regarding the extent to which one 
should account for the underlying Poisson variability by giving greater weight in the 
regression analysis to SMR,s based on large numbers of deaths. 

The ideal solution is probably intermediate between an unweighted analysis, in 
which most of the observed variability is attributed to extraneous factors rather than 
sampling, and an analysis based entirely on Poisson sampling theory (Pocock et al., 
1981; Breslow, 1984a). A practical alternative is to carry out both Poisson and 
unweighted regressions and compare results. 

Example 3.8 
Table 3.8 presents data from the study of Rocky Mountain uranium miners quoted by Thomas, D.C. and 

McNeill (1982). There is a reasonably linear relationship between the logarithm of the SMR and the 
logarithm of the average cumulative radiation exposure, measured in working level months (WLM) (Fig. 
3.2). As noted in equation (2.9), the (Poisson) variance of the log SMR is estimated approximately by the 
reciprocal of the number of deaths, which suggests we use the number of deaths to weight the individual 
observations. A weighted linear regression analysis of log SMR on log WLM yields a residual (weighted) 
sum of squares of 6.68 on six degrees of freedom. We conclude that the extra-Poisson variability in this case 
is minor or nonexistent, since, otherwise, the residual mean square would be substantially larger than one. 
The corresponding F statistic for the significance of the linear trend is 57.4 on one and six degrees of 
freedom. An unweighted analysis yields F,,, = 59.8. Both results confirm the highly significant X: = 95 that is 
found from the usual trend test (3.12). 

If one considers instead a linear regression of the SMR, on dose x,, weighting each observation by 
(~;)'/0,, where Ez is the expected and 0, the observed number of deaths, the residual mean square is 
11.09/6 = 1.85. In view of the preceding results, the excess above unity is probably due more to the lack of fit 
of the linear model than to non-Poisson variation. The F statistics are 41.9 for the weighted analysis and 
261.4 for the unweighted. The discrepancy between the weighted and unweighted test statistics on the 
arithmetic scale results from the data point for the highest dose category being far removed from the others 
and having a much greater influence on the unweighted analysis than the weighted one. This instability 
reminds us of the dangers of the uncritical use of least-squares regression techniques, especially with small 
samples, and suggests that they are best reserved for situations in which there is a large number of dose 
categories. Alternatively, modern techniques of robust regression (Huber, 1983) may be used. 

Table 3.8 Lung cancer risk in US uranium minersa 

Cumulative W L M ~  Person-years Lung cancers SMR (%) 

Range Midpoint Observed Expected 

0-119 60 5 183 3 3.96 76 
120-239 180 3 308 7 2.24 312 
240-359 300 2 891 9 2.24 402 
360-599 480 4 171 19 3.33 571 
600-839 720 3 294 9 2.62 344 
840-1 799 1 320 6 591 40 5.38 743 

1 800-3 71 9 2 760 5 690 49 4.56 1 075 
>3719 7000(est) 1 068 23 0.91 2 727 

All 1 180 (mean) 32 196 159 25.24 

a From Committee on the Biological Effects of Ionizing Radiation (1980) as quoted by 
Thomas, D.C. and McNeill (1982) 

WLM, working-level-month measure of cumulative exposure 
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Fig. 3.2 Log-log plots of SMRs for US uranium miners from Table 3.8 

Log working-level months 

( g )  Some examples from the literature 

Doll and Peto (1976) reported results of the 20-year follow-up of British doctors to 
study cigarette smoking and mortality. Most of their analyses compared cause-specific 
mortality rates among exposure categories determined by smoking history, using 
methods of internal standardization that are described below. However, the authors 
also wanted to see whether the fact that doctors gave up smoking more rapidly than 
members of the general population was reflected in an improvement in their relative 
survival. Thus, mortality rates for all of England and Wales were used as a standard for 
computation of SMRks for each calendar year for two causes of death (Fig. 3.3). The 
evident decline in the relative rates of lung cancer was confirmed by a least-squares 
linear regression analysis of the 20 SMRks on calendar year. 

Another example illustrates more specifically the use of the Poisson trend statistic. 
Table 3.9 presents leukaemia mortality rates during various intervals following first 
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Fig. 3.3 Trend in number of deaths certified in British male doctors as percentage of 
number expected from experience of all men in England and Wales of the 
same ages. Results are given from the second to the twentieth years of study 
for lung cancer (a) (459 deaths observed versus 931.9 expected) and all 
other cancers (0) (1238 deaths observed versus 1630.7 expected). Regres- 
sion lines on time were calculated from data for the fourth to the twentieth 
years of study (regression coefficients: -1.4 for lung cancer and 0.0 for all 
other cancers). From Doll and Peto (1976) 

0 . I . . ,  1 I i 
01 2 3 4 5  10 I5 2 0  

Time since start of study [years) 

treatment for a cohort of ankylosing spondylitis patients (Smith & Doll, 1982). The 
expected numbers shown were also obtained from mortality rates for England and 
Wales specific for sex, age and calendar year. In this example, the statistic (3.12) gives 
a value of X: = 10.40 and provides clear evidence for a decline in the observed: 
expected ratios with increasing time since exposure. 

