RESULTS AND CONCLUSIONS

The separate evaluations of animal and human evidence are presented in Table 3.

The Working Group concluded that the following 18 chemicals, groups of chemicals, and industrial processes are carcinogenic for humans (Group 1):

4-Aminobiphenyl

Arsenic and certain arsenic compounds

Asbestos

Manufacture of auramine1

Benzene

Benzidine

N,N-bis(2-chloroethy1)-2-naphthy1amine (chlornaphazine)

Bis(chloromethyl)ether and technical grade chloromethyl methyl ether

Chromium and certain chromium compounds 1

Diethylstilboestrol

Underground haematite mining 1

Manufacture of isopropyl alcohol by the strong acid

process1

Melphalan

Mustard gas

2-Naphthylamine

Nickel refining 1

Soots, tars and mineral oils1

Vinyl chloride

The following 18 chemicals and groups of chemicals are probably carcinogenic for humans (Group 2)

Group A (six chemicals)

Aflatoxins

Cadmium and certain cadmium compounds 1

Chlorambucil

Cyclophosphamide

Nickel and certain nickel

compounds 1

Tris(1-aziridiny1)phosphine sulphide (thiotepa)

¹ The specific compound(s) which may be responsible for a carcinogenic effect in humans cannot be specified precisely.

Group B (12 chemicals)

Acrylonitrile Dimethylsulphate

Amitrole (aminotriazole) Ethylene oxide

Auramine Iron dextran

Beryllium and certain beryllium Oxymetholone

compounds 1

Carbon tetrachloride Phenacetin

Dimethylcarbamoyl chloride Polychlorinated biphenyls

The following 18 chemicals and groups of chemicals could not be classified as to their carcinogenicity for humans (Group 3):

Chloramphenicol Isopropyl oils

Chlordane/heptachlor Lead and certain lead compounds l

Chloroprene Phenobarbitone

Dichlorodiphenyltrichloroethane N-Phenyl-2-naphthylamine

(DDT)

Dieldrin Phenytoin

Epichlorohydrin Reserpine

Haematite Styrene

Hexachlorocyclohexane Trichloroethylene

(technical grade HCH/lindane)

Isoniazid Tris(aziridinyl)-para-benzoquinone

(triaziquone)

Mining and manufacturing processes

For some of the chemicals, part or all of the evidence indicating a carcinogenic effect for humans comes from an increased incidence of cancer in individuals involved in the mining or manufacture of these chemicals. There is sufficient evidence that the manufacture of auramine, the underground mining of haematite, the manufacture of isopropyl alcohol by the strong acid process, and the refining of nickel are carcinogenic to humans, at least in the situations in which they have been studied. Because these occupations include exposure to other factors in addition to the chemical under consideration, the responsible

The specific compound(s) which may be responsible for a carcinogenic effect in humans cannot be specified precisely.

carcinogen(s) cannot be specified precisely; therefore, the results cannot be generalized to all situations involving these processes. Nonetheless, these processes should be assumed to carry a carcinogenic risk to humans unless proven otherwise.

CHEMICALS AND HUMAN CANCER

Table 3. Classification of the degree of evidence of carcinogenicity for humans of chemicals or industrial processes from $IARC\ Monographs\ Volumes\ 1-20$

Chemical or process		Degree of evidence $^{\alpha}$		Evaluation b of carcino-
	·	In humans	In experimental animals	genic risk to humans
1.	Acrylonitrile	limited	sufficient	2B
2.	Aflatoxins	limited	sufficient	2A
3.	4-Aminobiphenyl	sufficient	sufficient	1
4.	Amitrole (aminotriazole)	inadequate	sufficient	2B
5.	Arsenic and certain arsenic compounds	sufficient	inadequate	1
6.	Asbestos	sufficient	sufficient	1
7.	Auramine d	limited	limited	2B
8.	Manufacture of auramine	sufficient	not applicable e	1
9.	Benzene	sufficient	inadequate	1
10.	Benzidine	sufficient	sufficient	1
11.	Beryllium and certain beryllium compounds	limited	sufficient	2B
12.	N, N-Bis (2-chloroethyl)-2-naphthylamine (chlornaphazine)	sufficient	limited	1
13.	Bis(chloromethyl)ether and technical grade chloromethyl methyl ether	sufficient	sufficient	1
14.	Cadmium and certain cadmium compounds $^{\mathcal{C}}$	limited	sufficient	2A
15.	Carbon tetrachloride	inadequate	sufficient	2B
16.	Chlorambucil	limited	sufficient	2A
17.	Chloramphenicol	inadequate	no data	3

