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Data were last reviewed in IARC (1977) and the compound was classified in IARC
Monographs Supplement 7 (1987).

1. Exposure Data

1.1 Chemical and physical data
1.1.1 Nomenclature

Chem. Abstr. Serv. Reg. No.: 120-80-9
Chem. Abstr. Name: 1,2-Benzenediol
IUPAC Systematic Name: Pyrocatechol
Synonyms: Catechin; 1,2-dihydroxybenzene

1.1.2 Structural and molecular formulae and relative molecular mass

C6H6O2 Relative molecular mass: 110.11

1.1.3 Chemical and physical properties of the pure substance
(a) Description: Colourless monoclinic crystals (Budavari, 1996)
(b) Boiling-point: 245°C (Lide, 1997)
(c) Melting-point: 105°C (Lide, 1997)
(d) Solubility: Very soluble in water, benzene, chloroform, diethyl ether, ethanol,

pyridine and aqueous alkalis (Budavari, 1996; Lide, 1997) 
(e) Vapour pressure: 4 Pa at 20°C; relative vapour density (air = 1), 3.79 (Ver-

schueren, 1996; United States National Library of Medicine, 1997)
(f) Flash-point: 127.2°C, open cup (American Conference of Governmental Indus-

trial Hygienists, 1991)
(g) Conversion factor: mg/m3 = 4.5 × ppm
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1.2 Production and use
Worldwide consumption of catechol in 1980 was estimated to be about 20 thousand

tonnes. Catechol is currently produced in France, Italy, Japan, the United Kingdom and
the United States (Hamamoto & Umemura, 1991; Krumenacker et al., 1995).

Approximately 50% is used as starting material for insecticides, 35–40% for perfumes
and drugs and 10–15% for polymerization inhibitors and other chemicals. Catechol has
also been used as an antiseptic, in photography, dyestuffs, electroplating, specialty inks,
antioxidants and light stabilizers, and in organic synthesis (Hamamoto & Umemura, 1991;
Lewis, 1993).

1.3 Occurrence
1.3.1 Occupational exposure

According to the 1981–83 National Occupational Exposure Survey (NOES, 1997),
approximately 14 000 workers in the United States were potentially exposed to catechol
(see General Remarks). Occupational exposures to catechol may occur in its production,
in the production of insecticides, perfumes and drugs, in metal-plating shops and in coal-
processing.

1.3.2 Environmental occurrence
Catechol occurs naturally in fruits and vegetables such as onions, apples and crude

beet sugar, and in trees such as pine, oak and willow. Catechol may be released to the
environment during its manufacture and use. It has been detected at low levels in ambient
and urban air, groundwater, drinking-water and soil samples. It has been found in
wastewaters from coal conversion, coal-tar chemical production and bituminous shale
(United States National Library of Medicine, 1997). It is present in cigarette smoke at
100–360 μg per cigarette (IARC, 1986).

1.4 Regulations and guidelines
The American Conference of Governmental Industrial Hygienists (ACGIH) (1997)

has recommended 23 mg/m3 as the 8-h time-weighted average threshold limit value, with
a skin notation, for occupational exposures to catechol in workplace air. Similar values
have been used as standards or guidelines in many countries (International Labour
Office, 1991).

No international guideline for catechol in drinking-water has been established (WHO,
1993).

2. Studies of Cancer in Humans

No data were available to the Working Group.
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3. Studies of Cancer in Experimental Animals

In skin painting studies in mice, catechol increased the carcinogenic effects of
benzo[a]pyrene on the skin (IARC, 1977).

3.1 Oral administration
3.1.1 Mouse

Groups of 30 male and 30 female B6C3F1 mice, six weeks of age, were administered
catechol (> 99% pure) at 0 or 0.8% in the diet for 96 weeks. Catechol reduced the body
weight gain of both males and females but did not affect survival. In exposed mice, the
incidence of forestomach hyperplasia (16/30 males, 25/29 females) was increased.
Forestomach papillomas occurred in one male and one female compared with none in
controls. In the glandular stomach, 29/30 males and 21/29 females exhibited adeno-
matous hyperplasia, but no adenocarcinomas. No increase in the incidence of other
neoplasms was observed (Hirose et al., 1990, 1993a).

3.1.2 Rat
Two groups of 30 male Fischer rats, eight weeks of age, were administered catechol

(purity, > 99%) at 0 or 0.5% in the drinking-water for 78 weeks. Catechol alone did not
increase the incidence of any tumour type (La Voie et al., 1985). [The Working Group
noted the short duration of the study.]