Finally, Table 3.10 presents data from a cohort study of US and Canadian insulation 

Table 3.9 Observed and expected leukemia deaths among 
ankylosing spondylitis patients, by time since initial treatmenta 

Time since treatment (years) Total 

Observed 6 10 6 3 1 4 1 31 
Expected 1.00 0.89 0.87 0.90 0.96 0.90 0.95 6.47 
SMR 6.00 11.24 6.90 3.33 1.04 4.44 1.05 4.79 

a From Smith and Doll (1982) 
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Table 3.10 Lung cancer deaths and person-years among asbestos 
and insulation workers according to duration of time since initial 
exposurea 

Duration Number Person-years No. of observed No. of expected SMR 
(years) of men deaths deaths (%) 

0-9 8 190 26 393 0 0.7 - 
10-14 9063 29003 7 2.7 255 
15-19 9948 34066 29 8.5 340 
20-24 8887 31 268 59 17.0 348 
25-29 6 596 20657 105 21 .O 500 
30-34 3 547 11 598 112 18.4 608 
35-39 2020 5403 65 11.5 568 
40-44 1108 3160 40 8.1 493 
45+ 1448 5305 69 17.8 389 

a From Selikoff et a/. (1980) 

workers (Selikoff et al., 1980). Ratios of observed to expected lung cancer deaths 
reached a peak between 30-35 years from the initial exposure to asbestos. This does 
not mean, of course, that the absolute rates of lung cancer decline after 35 years, 
although this is a common misconception. The death rates continue to increase as the 
exposed workers grow older, but at a slightly lower rate in comparison to the general 
population than was true during earlier years. Because the SMRs first rise and then 
fall, one could well expect the trend statistic not to yield a significant result in this 
example. Various possible explanations have been suggested for the decline. One is 
that the combined exposure to asbestos and cigarettes was so lethal that heavy 
smokers were eliminated from the study cohort at an even faster rate than they were 
eliminated from the general population. Another possibility is that the termination of 
exposure following retirement, which would start to occur 35 years or so after initial 
employment, led to an attenuation of subsequent relative risk but at a much slower 
pace than that noted for ex-smokers (Table 3.5). Thirdly, it should be noted that there 
is a strong confounding effect in this cohort between period of initial exposure, when 
different types of asbestos fibres may have been used or the exposure intensity 
different, and the time since first exposure. Finally, the SMRks reflect any difference in 
smoking patterns between asbestos workers and the general population, and these also 
may have been changing over time. 

3.5 Comparison of internally standardized mortality ratios 

The methods of analysis discussed so far rely on standard rates that are external to 
the study cohort in order to  make comparisons between exposure groups. Questions 
about the appropriateness of the particular standard selected and the comparability of 
the resulting SMRks suggest that a more satisfactory approach would be to use the 
observed data, without consideration of any outside rates, when making internal 
comparisons. 

From a theroretical viewpoint, the method of internal standardization is probably 
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best regarded as a rough and ready approximation to the more complicated but more 
appropriate methods of grouped data analysis that are presented in the next section. If 
there are only two exposure categories, it tends to yield mildly conservative tests and 
estimates in typical practice (Bernstein et al., 1981; see also Fig. 4.3). The conservatism 
could be substantial if age and calendar time or other stratification variables strongly 
confound the exposure-disease relationship. Nevertheless, the method of internal 
standardization enjoys a considerable following due to its relative simplicity and strong 
intuitive appeal. 

If there are more than two exposure categories, internal standardization does not 
eliminate the problem that was discussed at length in 02.3 concerning the comparability 
of SMRs. Although the external standard is replaced by an internal standard consisting 
of the combination of all exposure groups, in particular examples this pooled group 
may be dominated by one or two large exposure groups. When comparing the ratios of 
SMRks for two other exposure groups, therefore, it is possible for the same type of bias 
to occur. 

The calculations required for internal standardization are surprisingly easy. Refer- 
ring to the data layout in Table 3.4, the stratum-specific death rates calculated without 
regard to exposure category are A, = D,/N,. It follows that the expected number of 
deaths in the kth exposure class, assuming that exposure had no effect on the rates, is 

These internally derived fitted values share with the adjusted expected numbers (3.4) 
the property that their sum is equal to the total number of observed deaths. They are 
used in place of the E: in equations (3.7), (3.8), (3.11) and (3.12) in order to make 
approximate estimates of the relative risks for each exposure category and approximate 
tests of their heterogeneity and trend. As already noted, these tests and estimates tend 
to be somewhat conservative, more so if there is a high degree of association between 
the stratum variables and the exposures. However, this feature is not well illustrated by 
the data on the Montana workers, since, as often happens .in practice, the degree of 
confounding is rather slight. 

Example 3.9 
By pooling the respiratory cancer deaths and person-years shown in Appendix V over period of hire and 

duration of exposure, one obtains the pooled death rates shown in Table 2.8 by ten-year intervals of age and 
calendar period. Table 3.11 presents the expected numbers of deaths calculated for each exposure category 
by multiplying the pooled rates by the appropriate number of person-years and summing in accordance with 
equation (3.13). Separate analyses were carried out according to period of employment. Note the similarity 
between the internally fitted values and the adjusted expected values shown in Table 3.3. The latter are 
slightly more extreme and therefore indicate a slightly steeper dose-response relationship. For example, the 
estimated relative risk for the highest exposure category among those employed prior to 1925 is 3.22 for 
external standardization versus 3.09 for internal standardization. 