Table 3 - continued

Chemical or process	Degree of e	vidence lpha	Evaluation $^{\!b}$ of carcino-	O1
	In humans	In experimental animals	genic risk to humans	
18. Chlordane and heptachlor	inadequate	limited	3	
19. Chloroprene	inadequate	inadequate	3	
20. Chromium and certain chromium compounds $^{\mathcal{C}}$	sufficient	sufficient	1	Į-
21. Cyclophosphamide	limited	sufficient	2A	IARC
22. Dichlorodiphenyltrichloroethane (D	DT) inadequate	limited	3	
23. Dieldrin	inadequate	limited	3	NOG
24. Diethylstilboestrol	sufficient	sufficient	1	MONOGRAPHS,
25. Dimethylcarbamoyl chloride	inadequate	sufficient	2B	YS,
26. Dimethyl sulphate	inadequate	sufficient	2B	US
27. Epichlorohydrin	inadequate	limited	3	SUPPLEMENT
28. Ethylene oxide	limited	inadequate	2B	EME
29. Haematite $^{\vec{d}}$	inadequate	negative	3	Z
30. Underground haematite mining	sufficient	not applicable e	1	
31. Hexachlorocyclohexane (technical HCH.& lindane)	inadequate	limited	3	
32. Iron dextran	inadequate	sufficient	2B	
33. Isoniazid	inadequate	limited	3	
34. Isopropyl oils ^c ,d	inadequate	inadequate	3	

Table 3 - continued

Chemical or process	Degree of evidence $^{\alpha}$		Evaluation $^{\mathcal{b}}$ of carcino-	
	In humans	In experimental animals	genic risk to humans	
35. Manufacture of isopropyl alcohol (strong acid process)	sufficient	not applicable e	1	
36. Lead and certain lead compounds $^{\mathcal{C}}$	inadequate	sufficient (for some soluble salts)	3	
37. Melphalan	sufficient	sufficient]	
38. Mustard gas	sufficient	limited		
39. 2-Naphthylamine	sufficient	sufficient	(ا	
40. Nickel and certain nickel compounds c , d	limited	sufficient	0.8	
41. Nickel refining	sufficient	not applicable e	2A 1 2B 2B 3 3 3 5 5	
42. Oxymetholone	limited	no data	2B	
43. Phenacetin	limited	limited	2B	
44. Phenobarbitone	limited	limited	3	
45. N-Phenyl-2-naphthylamine	inadequate	inadequate	3	
46. Phenytoin	limited	limited	3	
47. Polychlorinated biphenyls	inadequate	sufficient	2B	
48. Reserpine	inadequate	inadequate	3	
49. Soots, tars and mineral oils c	sufficient	sufficient	1	
50. Styrene	inadequate	limited	3	
51. Trichloroethylene	inadequate	limited	3	
52. Tris(aziridinyl)para-benzoquinone (triaziquone)	inadequate	limited	3	

Table 3 -	continued
-----------	-----------

Chemical or process	Degree of evidence lpha		Evaluation $^{ar{b}}$ of carcino-
	In humans	In experimental animals	genic risk to humans
53. Tris(1-aziridiny1)phosphine sulphide (thiotepa)	limited	sufficient	2A
54. Vinyl chloride	sufficient	sufficient	1

 $^{^{}lpha}$ For an explanation of the categories of <code>Degree</code> of <code>Evidence</code>, see Methods.

 $^{^{}b}$ For an explanation of the categories of $\it carcinogenic\ risk\ to\ humans$, see Methods.

 $^{^{}c}$ The specific compounds which may be responsible for a carcinogenic effect cannot be specified precisely.

d Please refer to section on industrial processes, and to the evaluations in the appendix.

^e It is difficult to expose experimental animals to the same conditions to which workers are exposed, therefore no animal data are available.