Groups of 30 male MRC-Wistar rats, six weeks of age, were administered catechol
(purity, > 99%) at concentrations of 0 or 2 mg/kg in the diet for up to 15 months. Cate-
chol alone induced no increase in neoplasms (Mirvish et al., 1985). [The Working Group
noted the short duration of the study.]

Groups of 30 male and 30 female Fischer 344 rats, six weeks of age, were
administered catechol (> 99% pure) at 0 or 0.8% in the diet for 104 weeks. Catechol
reduced the body weight gain of both males and females and increased the liver weight
of males but did not affect survival. In exposed rats, forestomach hyperplasia was
increased in both sexes (24/28 males, 23/28 females) and papillomas occurred in 2/24
(7%) males, compared with none in controls. In the glandular stomach, 100% of exposed
males and females exhibited adenomatous hyperplasia and adenocarcinomas occurred in
15/28 males and 12/28 females (p < 0.001) compared with none in controls. No change
in the incidence of other neoplasms was observed (Hirose et al., 1990, 1993a).

Groups of 20 or 30 male Wistar (Crj:Wistar), WKY (WKY/NCrj), Lewis (LEW/Crj)
and SD (Crj:CD) rats, six weeks of age, were administered catechol (> 99% pure) in the
diet at 0 or 0.8% for 104 weeks. Weight gain was reduced in all exposed groups but no
effect on survival was observed. In the forestomach, the incidence of hyperplasia was
significantly increased in exposed Wistar, WKY and SD rats compared with controls.
Papillomas occurred in 6/30 SD rats (p < 0.05), 2/30 Wistar rats and 1/30 WKY rats and
carcinomas in 1/30 SD and 1/30 Wistar rats compared with none in controls. In the
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glandular stomach, all strains developed 97–100% incidence of adenomas compared
with none in controls and adenocarcinomas occurred in 23/30 (p < 0.01) SD, 22/30
(p < 0.01) Lewis, 20/30 (p < 0.01) Wistar and 3/30 (p > 0.05) WKY rats compared with
none in controls. No increase in any other tumour type was found in exposed WKY rats,
while pituitary adenomas/carcinomas were decreased in exposed Wistar rats (4/30 versus
8/20 controls; p < 0.05) and SD rats (6/30 versus 11/21 controls; p < 0.05) and pituitary
adenomas in Lewis rats (2/30 versus 14/20 controls; p < 0.01). In Wistar rats, islet-cell
adenomas/carcinomas were also decreased (0/30 versus 5/20 controls; p < 0.01) (Tanaka
et al., 1995).

3.2 Skin application
Mouse: Groups of 30 female SEN mice, six weeks of age, were administered cate-

chol (purified by recrystallization) at 0 or 2000 μg/animal topically three times per week
for 490–560 days. Catechol alone induced no skin tumours and none occurred in a total
of 125 control mice (Van Duuren et al., 1986).

Groups of 30 female Crl:DC-1(1CR) BR mice, seven weeks of age, were admi-
nistered catechol [purity unspecified] topically five times per week for 48 weeks at a dose
of 0 or 250 μg per animal. Catechol alone induced no skin tumours. In a second experi-
ment, groups of 30 mice were administered acetone or 500 μg catechol per animal 10
times every other day and, 10 days after the last exposure, 12-O-tetradecanoylphorbol
13-acetate (TPA) was applied as a promoter for 20 weeks. In mice given catechol before
promotion, 5/29 developed skin tumours [unspecified] compared with 3/29 mice given
acetone plus TPA (Melikian et al., 1989).

3.3 Administration with known carcinogens
3.3.1 Rat

Groups of 15 male Fischer 344 rats, six weeks of age, were administered 0 or 0.05%
N-nitrosobutyl-N-(4-hydroxybutyl)amine in the drinking-water for two weeks followed
by ureteric ligation one week later to initiate bladder carcinogenesis. Catechol [purity
unspecified] was administered at concentrations of 0 or 0.8% in the diet for 22 weeks and
all animals were killed at week 24. When catechol was administered after initiation, no
increase in bladder tumours was produced (Miyata et al., 1985).