Inserting the observed and expected values from Table 3.11 in equations (3.11) and (3.12), following 
exactly the same method of calculation as in Example 3.5, the values of the tests for heterogeneity and trend 
are X g  = 31.7 and XT = 28.3, respectively, for the pre-1925 subgroup. These are less than the values found 
with external standardization, but they are still highly significant ( p  <0.0001). A similar result holds for the 
post-1925 subgroup. 
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Table 3.1 1 Dose-response analysis of respiratory cancer deaths among Montana 
smelter workers, based on internal standardization 

Cumulative years of moderatelheavy arsenic exposure 

0-0.9 1.0-4.9 5.0-14.9 15+ Total 

Workers employed before 1925 
No. of observed deaths 51 17 13 34 115 
No. of expected deaths (adjusted 77.58 10.51 10.18 16.73 11 5.00 

for age and calendar year) 
Relative risk (using ratios of 1.0 2.46 1.94 3.09 

Observed/Expected) 
Relative risk (Mantel-Haenszel) 1.0 2.49 2.00 3.14 
Approximate test for homogeneity, X: = 31.7; test for trend, Xi = 28.3 

(using observed and expected numbers only with equations (3.1 1) and (3.12)) 
Complete test for homogeneity, X: = 31.9; test for trend, Xi = 28.5 

(using full variances with equations (3.24) and (3.25)) 

Workers employed in 1925 or after 
No. of observed deaths 100 38 15 8 161 
No. of expected deaths (adjusted 122.1 2 22.20 1 1.04 5.64 161 .OO 

for age and calendar year) 
Relative risk (using ratios of 1.0 2.09 1.66 1.73 

Observed/Expected) 
Relative risk (Mantel-Haenszel) 1.0 2.13 1.64 1.73 
Approximate test for homogeneity, X ;  = 17.7; test for trend, Xi = 10.1 

(using observed and expected numbers only with equations (3.11) and (3.12)) 
Complete test for homogeneity, X: = 17.8; test for trend, = 10.2 

(using full variances with equations (3.24) and (3.25)) 

Table 3.12 Number of men developing nasal 
sinus cancer by age at first employment and 
number expected after standardization for year 
of employment and calendar year of 
o bservationa 

Age at first No. of men developing Observed as 
employment nasal sinus cancer proportion of 
(years) expected 

Observed Expectedb 

Under 20 2 5.36 0.37 
20-24 9 1 1.30 0.80 
25-29 13 12.26 1.06 
30-34 8 6.34 1.26 
35 + 8 4.73 1.69 
All ages 40 39.99 
X 2  for trend = 5.2; degrees of freedom (df) = 1; 
p = 0.03 

a From Doll et al. (1970) 
If age at first employment had no effect on susceptibility to 

cancer induction 
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An example from the literature 
A classic example of the use of internal standardization to examine the effect of various time factors on 

mortality rates is the report of the study of nickel refinery workers in South Wales by Doll et al. (1970). The 
study design is discussed in detail in Appendix ID. Cancer deaths and person-years denominators were 
classified simultaneously by year of employment (a fixed variable), by age at employment (fixed), and by 
calendar year of occurrence (time-varying). The effect of each factor was then examined according to the 
methods described above, using simultaneous stratification on the other two factors. The results shown in 
Table 3.12 indicate that age at first employment had an influence on the relative incidence of nasal sinus 
cancer even after the effect of years since exposure (as determined by year of employment and calendar year 
of observation) had been accounted for. However, calendar year had little effect following adjustment for 
the other two variables (Table 3.13). The authors concluded: 'The results suggest that, so far as nasal cancer 
is concerned, susceptibility to induction increases with age and that the risk remains approximately constant 
for between 15 and 42 years after the carcinogen has been removed from the environment.' The last 
statement is a reference to the fact that no nasal sinus cancer death was observed among men first employed 
after 1925, when the manufacturing process was changed. We can agree with these conclusions, provided we 
bear in mind that they refer to relative risks of cancer mortality rather than absolute ones. Additional 
analyses of these data which incorporate more recent follow-up are used in Chapters 4, 5 and 6 to illustrate 
some principles of model fitting. 

Table 3.13 Number of men developing nasal 
sinus cancer by calendar period of observation 
and number expected after standardization for 
year and age at first employmenta 

Calendar period No. of men developing Observed as 
of observation nasal sinus cancer proportion of 

expected 
Observed Expectedb 

1 939-1 941 
1 942- 1 946 
1947-1951 
1952- 1956 
1957-1961 
1962-1 966 
All years 
X 2  for trend 
0.3 < p < 0.5 

7 3.63 1.93 
8 7.28 1.10 
9 9.66 0.93 
5 9.34 0.54 
6 6.28 0.96 
5 3.82 1.31 

40 40.01 
= 0.95; degrees of freedom (df) = 1 ; 

a From Doll et al. (1970) 
blf  year of observation had no effect on risk of developing 

cancer 

3.6 Preferred methods of analysis of grouped data 

We repeatedly emphasized in Volume 1 that the goal of a case-control study 
conducted in a given population was to obtain the same estimates of relative risk as 
would have been found in a cohort study of that population, had one been performed. 
Furthermore, methods of analysis of case-control studies were virtually identical to 
those of cohort studies uis-h-uis estimation and testing of hypotheses about relative 
risk. Thus, it should come as no surprise that the preferred methods of cohort analysis, 
which we now describe, are nearly identical to those presented in the earlier volume. 

The correspondence between case-control and cohort data is easily seen by 
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comparing the data layout of Table 3.4 with that shown in equation (4.40) of Volume 
1. There, we considered the joint distribution of cases (aki) and controls (cki) in K 
exposure groups and I strata; here we deal with deaths and person-years cross-classified 
into K exposure groups and J strata. Making the substitution of j for i, denoting the 
cases (deaths) by dJk rather than a,, and considering a fixed number nJk of person-years 
rather than a random number cki of controls in each cell, the formal identity of the two 
situations is complete. All of the test and estimates derived in Volume 1 for a 
dose-response analysis of case-control data have analogues for use with cohort data. 
Moreover, the calculations required for cohort data are in most respects even simpler 
than those for case-control data. 