Groups of 10–20 male Fischer 344 rats, seven weeks of age, received catechol
(> 99.8% pure) in the diet at concentrations of 0 or 1.5% for four weeks followed by
0.8% for 47 weeks either with no other exposure or one week after exposure to N-methyl-
N′-nitro-N-nitrosoguanidine to initiate stomach carcinogenesis. With catechol alone, the
incidence of forestomach papillomas was 1/15 compared with 0/10 in untreated controls.
Glandular stomach adenocarcinomas were found in 3/15 rats compared with 0/10 in
controls. Catechol increased the incidence of squamous-cell carcinomas of the fore-
stomach induced by the initiator from 5/19 to 19/19 (p < 0.001). In the glandular sto-
mach, the incidence of adenocarcinomas in the pyloric region was 18/19 (p < 0.001)
compared with none in rats given only the initiator (Hirose et al., 1987).
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Groups of 7–10 male Sprague-Dawley rats, weighing 200 g, were administered
catechol (purity, > 98%) at concentrations of 0 or 100 mg/kg in the diet for six weeks
beginning one week after partial hepatectomy and intraperitoneal injection of 30 mg/kg
bw N-nitrosodiethylamine to initiate liver carcinogenesis. Catechol after initiation did
not increase the multiplicity of liver enzyme-altered (γ-glutamyltranspeptidase) foci
(Stenius et al., 1989). 

Groups of 11–14 male Fischer 344 rats, five weeks of age, were administered
catechol (< 99% pure) at 0 or 0.8% alone for 52 weeks or after exposure to six intra-
peritoneal injections of 25 mg/kg bw N-nitrosomethyl-n-amylamine to initiate upper
digestive tract carcinogenesis. Catechol given after carcinogen increased the incidence
of papillomas of the tongue from 1/11 in rats given carcinogen alone to 8/14 (p < 0.02)
and carcinomas of the oesophagus from 0/11 in controls to 9/14 (p < 0.001) (Yamaguchi
et al., 1989).

Groups of 10 or 19 male Fischer 344 rats, six weeks of age, were administered
catechol (purity, > 98%) in the diet at 0.8% for 36 weeks alone or after exposure to
0.05% N-nitrosobutyl-N-(4-hydroxybutyl)amine in the drinking-water for four weeks to
initiate bladder carcinogenesis. Catechol did not affect body weight or bladder weight,
but when given after initiator, it reduced final body weight, but did not affect bladder
weight. Catechol did not induce bladder lesions. Feeding of catechol after the initiator
did not increase the incidence or multiplicity of bladder neoplasms induced by initiation
alone (Kurata et al., 1990).

Groups of 5–30 male Fischer 344/DuCrj rats, nine weeks of age, were administered
catechol [purity unspecified] at a concentration of 0.8% in the diet for 16 weeks either
alone or after a single intraperitoneal injection of 100 mg/kg bw N-nitrosodiethylamine,
20 mg/kg bw N-methyl-N-nitrosourea (four times) and 0.1% N-nitroso-N-bis(2-
hydroxypropyl)amine in the drinking-water during weeks 3–4. Catechol alone induced
low incidences of hyperplasia of the forestomach and hyperplasia and adenoma of the
glandular stomach. The incidence of forestomach papillomas in rats given carcinogens
was 0%, whereas in rats treated with carcinogens and catechol, the incidence of fore-
stomach papillomas was 35% and forestomach carcinomas occurred in 5% [no nume-
rical values given]. Catechol did not affect the incidence of oesophageal, thyroid or
bladder tumours (Fukushima et al., 1991).

Groups of 15 or 20 male Fischer 344/DuCrj rats, six weeks of age, were given a
single intraperitoneal injection of 100 mg/kg bw N-nitrosodiethylamine, followed by
four injections of 20 mg/kg bw N-methyl-N-nitrosourea during weeks 1 and 2, then four
subcutaneous injections of 40 mg/kg bw 1,2-dimethylhydrazine and 0.05% N-nitroso-
butyl-N-(4-hydroxybutyl)amine and 0.1% N-nitroso-N-bis(2-hydroxypropyl)amine in
the drinking-water during weeks 3 and 4, to initiate carcinogenesis in multiple organs.
Rats were then fed with diet containing 0.8% catechol [purity unspecified] for the next
24 weeks or for 100 weeks. Rats given catechol for only 24 weeks were either killed at
the end of this time or were maintained thereafter on basal diet. A control group was
given the multiple initiation treatments only. Catechol given for 24 weeks after initiation
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reduced body weight gain compared to initiation alone. After 24 weeks of exposure,
catechol induced combined forestomach papillomas and carcinomas in 10/13 (p < 0.01)
and glandular stomach adenomas in 11/13 (p < 0.01) compared with none in rats given
initiators alone. In the group given catechol for 24 weeks after initiation and then main-
tained on basal diet, all rats were dead by 64 weeks versus 72 weeks for those given only
initiation. In this group, no increase in cancer was observed. In the group given con-
tinuous catechol administration after initiation, all rats were dead at 56 weeks versus 72
weeks with only initiation. Catechol exposure increased the incidence of combined fore-
stomach squamous-cell papilloma and carcinoma to 18/19 (p < 0.01) compared with 9/20
with initiation, and the incidence of glandular stomach adenoma to 9/19 (p < 0.01) com-
pared with 1/20 (Hagiwara et al., 1993).

Groups of 10 or 15 male Fischer 344 rats, six weeks of age, were administered cate-
chol (> 98% pure) in the diet at concentrations of 0 or 0.8% either alone or after expo-
sure to a standard protocol of treatment with N-nitrosodiethylamine, N-methyl-N-nitroso-
urea, 1,2-dimethylhydrazine, N-nitrosobutyl-N-(4-hydroxybutyl)amine and N-nitroso-N-
bis(2-hydroxypropyl)amine to initiate carcinogenesis in multiple organs. Catechol alone
or after initiation reduced weight gain and induced mild hyperplasia in the forestomach
and adenomas in the glandular stomach in 10/10 rats (p < 0.001) compared with 0/10
in unexposed controls. In initiated rats, catechol produced carcinoma in situ or squamous
carcinoma in 6/15 rats (p < 0.05) compared with 0/14 rats given the initiators only. It also
increased the incidence of glandular stomach adenomas and carcinomas to 4/15
(p < 0.05) versus 0/14 rats subjected to initiation only (Hirose et al., 1993b).

Groups of 20 male Wistar/Crj rats, six weeks of age, were administered catechol
[purity unspecified] in the diet at a concentration of 0.8% for 36 weeks either alone or
starting one week after exposure to 0.1% N-nitrosoethyl-N-(hydroxyethyl)amine in the
drinking-water for three weeks to initiate liver and kidney carcinogenesis. The final body
weights of rats given catechol were lower than those of rats given either basal diet or ini-
tiator. Catechol alone did not affect liver weights but increased relative kidney weights.
When catechol was given after the initiator, there was no effect on liver or kidney
weights. Catechol did not enhance the incidence of preneoplastic or neoplastic lesions in
the liver or kidneys (Okazaki et al., 1993).

Groups of 20 male Fischer 344 rats, five weeks of age, were administered catechol
(purity, > 99%) at concentrations 0 or 0.8% in the diet for 52 weeks alone or beginning
one week after a single intragastric instillation of 150 mg/kg bw N-methyl-N′-nitro-N-
nitrosoguanidine to initiate stomach carcinogenesis. Catechol alone induced no neo-
plasms, but increased the incidence of forestomach hyperplasia compared with that in
unexposed rats. In initiated rats, catechol exposure led to forestomach squamous-cell
carcinoma in 17/20 (p < 0.01) compared with 6/18 in rats without catechol. In the
glandular stomach, catechol after initiation induced adenocarcinomas in 15/20
(p < 0.01) rats compared with 0/18 rats receiving initiation treatment alone (Kawabe
et al., 1994).
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3.3.2 Hamster
Groups of Syrian golden hamsters, six weeks of age, were exposed to catechol (purity,

> 98%) at concentrations of 0 or 1.5% in the diet for 16 weeks either alone (10 and 15
hamsters, respectively) or after two subcutaneous injections of 70 mg/kg bw N-nitroso-
bis(2-oxopropyl)amine (20 hamsters) to initiate pancreatic carcinogenesis. Catechol alone
did not affect body weights or pancreas weights compared with untreated controls, but
reduced relative liver weight. Given after initiator, it did not affect body weight or pancreas
weight, but reduced liver weight compared with hamsters given initiator. All animals were
killed at 20 weeks. Catechol alone did not induce neoplastic lesions in pancreas or liver
lesions. In hamsters given catechol after initiator, no increase in pancreatic lesions was
found. In the forestomach and glandular stomach of hamsters given catechol, a higher fre-
quency of epithelial hyperplasias was observed than in control groups [numerical data not
provided] (Maruyama et al., 1991). Similarly, no enhancement of pancreatic carcino-
genesis was observed in a later study using N-nitroso-N-bis(2-hydroxypropyl)amine as an
initiator of pancreatic carcinogenesis (Maruyama et al., 1994).