Consider the methods of estimating the relative risk associated with the kth exposure 
level. For both cohort and case-control studies, these parameters represent the rate 
ratios for the kth level relative to the first level - ratios that are assumed to remain 
constant across the various strata. For case-control studies, the odds ratios 
(akicli)/(alicki) are good estimates of the corresponding stratum-specific relative risks, 
and, hence, the analysis may be carried out in terms of summary estimates and tests for 
heterogeneity and trend in the odds ratios ($2.8, Volume 1). Precisely the same is true 
of cohort studies, except that the 'odds ratios' (dJknjl)/(di,njk), rather than being mere 
approximations to the desired rate ratios, are in fact best estimates of those ratios for 
the indicated stratum and exposure level. 

Some differences between the test statistics used for case-control and cohort studies 
arise from the different sampling schemes that generate the basic data. In cohort 
analyses, we regard the observed deaths djk as having Poisson distributions with means 
qkLjlnik, where A,, denotes the baseline death rate in stratum j, and qk is the relative 
risk associated with exposure at level k. (A more complete statement of this model, its 
rationale, and its consequences is presented in the next chapter.) If follows that the 
conditional distribution of the deaths (djl, . . . , djK) in each stratum is multinomial 
with denominator Dj and cell occupancy probabilities njk = qknik/Cl qlnjI). For the 
case-control study, the conditional distribution of the cases (a,,, . . . , a,,), given the 
marginal totals in the 2 x K table (equation 4.40 in Volume I),  was multidimensional 
hypergeometric with noncentrality parameter depending on the relative risk q k .  
Differences between the variances of the multinomial and hypergeometric distribu- 
tions lead to slight differences in the corresponding test statistics. The cohort statistics 
are simpler because one does not need to consider the marginal totals djk + nik at all. 
By substituting nik for both cki and mi, 4. for both no, and Ni and dik for a,, many of 
the statistics developed in 54.5 of Volume 1 are converted into precisely the form 
needed for cohort analyses. Furthermore, just as the tests presented there were derived 
as efficient score tests based on linear logistic models for binomially distributed 
case-control data, the versions of those same tests presented here are derived as 
efficient score tests for analogous hypotheses based on log-linear models for Poisson 
distributed cohort data. 

(a) Two dose levels: exposed versus unexposed 

Let us start by considering once again the simple problem of comparing death rates 
for exposed versus unexposed without any stratification. We regard 0, and 0, as 
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Poisson variables with means ANl and WAN2, respectively, where A represents the 
background rate, I) the relative risk, and Nl and N2 are the corresponding 
person-years. Conditional on the total 0, = 0, + 02 ,  0, is binomially distributed with 
parameters 0, and n = WN21(Nl + WN2). The situation is formally identical to that 
already considered in 83.4; E,* and Ez have simply been replaced by Nl and N2. 
Hence, one may apply the same procedures for exact and approximate inferences 
about n using the binomial distribution and its normal approximation. These are the 
analogues for cohort analysis of the exact and approximate methods for case-control 
data developed in 884.2 and 4.3 of Volume 1. 

Example 3.10 
Suppose that 0, = 5 lung cancer deaths are observed among a cohort of unexposed persons with N1 = 7300 

person-years of observation, whereas 0, = 14 such deaths occur among the exposed with N2 = 5500 
person-years of observation. These are precisely the numbers of deaths considered in Example 3.4, and the 
person-years N,: N2 and expected numbers ET: E,* are likewise in equal proportion. Consequently, the 
calculations made earlier apply here as well: $ = 3.72 with exact 95% limits of (1.26,13.2) and approximate 
ones of (1.25, 11.8). 

In more realistic situations, the deaths and person-years are stratified into a series of 
J 2 x 2 tables (j = 1, . . . , J )  representing different age strata, as shown in Table 3.4. 
Conditional on fixed values for the total D, of deaths in the jth stratum, the number of 
these that occur at the second exposure level is binomially distributed with parameters 
Dj and 3 = + ~ n j 2 ) .  Exact inferences about W could, in principle, be made 
from the convolution of these J binomial distributions in the same fashion that exact 
inferences about the odds ratio in case-control studies are made from the convolution 
of the corresponding hypergeometric distributions (Gart, 1971). However, the usual 
normal approximations are entirely satisfactory for most practical purposes. 

(b) Summary test of significance 

A test of the null hypothesis W = 1 is obtained by referring the standardized deviate 

1 0 2  - E ( 4 ) 1 -  112 lo2 - C:=l n j 2 ~ , l ~ ~  - 112 x =  - - 
{Var (0,)) "2 

2 112 {C:=1 Djnj1nj2INj) 

to tables of the normal distribution. When squared, this is the analogue of the 
summary statistic used to test for a relative risk of unity in case-control studies 
(equation 4.23 in Volume 1). Note the use of the continuity correction to improve the 
normal approximation. 

(c) The maximum likelihood estimate 

In large samples the most accurate estimator of .11, is the maximum likelihood 
estimate, obtained by setting the observed number of deaths 0, equal to its expected 
value 
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Since solution of (3.15) requires iterative calculations, its use is generally restricted to 
computer analyses and in particular those which involve the fitting of log-linear models. 
Note that the problems with maximum likelihood estimation of the common odds ratio 
in a large series of small 2 x 2 tables (Breslow, 1981) do not apply to the present 
situation. Under the Poisson model, conditional and unconditional maximum likeli- 
hood estimators are identical (Haberman, 1974). 

( d )  The Mantel-Haenszel estimate and its standard error 

The Mantel-Haenszel estimate for cohort data is a simple and robust alternative to 
maximum likelihood. It is written 

where Rj and Sj are defined by the numerator and denominator terms on the right-hand 
side of the equation. Clayton (1982) has shown that this estimate arises at the first stage 
of iteration of one of the computational methods used to find the maximum likelihood 
estimate. Numerical examples presented below indicate a very good agreement 
between the two. 