4. Other Data Relevant to an Evaluation of Carcinogenicity
and its Mechanisms

4.1 Absorption, distribution, excretion and metabolism
4.1.1 Humans

No data were available to the Working Group.

4.1.2 Experimental systems
Proposed metabolic pathways of catechol are summarized in Figure 1. The major

metabolic pathways in experimental animals are sulfation and glucuronidation.
Catechol may be oxidized by peroxidases to the reactive intermediate benzo-1,2-

quinone, which readily binds to proteins (Bhat et al., 1988); this process, catalysed by
rat or human bone-marrow cells in the presence of H2O2 (0.1 mM), is stimulated by
phenol (0.1–10 mM), and decreased by hydroquinone and by glutathione, which conju-
gates with benzo-1,2-quinone. These phenols (phenol, catechol and hydroquinone) may
play a role in benzene toxicity to bone marrow: all three are formed as benzene meta-
bolites (Smith et al., 1989) and they interact in several ways as far as their bioactivation
by (myelo)peroxidases is concerned (Smith et al., 1989; Subrahmanyam et al., 1990). 

4.2 Toxic effects
4.2.1 Humans

It was noted previously that skin contact with catechol causes dermatitis, and absorp-
tion through the skin may give rise to symptoms similar to those seen in phenol poisoning
(IARC, 1977).



4.2.2 Experimental systems
Administration of catechol (1.5% in the diet) for 20 weeks induced mild to moderate

hyperplasia but no papillomatous lesions in the forestomach in Syrian hamsters. Label-
ling index, after an intraperitoneal dose of [3H]thymidine, was elevated in the pyloric
region, but not in the forestomach or urinary bladder (Hirose et al., 1986).

In male Fischer rats, oral administration of catechol for four or eight weeks (0.8% in
the diet) caused hyperplasia in the forestomach epithelium (4/5 rats) and increased DNA
synthesis, as measured by a BrdU-labelling index, from 6.3% in controls to 16.8%
(p < 0.01) after eight weeks (Shibata et al., 1990a,b). In pyloric mucosa of Fischer 344
rats given dietary catechol (0.8%) for four weeks, cell proliferation was observed
(cells/pit column: control, 20.8; treated, 35.5; p < 0.05), accompanied by submucosal cell
growth and an increase in DNA synthesis from 5.0% in controls to 10.3% (p < 0.05)
(Ohgaki et al., 1989). The pyloric mucosa of Fischer 344 rats given dietary catechol
(0.8%) for eight weeks also showed an increase in pepsinogen-altered preneoplastic foci
from 0.2/100 pyloric glands in controls to 3.6/100 pyloric glands (p < 0.05) and an
increased DNA labelling index from 12.4% in controls to 20.6% (p < 0.01) (Shibata
et al., 1990a,b). After 60 weeks of dietary administration of 0.8% catechol to WKY/Ncrj
rats, adenomatous hyperplasia and Pg1-altered foci were observed. The CCGG sites but
not CGCG sites of the Pg1 gene showed slightly increased methylation frequency in
adenomatous tissues, while the methylation pattern of the Pg1 gene was not significantly
different from that of normal tissue in the Pg1-altered foci (Tatematsu et al., 1993). After
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Figure 1. Metabolism of catechol
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dietary administration of 0.8% catechol to Fischer 344 rats for 12, 24, 48 or 72 weeks
and recovery on basal diet for 84, 72, 48 or 24 weeks, respectively, mucosal thickness
and DNA labelling indices in the glandular stomach were significantly reduced in com-
parison with the values from catechol-fed rats that were not permitted a recovery period
(Hirose et al., 1992). 

Catechol (approx. 10–5 mol/L) inhibited the growth of bone-marrow cells from
female C57BL/6 × DBA/2 mice (Seidel et al., 1991) and from male C57 and SW mice
(Neun et al., 1992). Catechol (25, 50, 75 or 100 mg/kg bw, single intraperitoneal admi-
nistration) decreased the incorporation of 59Fe to erythrocytes in a dose-dependent
fashion in female Swiss mice, when administered with phenol (50 mg/kg bw, single
intraperitoneal administration) (Snyder et al., 1989). Catechol induced apoptosis in the
human leukaemia cell line HL60 at concentrations (50 μmol/L) at which necrosis was
not observed (Moran et al., 1996). On the other hand, catechol (≥ 0.5 μmol/L) prevented
elimination by apoptosis of G418-resistant, transformed Swiss 3T3 M × Cl1 cells by co-
cultured TGF-β-treated C3H 10T½ cells (Schaeffer et al., 1995). 

A high concentration (0.5 mmol/L) of catechol induced a small-scale cytosol-to-
membrane transport of protein kinase C, followed by inactivation of the enzyme activity,
in cultured LL/2 lung carcinoma cells (Gopalakrishna et al., 1994).

In a study on the immunotoxic effects of cigarette tar components, it was shown that
catechol at a concentration that did not affect the viability of the cells (50 μmol/L) de-
creased IL-2-dependent DNA synthesis and cell proliferation by > 90% in cultured
human lymphoblasts (Li et al., 1997). Catechol did not inhibit Fc-receptor-mediated pha-
gocytosis in mouse peritoneal macrophages at the highest concentrations tested
(0.1 mmol/L) (Manning et al., 1994). Catechol (≤ 10 mmol/L) had no effect on the
colony formation of granulocytes/macrophages induced by a recombinant granulocyte/
macrophage colony-stimulating factor of murine bone-marrow cells (Irons et al., 1992).

Catechol (100 mg/kg bw, a single oral dose) given to male Sprague-Dawley rats did
not affect the urinary excretion of malonaldehyde but did increase hepatic ornithine de-
carboxylase activity from a control level of 15.5 pmol/mg/h to 99.3 pmol/mg/h and,
in vitro, 0.3 mmol/L induced rapid depletion of the glutathione content of isolated hepa-
tocytes (Stenius et al., 1989). Addition of 0.25 mM catechol to HL-60 cells increased
endogenous hydrogen peroxide levels three-fold, but 0.25 mM hydroquinone had no
effect upon resting levels, whereas 0.25 mM catechol + 0.05 mM hydroquinone pro-
voked a five-fold increase in endogenous hydrogen peroxide (Lévay & Bodell, 1996).

4.3 Reproductive and developmental effects
4.3.1 Humans

No data were available to the Working Group.

4.3.2 Experimental systems
Catechol had no adverse effects upon cultured rat conceptuses at a concentration of

50 μmol/L, but killed all embryos at 100 μmol/L (Chapman et al., 1994).
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4.4 Genetic and related effects
4.4.1 Humans

No data were available to the Working Group.

4.4.2 Experimental systems (see Table 1 for references)
Catechol did not induce gene mutations in Salmonella typhimurium or DNA repair in

a mouse host-mediated assay in Escherichia coli.
In studies with eukaryotic cell in-vitro assays, most experiments were performed in

the absence of an exogenous metabolic activation system, and almost all results indicated
genetic toxicity. In a single study with the yeast Saccharomyces cerevisiae, catechol
induced forward mutation but not gene conversion or homozygosis. When incubated
with cultured non-human mammalian cells, catechol induced DNA strand breaks in two
studies (which included one with rat primary hepatocytes), gene mutations (three studies)
and sister chromatid exchanges, chromosomal aberrations, aneuploidy and cell transfor-
mation (all within the same study). Another cell transformation assay with BALB/3T3
cells showed no response at relative cloning efficiencies lower than 27%. Inhibition of
gap-junctional intercellular communication was also demonstrated in one study. Muta-
genic activity at the tk locus of mouse lymphoma cells was blocked by superoxide dismu-
tase (McGregor et al., 1988). In cultured human lymphocytes, catechol induced DNA
strand breaks (one study) and sister chromatid exchanges (three studies). Also in human
lymphocytes, micronuclei and chromosome loss (as indicated by kinetochore staining)
were induced by catechol co-incubated with hydroquinone, but not in the absence of
hydroquinone. Two- to three-fold increases in total micronuclei were observed at doses
down to 0.5 μM, but with no response increasing with dose (Yager et al., 1990). Perhaps
of relevance to some of these in-vitro effects, catechol (1 mM) did not inhibit topoiso-
merase I activity, whereas topoisomerase II was inhibited by the same concentration (but
not by 0.5 mM) and even by 0.01 mM in the presence of horseradish peroxidase (Chen
& Eastmond, 1995; Franz et al., 1996). 