A robust variance formula for the Mantel-Haenszel estimate was lacking at the time 
Volume 1 was written, but the situation has since been remedied both for cohort 
(Breslow, 1984b) and case-control studies (Robins et al., 1986b). Because of the 
skewness of the distribution of $MH it is more appropriately applied on the log scale. 
Using the fact that I),, - V =  Cj  (Rj - VSj)/Cj Sj, we have the asymptotic 

C:= Var (Rj - vS,) 
Var ($,HI = {C&l E(Sj)}2 

, 

and thus that the estimated variance of BMH = of the log relative risk 
parameter p = log(V) is 

Equations (3.16) and (3.17) are symmetric in the sense that interchanging the role of 
exposed and unexposed subcohorts has the effect of transforming $J,, into I/$,, and 
BMH into -BMH, but leaves the estimate of Var (BMH) = Var (-BMH) unchanged. 
Equation (3.17) applies only to Poisson distributed data as collected in a cohort study. 
The recommended Mantel-Haenszel variance estimate for case-control studies (Robins 
et al., 1986b) is more complicated. 

One important use of any variance -estimate is to set approximate confidence 
intervals on the estimated parameter. Using the interval BMH k ZaR{.Var (BMH)}1f2 for 
p, we have 

VL = 4 MHexp {-Za/2(Var BMH) 'I2} 

and 
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where Var fi,, is given by (3.17). Alternatively, we could solve iteratively the 
equations 

and 

which are based on the notion that {02 - E(02; V)/{Var (0,; q!~))~" has an approxi- 
mate unit normal distribution. These equations are the analogues of equation (4.27) in 
Volume 1. 

Example 3.11 
In order to estimate the relative risk associated with 15 or more years moderate or heavy exposure to 

arsenic among men first employed prior to 1925 in the Montana study, we abstracted 13 2 x 2 tables from 
Appendix V giving deaths and person-years for exposure levels 1 and 4. These are shown in Table 3.14. 
While for most ages, rates are higher in the heavily exposed group, the effect is concentrated particularly in 
the earlier calendar periods among men aged 50-69. Overall, there are 34 deaths in the higher exposure 
category, whereas 15.36 would be expected under the null hypothesis that the death rates for the two 
exposure levels were equal within each of the 13 strata. Since the null variance is 12.42, the summary test 
statistic (3.14) is x = (34 - 1 5 . 3 6 ) / m 2  = 5.29 (p  <0.0001). The estimate , = log (G,,) is 1.144 = 
log (3.138) and has a standard error calculated according to (3.17) of fl Var (DM,) = 0.2239. These values are 
quite close to those of the maximum likelihood estimate (MLE) pML= 1.126 and its standard error 
SE(~,,) = 0.2238 that were obtained as a by-product of fitting the corresponding model. Approximate 
confidence limits based on (3.18) are (2.02,4.87), while those obtained by solving equations (3.19) are 
(1.94,4.65). Mantel-Haenszel estimates of relative risk for each of the other exposure categories are shown 
in Table 3.11. 

(e) Testing for heterogeneity of relative risk (effect modijication) 

A fundamental assumption underlying the use of the Mantel-Haenszel or other 
estimators of relative risk is that the ratio of disease rates between the two exposure 
categories is constant over the various age groups, calendar years, or other groupings 
used for stratification of the sample. If there are substantial discrepancies or trends in 
the disease rate ratios, use of a summary relative risk measure is generally not 
advisable. Instead, one wants to describe how the effects of exposure as measured by 
relative risk are modified by age or year. Simple test statistics are available to evaluate 
this assumption by comparing the observed numbers of deaths among the exposed and 
unexposed in each stratum with expected numbers calculated using the summary 
estimate of relative risk. These are closely related to the statistics developed to test for 
differences between the odds ratios in a series of 2 x 2 tables formed from case-control 
data (equations 4.30 and 4.31 in Volume 1). 

Setting 2, = $nJ2/(nJl + $n12), we denote by dJ2= DJkJ, the expected or fitted 
number of deaths among the exposed and by dJ, = DJ(l - kJ), the number among the 
unexposed. The maximum likelihood estimator should be used in these calculations, in 
which case the total number of exposed deaths and the total fitted numbers will agree 
(equation (3.15)). However, the MH estimator is often sufficiently close to the NILE 
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Table 3.14 Series of 2 x 2 tables used in example 3.11. Low exposure ( - ) means less 
than 1 year of heavy or moderate arsenic exposure; high exposure ( + )  means 15+ 
years 

Age (years) Calendar period 

Exposure - f - + 

w 0.00 - 

Exposure - + - + 
50-59 d l ;  

n 

w 9.0 6.3 

Exposure - + - + 

w 14.0 3.8 

Exposure - + - + 
70-79 d l ;  

d = observed deaths; d = fitted deaths under ML estimate of common rate ratio; n = person-years denominator; 
6 = rate ratio in each table 

that fitted values based on it yield nearly identical results. Moreover, if 0, = Cj dj2 and 
Cj & based on MH differ, say by more than 1%, a 'one-step' correction of fiMH 
towards the MLE is available as 

Fitted values djl and dj2 determined from the corrected MH estimator qc = exp (8,) 
should be adequate for use in what follows if the MLE itself is not available. 