In single in-vivo studies, catechol did not induce DNA strand breaks or somatic cell
mutations in the mouse spot test (one study). On the other hand, micronuclei were
induced in mouse bone marrow (three of four studies). In one of these positive micro-
nucleus test studies, the effect was greater after intraperitoneal injection than after gavage
administration, while, in the other positive study, the effect of an intraperitoneal injection
was enhanced by either phenol or hydroquinone.

Adducts
Catechol added to HL-60 cells or administered intraperitoneally at 75 mg/kg bw to

B6C3F1 mice, from which bone-marrow cells were sampled, did not induce formation of
8-hydroxydeoxyguanosine, as might be expected if there had been oxidative damage to
DNA. When catechol was administered with hydroquinone, however, an increase in 8-
hydroxydeoxyguanosine was observed (Kolachana et al., 1993). Leanderson and Tagesson
(1990) found no covalent binding of catechol to DNA in vitro. Using a 32P-postlabelling
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Table 1. Genetic and related effects of catechol

Test system Resulta Doseb

(LED or HID)
Reference

Without
exogenous
metabolic
system

With
exogenous
metabolic
system

PRB, SOS induction, Salmonella typhimurium/pSK1002, umu test – – 3300 Nakamura et al. (1987)
SA0, Salmonella typhimurium TA100, reverse mutation – NT 500 Nazar et al. (1981)
SA0, Salmonella typhimurium TA100, reverse mutation – – 1667 Haworth et al. (1983)
SA0, Salmonella typhimurium TA100, reverse mutation – – 5000 Yoshida & Fukuhara (1983)
SA5, Salmonella typhimurium TA1535, reverse mutation – – 1667 Haworth et al. (1983)
SA7, Salmonella typhimurium TA1537, reverse mutation – – 1667 Haworth et al. (1983)
SA7, Salmonella typhimurium TA1537, reverse mutation – – 5000 Yoshida & Fukuhara (1983)
SA8, Salmonella typhimurium TA1538, reverse mutation – – 1667 Haworth et al. (1983)
SA9, Salmonella typhimurium TA98, reverse mutation – – 5000 Yoshida & Fukuhara (1983)
SCG, Saccharomyces cerevisiae MP1, gene conversion – NT 2500 Fahrig (1984)
SCH, Saccharomyces cerevisiae MP1, homozygosis – NT 2500 Fahrig (1984)
SCF, Saccharomyces cerevisiae MP1, forward mutation + NT 2500 Fahrig (1984)
DIA, DNA strand breaks/alkali-labile sites, rat primary hepatocytes
  in vitro

(+) NT 330 Solveig Walles (1992)

DIA, DNA strand breaks, mouse lymphoma L5178YS cells in vitro – NT 110 Pellack-Walker & Blumer
(1986)

DIA, DNA strand breaks/cross-links, mouse lymphoma cells in vitro + + 55 Garberg et al. (1988)
G5T, Gene mutation, mouse lymphoma L5178Y cells, tk locus in vitro + NT 2.5 McGregor et al. (1988)
G5T, Gene mutation, mouse lymphoma L5178Y cells, tk locus in vitro + NT 1.14 Wangenheim & Bolcsfoldi

(1988)
GIA, Gene mutation, Syrian hamster embryo cells, hprt locus in vitro + NT 0.33 Tsutsui et al. (1997)
GIA, Gene mutation, Syrian hamster embryo cells, Na+/K+ ATPase locus
  in vitro

+ NT 1.1 Tsutsui et al. (1997)

SIS, Sister chromatid exchange, Syrian hamster embryo cells in vitro + NT 1.1 Tsutsui et al. (1997)
CIS, Chromosomal aberrations, Syrian hamster embryo cells in vitro + NT 0.33 Tsutsui et al. (1997)
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444Table 1 (contd)

Test system Resulta Doseb

(LED or HID)
Reference

Without
exogenous
metabolic
system

With
exogenous
metabolic
system

AIA, Aneuploidy, Syrian hamster embryo cells in vitro + NT 3.3 Tsutsui et al. (1997)
TBM, Cell transformation, BALB/3T3 mouse cells, focus assay – NT 2 Atchison et al. (1982)
TCS, Cell transformation, Syrian hamster embryo cells, clonal assay + NT 0.11 Tsutsui et al. (1997)
DIH, DNA strand breaks/alkali-labile sites, human lymphocytes, comet
  assay in vitro