To test for a general difference among the rate ratios in the J strata, we compare the 
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observed and fitted values using the standard chi-square statistic 

which has J - 1 degrees of freedom. A test for a trend in the stratum-specific ratios 
with quantitative variables z,, representing, for example, the age level in stratum j, is 
accomplished using the statistic 

This is referred to tables of chi-square on one degree of freedom. If the zj are equally 
spaced, the numerator may be reduced in absolute value before squaring by half the 
distance between adjacent z values in order to correct for the discontinuity of the 
actual distribution. 

Example 3.11 (cont) 
Table 3.14 also presents fitted values of 4, and 4, for the respiratory cancer deaths determined by 

inserting the MLE GML = exp (1.126) = 3.083 in the expressions ail = DjnIi/(nli + GMLn2,) and di2 = 
~,G~,n,,/(n, + GMLn2,), respectively. The summary chi-square statistic (3.21) comparing observed and 
fitted values yields Xf2 = 12.9 (p  = 0.37), with the largest contribution 

coming from the 60-69-year age group in calendar period 1938-1949. Thus, in spite of the wide range of rate 
ratios for individual strata observed in this example, the variation is well within the limits expected under the 
hypothesis that the true ratio is constant across strata. 

Example 3.12 
Table 3.15 presents data on coronary deaths from the British doctors study (Doll & Hill, 1966) that have 

been used by Rothman and Boice (1979) and Breslow (1984b) to illustrate methods of cohort analysis. From 
(3.16) we find a summary relative risk estimate of = 1.4247. The fitted frequencies determined from it 

Table 3.15 Deaths from coronary disease among British male doctorsa 

Age group No. of person-years No. of observed deaths No. of expected deathsb Rate Rate 
(years) - ratio difference 

Non- Smokers Non- Smokers Non- Smokers per 100 000 
smokers smokers smokers person- 

years 

i 31 "iz: ~ $ 1  ~ $ 2  4 1  4 2  

Totals 39220 142247 101 630 101.00 630.00 1.72 185.4 

a Data from Doll and Hill (1966) as quoted by Rothman and Boice (1979) 
Estimated by maximum likelihood under the hypothesis of a common rate ratio 
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total C j  a,, = 629.9487, which agrees very closely with the observed total C j  d,, = 630. Thus, we know that 
the MH and MLE estimates are already almost equal, and a correction to the MH estimate would not 
normally be needed in such circumstances. Nevertheless, in order to illustrate the use of equation (3.20), we 
further calculate (using fitted values based on GMH) C j  d l , d j 2 / ~ ,  = 88.7729 and thus find 

which agrees with b,, to the number of decimal places shown. 
The sixth and seventh columns of Table 3.15 show the final fitted values d,, and d,, based on 

$,,= exp (0.3545) = 1.426. Inserting these in equations (3.21) and (3.22), and using zj = j to examine the 
trend with age, we obtain heterogeneity and (corrected) trend statistics of Xi = 11.1 and X; = 10.0 on four 
and one degrees of freedom, respectively. Thus, most of the heterogeneity in relative risk is explained by the 
linear decrease with age. Rothman and Boice (1979) note that these data are more consistent with an 
additive effect model than with a multiplicative one. In $4.4 we show that an even better fit is obtained using 
a square-root function to relate age and smoking effects. 

In this example, the standard error of OM, estimated from the square root of (3.17) is 0.1073, almost 
identical with SE(P,,)=O.IO~~. This illustrates once again the generally high efficiency of the MH 
estimator. However, in other applications the discrepancy may be found to be greater. 

(f) Extensions to K > 2 exposure classes 

In 03.4, we described the use of externally standardized mortality ratios to evaluate 
the relative risk of disease associated with each of K exposure categories, for example, 
the K = 4 levels of duration of heavy/moderate exposure to arsenic in both cohorts of 
the Montana study. A similar approach is taken with the methods of this section. First, 
Mantel-Haenszel estimates are computed for each of the k = 2, . . . , K exposure 
categories relative to baseline. These may be tested for significance individually using 
the summary chi-square (3.14). The stability of the relative risk estimates from one 
stratum to another is evaluated using the methods just presented. 

In order-to test the global null hypothesis that death rates for none of the K exposure 
classes differ, we require a multivariate extension of (3.14). As in 54.5 of Volume 1, 
this follows from consideration of the joint distribution, under the null hypothesis, of 
the deaths dj = (djl, . . . , djK) in each stratum. Using the Poisson sampling model, the 
null distribution of dj conditional on the total number of deaths I)i in stratum j is easily 
shown to be multinomial, with a covariance matrix the (k, l )  element of which 
(1 s k, l s K) is 

Under the null hypothesis, the summary vector 0 = (01, . . . , OK)  has expectation 
E = (El, . . . , EK) (see equation 3.13) and covariance matrix V = Cj y. The global test 
for equality of death rates compares 0 and E using the criterion 

x $ - ~  = ( 0  - E)~v-(o - E), (3.24) 

where V- denotes a generalized inverse of V (Rao, 1965) and denotes a matrix 
transpose. In practice, this is calculated by. restricting 0 and E t o  the first K - 1 
components and replacing V by the corresponding (K - 1) x (K - 1) dimensional 
covariance matrix. For. the special case K = 2, the test is obtained either as 
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(0 ,  - E l ) 2 / ~ l  or (02  - E2)a2/V2 where Vl = Var (0,) and V2 = Var (0,). It thus reduces 
to the square of the two-group statistic (3.14), without correction for continuity. 

The K group statistic based on indirect standardization, namely (3.11) with the 
internal fitted values Ek replacing the adjusted external expected, does not require 
calculation of the variances. It may be recognized as the analogue of the conservative 
test (equation 4.42 in Volume 1) proposed for case-control data. It always yields 
smaller values than (3.24), and the degree of conservatism depends on the extent to 
which the stratum variables confound the disease-exposure relationship (Armitage, 
1966; Peto, R. & Pike, 1973). 