(+)c + 11 Anderson et al. (1995)

SHL, Sister chromatid exchange, human lymphocytes in vitro + NT 4 Morimoto & Wolff (1980)
SHL, Sister chromatid exchange, human lymphocytes in vitro + NT 33 Morimoto (1983)
SHL, Sister chromatid exchange, human lymphocytes in vitro + NT 6 Erexson et al. (1985)
MIH, Micronucleus test, human lymphocytes in vitro +c NT 22 Yager et al. (1990)
MIH, Micronucleus test, human lymphocytes in vitro – NT 8.3 Robertson et al. (1991)
HMM, Host-mediated assay, Escherichia coli K-12 uvr B/rec A DNA
  repair in blood, liver, lungs, kidneys, testicles of male NMRI mice

– 200 po × 1 Hellmér & Bolcsfoldi
(1992)

DVA, DNA strand breaks/cross-links, Fischer 344 rats in vivo – 90 po × 1 Furihata et al. (1989)
MST, Mouse spot test, C579BL × T mouse embryos – 22 ip × 1 Fahrig (1984)
MVM, Micronucleus test, male NMRI mouse bone marrow in vivo – 42 sc × 6 Tunek et al. (1982)
MVM, Micronucleus test, male CD-1 mouse bone marrow in vivo + 40 po × 1 Ciranni et al. (1988a)
MVM, Micronucleus test, pregnant female CD-1 mouse bone marrow
  and fetal liver in vivo

+ 40 po × 1 Ciranni et al. (1988b)

MVM, Micronucleus test, CD-1 mouse bone marrow in vivo + 10 ip × 1 Marrazzini et al. (1994)
ICR, Inhibition of cell communication, Chinese hamster lung V79 cells + NT 0.25 Bohrman et al. (1988b)

a +, positive; (+), weakly positive; –, negative; NT, not tested
b LED, lowest effective dose; HID, highest ineffective dose; in-vitro tests, μg/mL; in-vivo tests, mg/kg bw/day; po, oral; ip, intraperitoneal; sc, sub-
cutaneous
c Higher percentage stained kinetochore-positive compared to controls



technique, Lévay and Bodell (1996) found that treatment of HL-60 cells with 0.5 mM
catechol for 24 h resulted in a relative adduct level of 0.21 × 10–7. Addition of 0.05–
0.25 mM hydrogen peroxide increased the relative adduct level to 0.83–2.10 × 10–7, whereas
co-administration of hydrogen peroxide with 1,2,4-benzenetriol had no additional effect.

5. Summary of Data Reported and Evaluation

5.1 Exposure data
Exposure to catechol may occur in its production, in the production of insecticides,

perfumes and drugs, in metal plating and in coal processing. Catechol occurs naturally
in fruits and vegetables. It is present in cigarette smoke and has been detected at low
levels in ambient air and water.

5.2 Human carcinogenicity data
No data were available to the Working Group.

5.3 Animal carcinogenicity data
Catechol was tested for carcinogenicity by oral administration in one study in mice

and in two studies in rats. No increase in the incidence of malignant tumours was found
in mice. In rats, it induced adenocarcinomas in the glandular stomach in several strains.
In one study in mice by skin application, no skin tumour was observed. In several experi-
ments in rats involving administration with known carcinogens, catechol enhanced the
incidence of papillomas of the tongue, carcinomas of the oesophagus, squamous-cell
carcinomas of the forestomach and adenocarcinomas of the glandular stomach.

5.4 Other relevant data
Catechol is oxidized by peroxidases to the reactive intermediate benzo-1,2-quinone,

which binds to protein. The acute toxicity of catechol is relatively low. In humans, the
irritant action of catechol can lead to dermatitis and other dermal lesions. Chronic oral
treatment of rodents causes hyperplasia of the forestomach and pyloric mucosa.

Catechol was shown to cause gene mutations in mammalian cells in vitro. Chromo-
somal aberrations and sister chromatid exchanges were reported in mammalian cells in
culture. After application to mice, catechol was negative in one and positive in three
studies of micronucleus formation in bone marrow.

5.5 Evaluation
No epidemiological data relevant to the carcinogenicity of catechol were available.
There is sufficient evidence in experimental animals for the carcinogenicity of catechol.

Overall evaluation
Catechol is possibly carcinogenic to humans (Group 2B).
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