The test for a trend in relative risk with increasing exposure is obtained from the 
regression of the observed - expected differences on the dose levels x ,  namely 
Ck xk(Ok - Ek). This has a variance of (xTvx). The test statistic is written 

where ejk = njkDj/8 denotes the expected value in the component 2 x K table. This is 
the analogue of equation (4.43) in Volume 1 for cohort data. Once again, the 
corresponding statistic based on internal standardization (equation (3.12) using Ek) 
provides a conservative approximation. 

Example 3.13 
The last lines in each part of Table 3.11 show the values of the heterogeneity and trend statistics (3.24) and 

(3.25) obtained with the data in Appendix V. These are slightly greater than the approximating statistics 
(3.11) and (3.12) calculated from the observed and expected values only, without consideration of the 
variances. While this is not atypical of what one observes in practice, more serious discrepancies must be 
anticipated when there is strong confounding. 

(g) Conservatism of indirect standardization 

The impression one might get from our analysis of the Montana smelter workers 
data, namely, that indirect standardization always yields results close to those obtained 
with the Mantel-Haenszel methodology, is of course mistaken. The degree of 
conservatism depends on the degree of statistical confounding between the stratum 
variables and the exposures. In situations in which the confounding is marked, the 
conservatism may be also, as the following hypothetical data make clear. 

Consider two strata in which the relative risk of exposure is 2, but the pooled risk is 
considerably less: 

Stratum I Stratum I1 Combined sample 
Unexposed Exposed Unexposed Exposed Unexposed Exposed 

Cases 

Relative risk ($) 2.0 
E2 = E(02) 27.273 
EI = E(01) 2.727 

= Var (0,) 2.479 
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The chi-square test for 111 = 1 based on internal standardization calculated without 
continuity correction is 

whereas the chi-square test that uses the actual variances from each component table is 

Due to the moderately strong confounding, .the approximate statistic is substantially 
smaller and yields a nonsignificant result. Similarly, the relative risk estimate based 
only on observed and expected values, namely (02E1)/(01E2) = (30 x 35.844)/(30 x 
24.156) = 1.48, is less than that of the estimate $,, = 2.0. 

3.7 Proportional mortality and dose-response analyses 

Occasionally one is called upon to conduct a dose-response analysis using only the 
deaths observed in a defined cohort, without consideration of the corresponding 
person-years denominators. These may be the only data available. Or, complete 
exposure histories may have been reconstructed first for dead subjects, for example, 
and one wants to make an initial evaluation of the probable magnitude of the relative 
risks before proceeding with the collection of data on those persons who are still alive. 
The available information consists only of numbers of deaths classified by age at death 
and other stratification factors, by level of exposure, and by cause of death. Once 
again, we denote by djk the number of deaths in stratum j and exposure group k for the 
cause of interest, by tjk the total deaths from all causes in that stratum and exposure 
category, and by Dj = C k  djk and 7; = C k  tjk the subtotals cumulated over categories. 
We may also have available a quantitative variable x giving the dose level xk in 
exposure class k. 

~he 'ob jec t  of the analysis is to determine whether the proportion of deaths due to 
the cause of interest increases systematically with increasing levels of exposure, while 
adjusting for age and other potentially confounding factors by stratification into J 
strata. The major weakness of the approach is the fact that some of the other causes of 
death may also be affected by the exposure, thus obscuring the association of interest 
and hindering precise quantitative estimation of its magnitude. If one is reasonably 
confident that the other causes of death included in the analysis are not related to the 
exposure, at least not after accounting for the stratification factors, then the data are 
best viewed as arising from a type of case-control study in which the deaths from other 
causes are assumed to represent an unbiased sample (vis-d-vis the exposures) of the 
population at risk within each stratum. This means that the most appropriate analysis 
of proportional mortality data is to treat them as arising from a case-control study in 
which the controls died from other causes (Miettinen & Wang, 1981). 

In practice, it is useful to exclude from the control sample deaths from those causes 
that are already known to be related to the exposures. This enhances confidence in the 
critical assumption that underlies the methodology, namely that the 'controls' are 



116 BRESLOW AND DAY 

representative of the population at risk. If one is uncertain about its validity - and this 
is usually the case - the inferences drawn must necessarily be more tentative than those 
from an actual case-control study of incident cases in which random sampling methods 
have been used to select controls from the population in an unbiased fashion. 

Although case-control methodology is preferred for the analysis of proportional 
mortality data, it has been common practice in the past to apply techniques of indirect 
standardization analogous to those presented in 83.4 and 3.5. One first computes 
expected numbers of deaths eik from the cause of interest in the (j, k) 
stratum/exposure cell under the hypothesis that exposure has had no effect on the 
death rates. In symbols, 

These values are cumulated to give Ek = Ci eik as the total number expected at level k 
after adjustment. It would be tempting to insert such Ek into equations (3.8), (3.11) 
and (3.12) in order to estimate and make tests on the relative risk. If the disease is 
common, however, such ad-hoc methods may lead to results that are at considerable 
variance from those obtained using the proper case-control methods. The main 
difficulty is the fact that the disease of interest is making a contribution to the totals tik 
and ?;. used to calculate the expected numbers, so that these are closer to the observed 
numbers than they are for the analogous cohort data. Even under the proportionality 
assumption that justified dose-response analysis of SMRk, the equivalent proportional 
mortality analysis may not be valid. 

Example 3.14 
The sixth column of Appendix V shows the total numbers of deaths among the Montana workers classified 

by age, calendar period, date of employment and exposure duration. These were used in a case-control 
dose-response analysis according to the methods presented in Chapter 4 of Volume 1. There were 18 
age x calendar period strata and four exposure levels for the pre-1925 cohort, and 16 strata and four 
exposure levels for the post-1925 cohort. Table 3.16 presents the results. The Mantel-Haenszel estimates of 
relative risk are in reasonable agreement with those found from the entire set of cohort data (Table 3.11), 
except for the highest exposure duration category in the early cohort (2.62 versus 3.14). Here, the 
proportional mortality analysis yields a substantially lower estimate of relative risk, suggesting that causes of 
death other than respiratory cancer may be affected by lengthy exposures to arsenic. The Mantel-Haenszel 
estimates are in good agreement with those obtained by (unconditional) maximum likelihood according to 
the methods presented in Chapter 6 of Volume 1,  namely, the fitting of linear logistic models to the binomial 
proportions of cause-specific deaths divided by total deaths. The statistics (4.41) and (4.43) in Volume 1 for 
testing for heterogeneity and trend in the relative risks are substantially less than the corresponding statistics 
shown in the sixth row of Table 3.11 for the full cohort data. This is not surprising in view of the reduced 
value for the relative risk estimate for the highest exposure category. 

Also shown in Table 3.16 for each subcohort are the expected numbers of respiratory deaths obtained by 
multipliing the total deaths in each age-stratum-exposure cell by the proportion of respiratory deaths in that 
stratum as shown in equation (3.26), and then summing across strata. When these are inserted in equation 
(3.8) to estimate the 'relative risk' for each exposure level, the results are considerably more conservative 
than were the results based on indirect standardization using the complete set of cohort data (Table 3.11). 
For example, the estimate of relative risk from proportional mortality data for the 15+ years exposure 
duration category in the pre-1925 cohort is $ = 2.38 based on observed/expected values versus q = 2.62 for 
Mantel-Haenszel. The corresponding figures from cohort data were 3.09 versus 3.14. Similarly, whereas the 
test statistics (3.11) and (3.12) yielded only slightly conservative results when used with internally 
standardized expected numbers based on the person-years denominators, when used with the proportional 
expected'values from equation (3.26) that depend only on the proportional mortality data, the results are 
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Table 3.16 Dose-response analysis of respiratory cancer deaths among 
Montana smelter workers, based on proportional mortality 

Cumulative years of moderatelheavy arsenic exposure 

0-0.9 1.0-4.9 5.0-14.9 15+ Total 

Workers employed prior to 1925 
Observed deaths 51 17 13 34 115 
Total, deaths 636 100 93 195 1024 

(All causes) 
Expected deaths 72.47 11.84 10.41 20.29 115.00 

(Internal adjust- 
ment for age and 
calendar year) 

Relative risk (using ratios 1.0 2.04 1.77 2.38 
of Observed/Expected) 

Relative risk (Mantel- 1 .O 2.30 2.12 2.62 
Haenszel) 

Relative risk (Maximum 1 .O 2.32 1.98 2.82 
likelihood) 

Approximate test for homogeneity, X $  = 18.5; test for trend, x': = 16.6 
(using observed and expected values in equations (3.1 1) and (3.12)) 

Case-control test for homogeneity, X $  = 21.6; test for trend, X: = 19.4 
(equations 4.41 and 4.43 from Volume 1) 

Workers employed 1925 or later 
Observed deaths 100 38 15 8 161 
Total deaths 1389 274 143 68 1874 

(All causes) 
Expected deaths 118.47 24.47 11.83 6.25 161.00 

(Internal adjustment 
for age and calendar 
year) 

Relative risk (using ratios 1.0 1.84 1.50 1.52 
of Observed/Expected) 

Relative risk (Mantel- 1.0 2.06 1.54 1.58 
Haenszel) 

Relative risk (Maximum 1.0 2.02 1.57 1.61 
likelihood) 

Approximate test for homogeneity, X $  = 11.7; test for trend, x': = 6.3 
(using observed and expected values in equations (3.1 1) and (3.12)) 

Case-control test for homogeneity, X $  = 13.2; test for trend, X: = 7.0 
(equations 4.41 and 4.43 from Volume 1) 

noticeably different from those obtained with proper case-control techniques. This illustrates the basic point 
that indirect standardization techniques should not be used in the context of proportional mortality unless 
one is dealing with a very rare disease. Whereas they may or may not yield conservative results with cohort 
data depending on the degree of statistical confounding, they are bound to produce conservative results with 
proportional mortality (case-control) data. 

Nothing has yet been. said about the possibility of incorporating information from the 
external standard population into the dose-response analysis of proportional mortality 
data. The reason is that the elementary methods presented in $3.4 for cohort studies 



118 BRESLOW AND DAY 

have no suitable analogue when death records are the only data available, nor do the 
indirect standardization techniques of $3.5, as shown in the preceding example. 
Suppose we were to calculate expected numbers of deaths for each exposure category 
using the formula E i  = C j  &I;, where p; denotes the standard proportion of deaths in 
stratum j due to the cause of interest. Even under the assumption of proportionality, in 
which the stratum-specific mortality rates for both cause-specific and general deaths in 
each exposure category are constant multiples of the stratum-specific standard rates, 
inserting these expected numbers into equations (3.8), (3.11) and (3.12) may yield 
badly biased estimates and tests if more than a few percent of total deaths are due to 
the cause of interest. Although it is possible to use the external standard proportions 
by incorporating them into an appropriate model, none of the standard estimates or 
tests based on the model have simple closed form expressions. Therefore, we defer 
further discussion of this approach to proportional mortality analysis until the next 
chapter. 




